
Learning Logic Program Representation from Delayed Interpretation Transition
Using Recurrent Neural Networks

Yin Jun Phua
Tokyo Institute of Technology

Sophie Tourret
National Institute of Informatics

Katsumi Inoue
Tokyo Institute of Technology

National Institute of Informatics

Abstract

Having a method to understand the interactions and delayed
influences between components of dynamical systems can
provide useful applications to biological and other dynamical
systems. In this paper, we present a method relying on Recur-
rent Neural Networks (RNN) that can learn to distinguish the
nature of different systems. This method utilizes Long Short-
Term Memory (LSTM) to extract and encode features from
the input sequence of time series data. We also show that the
produced high dimensional encoding can be used to distin-
guish time series that originate from different dynamical sys-
tems.

Introduction
Learning from Interpretation Transition (LFIT) is an unsu-
pervised learning algorithm which learns the dynamics of an
environment just by observing state transitions. Applications
for such learning algorithms can range from multi-agent sys-
tems, where learning other agents’ behavior can be crucial
for decision making, to systems biology, where knowing the
interaction between genes can greatly help in the creation of
drugs to treat sickness. This paper introduces an algorithm
utilizing Recurrent Neural Network (RNN) to perform LFIT.
The proposed approach outputs a high dimensional matrix
representation of the logic program that describes the dy-
namics of a Boolean system. In this paper, we show that
the learned matrix representation is equivalent to the Nor-
mal Logic Program (NLP) that can be used to describe these
dynamics. This approach extends the approach described in
the paper (Gentet, Tourret, and Inoue 2016), which uses a
feed-forward neural network to learn 1 step transitions, by
constructing an NLP from state transitions in a delayed en-
vironment. Neural networks are known to perform well in
tasks like function approximation and prediction. By utiliz-
ing neural networks, we hope to be able to perform LFIT
on data with noises and continuous data, where traditional
approaches cannot be applied (Inoue, Ribeiro, and Sakama
2014). Previously, application of neural networks in induc-
tive logic programming involves training the neural network
to model the dynamics of the Boolean system. The approach
proposed in this paper differs in that the neural network is
not trained to model the dynamical system, but rather to out-
put a representation of the system.

To the best of our knowledge, there is only one available
article (Khan et. al 2016) about constructing models of dy-
namical systems using RNNs. However this approach suf-
fers from its important need of training data, that increases
exponentially as the number of variables grow. This is a
well-known computational problem called the curse of di-
mensionality (Donoho 2000). In most practical cases, espe-
cially in biological systems, sufficient training data cannot
be obtained to rely on this method. Thus, having a method
that achieves high performance with a small amount of train-
ing data is of great importance.

The rest of the paper is organized as follows. We will first
cover the basics of LFIT, which is the framework that this
work is based on. Next we will explain some basic knowl-
edge of recurrent neural network that is required to under-
stand this paper. We then describe the method used in (Khan
et. al 2016). Then we will explain our approach of RNN-
LFIT. We explain the experiments done and show the ex-
perimental results in the next section. Then finally, we will
dicuss the results observed and conclude the paper.

LFIT
A normal logic program (NLP) is a set of rules of the form

A← A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (1)

where A and Ai are propositional atoms, n ≥ m ≥ 0.
¬ and ∧ are the symbols for logical negation and con-
junction. For any rule R of the form (1), the atom A is
called the head of R and is denoted as h(R). The con-
junction to the right of ← is called the body of R. We
represent the set of literals in the body of R as b(R) =
{A1, . . . , Am,¬Am+1, . . . ,¬An}. Atoms that appear pos-
itively in b(R) are denoted as b+(R) = {A1, . . . , Am},
while those that appear negatively are denoted as b−(R) =
{Am+1, . . . , An}. The set of all propositional atoms that ap-
pear in a particular Boolean system is denoted as the Her-
brand base B.

An Herbrand interpretation I is a subset of B. For a logic
program P and an Herbrand interpretation I , the immedi-
ate consequence operator (or Tp operator) is the mapping
TP : 2B → 2B:

TP (I) = {h(R) | R ∈ P, b+(R) ⊆ I, b−(R) ∩ I = ∅}.

Given a set of Herbrand interpretations E and {TP (I) | I ∈
E}, the LFIT algorithm outputs a logic program P which
completely represents the dynamics of E. When an LFIT al-
gorithm only considers 1 step transitions, it is also called
LF1T (pronounced ”L-F-one-T”). There has been 2 main
logical method algorithms developed for LF1T (Inoue,
Ribeiro, and Sakama 2014), (Inoue, Ribeiro 2015). The first
algorithm relies on a generalization scheme to simplify the
created rules with each new transition observed. The second
algorithm acts in the opposite way, by specializing the rules
to cover each new transition.

LFkT
LFkT is the extension of LF1T to Markov(k) systems, to
learn from k-step transitions. Given a number of time steps
k, the timed Herbrand base of a logic program P , denoted
by Bk, is as follows:

Bk =

k⋃
i=1

{vt−i | v ∈ B}

where t is a constant term which represents the current time
step. Given a Markov(k) system S, if all rules R ∈ S are
such that h(R) ∈ B and b(R) ∈ Bk, then we represent S
as a logic program P with Herbrand base Bk. A trace of
execution T of S is a finite sequence of states of S. We can
define T as T = (x0, . . . , xn), n ≥ 1, xi ∈ 2B. Thus a k-
step interpretation transition is (I, J) where I ⊆ Bk, J ⊆ B.
An algorithm for LFkT is described in (Ribeiro et. al 2014).

Previous approaches for LFIT that do not rely on neu-
ral networks require the data to be discretized before learn-
ing can be done. If the discretization step is wrong, every
step that follows will also be wrong. Therefore an approach
where discretization is not needed is very appealing. In addi-
tion, with the notable exception of NN-LFIT (Gentet, Tour-
ret, and Inoue 2016), the LFIT family of algorithms do not
generalize to transitions that did not appear within the train-
ing data.

RNN
RNNs are an extension of feed-forward neural networks
that deal with sequence to sequence mapping (Sutskever,
Vinyals, and Le 2014). Given a sequence (x1, . . . , xM), us-
ing 3 weight matrices Whx,Whh,W yh and 3 bias vectors
bh, by, h0, a standard RNN calculates the following:

ht = σ(Whxxt +Whhht−1 + bh)

yt =W yhht + by

and outputs a sequence (y1, . . . , yT), where M may differ
from T . The vector ht represents the hidden state for each
time step, and σ is the sigmoid function, which is defined as
σ(x) = 1/(1 + exp(−x)).

However, standard RNNs have problems learning long
term dependencies due to their nonlinear iterative nature
(Bengio, Simard, and Frasconi 1994). RNNs also suffer
from the vanishing gradient problem (Bengio, Simard, and
Frasconi 1994). To mitigate these problems, an RNN ar-
chitecture called Long Short-Term Memory (LSTM) was

Figure 1: An illustration of an LSTM memory cell

introduced. LSTM has been popular in many sequence to
sequence mapping application such as machine translation
(Sutskever, Vinyals, and Le 2014). In this paper, we apply
LSTM to LFkT, benefitting from its generalization power
and natural handling of delays.

Our approach uses the LSTM model described in
(Hochreiter, Schmidhuber 1997). An LSTM consists of a
memory cell for each time step, and each memory cell has an
input gate it, an output gate ot and a forget gate ft. When a
sequence of nX time steps X = {x1, x2, . . . , xnX

} is given
as input, LSTM calculates the following for each time step:itftot

lt

 =

 σ
σ
σ

tanh

W ·
(
ht−1
xt

)
ct = ft · ct−1 + it · lt
ht = ot · ct

whereW is the weight matrix, ht is the output of each mem-
ory cell, ct is the hidden state of each memory cell and lt
is the input to each memory cell. The input gate decides
how ”much” of the input show influence the hidden state.
The forget gate decides how ”much” of the past hidden state
should influence the current hidden state. The output gate is
responsbile for deciding how ”much” of the current hidden
state to let through to the output. A visual illustration of a
single LSTM memory cell is shown at Figure 1.

LSTM networks can be trained by using gradient descent,
by using backpropagation through time (BPTT) (Graves,
Schmidhuber 2005). During BPTT, the LSTM is unfolded
across time steps. Thus the length of the input sequence is
fixed. Variable sequence length mapping can be achieved by
padding zeros, however that is out of the scope of this paper.

...

Figure 2: BPTT training for LSTM network

Related Work
In (Khan et. al 2016), the authors proposed a method uti-
lizing RNNs to extract the topology of a gene regulatory
network (GRN). A GRN represents the complex interreg-
ulatory relationships among genes, and is said to be critical
to understanding diseases and creating drugs to cure them.
GRNs have also been successfully modelled with Boolean
networks (Albert, Othmer 2003).

The proposed method in (Khan et. al 2016) involves
first constructing the neural network based on background
knowledge. Once the structure of the network is finalized, it
is trained on the available data to predict the genetic expres-
sions. The results in their paper shows that, while the method
achieved very high accuracy in predicting the topology for
small artificial GRNs compared to other available methods,
their method however was not able to achieve similar level
of performance on larger GRNs.

Proposed Approach
Our proposed approach uses 3 LSTM networks for training.
We call these networks the encoder, the decoder and the fu-
ture predictor. The encoder network is responsible for con-
verting the input sequence data into the logic program repre-
sentation. The decoder network outputs the input sequence
data, given the initial time step of the sequence and the logic
program representation. The future predictor network pre-
dicts the time step following the final time step xM of the
input sequence X , given the logic program representation
and xM .

Here we consider a dynamical system S as a vector xt
of Boolean variables x(1)t , x

(2)
t , . . . , x

(|B|)
t evolving through

time and the time series data X with M time steps is the
sequence of vectors (x1, x2, . . . , xM). When RNN-LFIT is
used, the input length must be larger than the maximum de-
lay k within the system.

In this context, the encoder LSTM computes the function:

T = EncoderRNN(x0, x1, . . . , xM)

assuming the LSTM has n hidden nodes and m layers, the
output T is an m× n matrix.

To restore the original input sequence, we can apply the
TP operator on the initial time step M times. This operator
is approximated by the decoder, which takes the encoding
T as an input in addition to the initial state x0. Formally, it

(a) Conditional Structure

(b) Uncondintional Structure

Figure 3: The structure of conditional and unconditional de-
coder

computes X̃:

X̃ = DecoderRNN(x0, T)

where X̃ = (x̃0, x̃1, . . . , x̃M). The output of the LSTM net-
work in the decoder is passed through a sigmoid function to
limit the range to [0, 1]. We can consider both a conditional
structure and unconditional structure for the decoder net-
work. A conditional structure is a structure where the LSTM
is fed as input at each time step the result of the previous
time step as illustrated on Figure 3a. An unconditional struc-
ture is a structure where the LSTM is only fed the encoding
of the logic program and relies on the evolution of its inner
state to generate the outputs at each time step, as illustrated
in Figure 3b.

Finally, the future predictor produces the future time steps
yM+1, yM+2, . . . , yN given the final state xM as an input.
The future predictor model can be thought as computing the
following:

Y = PredictorRNN(xM , T)

where Y = (yM+1, yM+2, . . . , yN). As with the decoder,
the future predictor can be used in a conditional and an un-
conditional way.

RNN-LFIT is the combination of the encoder, decoder
and the future predictor. The structure of RNN-LFIT is
shown in Figure 4. Depending on whether the decoder and
the future predictor are both conditioned or are both uncon-
ditioned, RNN-LFIT is also referred to as conditioned or un-
conditioned.

Experiments
The dataset used to train the model is randomly generated.
To generate the data, we first decide the number of variables,
the minimum and maximum number of literals in each rule

Figure 4: Architecture of RNN-LFIT

and the maximum delay in the system, then randomly gen-
erate n NLPs. We have listed some of the generated NLPs
in the appendix. Next we randomly set an initial state and
perform the TP operator N times to get a sequence of data.
Thus the first M data points are used as an input to the en-
coder network, and then the nextN−M data points are used
to check the ouput of the future predictor model.

We train the encoder to produce a representation, which
the decoder can then use to reproduce the original input, and
which also allows the future predictor to predict the next
states. The objective function is written as follows:

1/|S|
∑

(Y,X)∈S

log p(Y, X̃|X)

where we want to maximize the log probability of a correct
prediction Y and a correct reconstruction of the original in-
put sequence X̃ when given the input sequenceX . S denotes
the training set.

While training, we found that deep LSTM perform bet-
ter than shallow ones. Deeper LSTM models are said to
have better performance because they have a higher degree
of expressivity (Sutskever, Vinyals, and Le 2014), therefore
in this experiment, we used a 5 layer LSTM model. Listed
below are additional details regarding the training of RNN-
LFIT:

• the parameters of all the networks are initialized using a
normal distribution of mean 0 and variance 1,

• the learning is performed using Adam stochastic opti-
mization (Kingma, Ba 2014),

• the learning batches contain 64 sequences each.

In all the experiments, we evaluate the accuracy of the
predictor. To do so, we convert the predictor output yt back
to a propositional vector rt in the following way:

∀i, r(i)t =

{
1, y

(i)
t ≥ α,

0, else
. (2)

where α is a chosen threshold in [0, 1].
In order to evaluate different methods and experiment re-

sults, we use a metric called Accuracy (ACC). Accuracy sig-
nifies the fraction of the correct prediction made by the net-
work across all the predictions. The formula is written as

RNN-LFIT Structure Accuracy
Unconditional without decoder 0.80

Unconditional, full 0.84
Conditional, full 0.82

Table 1: Accuracy of the RNN-LFIT variants

Maximum delay k Length of input sequence Accuracy
6 8 0.83
7 8 0.87
8 10 0.85
9 10 0.80

10 12 0.83

Table 2: Unconditional RNN-LFIT with varying maximum
delays

follows:

ACC =
Correct Predictions

All Predictions
We first evaluate the performance of the model with 14 vari-
ables and a maximum delay of 5. Then we increase the max-
imum delay to find if it is correlated with the accuracy of
RNN-LFIT. Finally, we increase the number of variables and
measure the impact of this change on the accuracy of RNN-
LFIT.

All experiments and training are performed with code
written using Tensorflow (Tensorflow 2017). The actual
training is done on CUDA 7.5 enabled Tensorflow v0.12.0,
running on Python 2.7. The OS used was Fedora 24, run-
ning on Core i5 6600K, 32GB of memory. The GPU that
was used is a GTX 980. Most of the training took 4-6 hours,
but once the network has been trained, it can then be used
on as many time series data as wanted without any further
training.

Experimental Results
The results of the first experiment, with 4 variables and a
maximal delay of 5, are shown in table 1. Each LSTM net-
work has 6 memory cells and 5 layers. They were all trained
and tested on the same sets of data. The training set is made
up of 8,192 different sequences generated with 4 different
NLPs. For evaluation, α was set to 0.3, and for testing we
used 8,192 new sequences generated from 4 NLPs different
from the ones used to generate the training set. From the re-
sults, we can observe that without the decoder, accuracy is
a little lower, and unconditional RNN-LFIT perform better
than conditional ones.

In the second experiment, we increase the maximum de-
lay of the NLPs used to generate the dataset, while the num-
ber of variables remains unchanged. As seen in table 2, no
significant drop in accuracy is observed when the maximum
delay is increased.

In previous works (Ribeiro et. al 2014), increasing the
number of variables caused the number of parameters within
the network to increase, thus more training data was needed
to maintain the accuracy. However the main application in

Number of variables |B| Accuracy
15 0.85
20 0.84
25 0.85
30 0.84

Table 3: Unconditional RNN-LFIT with varying number of
variables

Figure 5: This figure shows a 2-dimensional LDA projection
of the learned NLP representation after processing the in-
put sequence. The difference in shades represents sequences
generated by different NLPs. Note that different NLPS are
neatly clustered.

(Ribeiro et. al 2014), i.e. modelling gene regulatory net-
works, assumes most of the time that the training data is
limited. Thus to compare our method with previous meth-
ods, we train RNN-LFIT with a larger number of variables.
Results in table 3 shows that our method displays no degra-
dation in performance even with increased variables. All
experiments on the varying number of variables are per-
formed on datasets which have a maximum delay of k = 5,
and 8,192 sequences generated from 4 randomly generated
NLPs.

Discussion
Figure 5 shows a 2-dimensional linear discriminant analysis
(LDA) projection (McLachlan 2004) of the tested NLP rep-
resentations. Each point in the graph represents the output
produced by the encoder after reading the input sequence.
The different shades represent data sequences generated by
different NLPs. There are 4 NLPs generated in this figure,
and the different NLPs are neatly clustered, suggesting it
should be possible to recover an NLP describing the time
series by mapping the output space using artifically made
data. The 4 NLPs that correspond to the different shades in
the chart is listed in appendix .

Conclusion
In this paper, we presented RNN-LFIT, an LSTM based ap-
proach for learning to distinguish time series data according
to the rules governing them. The experimental results show
that we succeed in capturing features unique to the reules
behind each dataset.

Contrary to previous approaches, RNN-LFIT does not

learn to model the dynamic of the system that is inputted. In-
stead it learns characteristics that uniquely identify this sys-
tem. A strong point of this approach is that it can be trained
with as many artificially generated time series as needed, en-
suring accurate results even when the real data available is
very sparse.

Obtaining a representation that captures the characteris-
tics and features of the time series data is a big step towards
understanding the dynamics of a system. In future works,
we are planning to convert the representation into NLPs to
make it understandable by humans and study the behavior of
RNN-LFIT on datasets that are continuous and noisy.

Appendices
Generated NLPs
Table 4 shows the 4 NLPs generated that are used to test
the networks. The generation setting used is 14 variables,
maximum delay of 5 and maximum literals of 2 for each
rule.

at ← ht−1 ∧ ¬bt−2
bt ← it−2 ∧ ct−4
ct ← ¬it−2 ∧ ¬dt−5
dt ← ft−2 ∧ it−5
et ← ft−5 ∧ gt−5
ft ← at−3

gt ← gt−4 ∧ nt−4
ht ← ¬bt−2
it ← it−2 ∧ ¬dt−2
jt ← jt−1 ∧ ¬ft−1
kt ← it−2 ∧ ¬jt−4
lt ← at−1 ∧ ¬jt−4
mt ← it−1 ∧ at−5
nt ← ¬at−5 ∧ ¬it−2

at ← ¬nt−2 ∧ ¬kt−4
bt ← lt−1 ∧ gt−2
ct ← mt−2 ∧ gt−2
dt ← dt−5 ∧ ¬jt−1
et ← lt−4

ft ← ¬kt−2 ∧ ¬jt−4
gt ← ¬et−5
ht ← ¬dt−4
it ← ht−3 ∧ ¬nt−3
jt ← et−1 ∧mt−3

kt ← bt−1 ∧ ¬kt−5
lt ← jt−1

mt ← ¬it−1 ∧ ¬gt−5
nt ← ¬lt−4 ∧ ¬it−4

at ← gt−5 ∧ it−4
bt ← nt−2 ∧ gt−4
ct ← mt−4 ∧ nt−3
dt ← ¬bt−4
et ← bt−5 ∧ et−2
ft ← ¬at−5
gt ← ct−3 ∧ et−2
ht ← dt−1 ∧ gt−1
it ← nt−2 ∧ ft−4
jt ← it−3 ∧ ¬at−4
kt ← ft−3 ∧ ¬ft−5
lt ← it−5 ∧ gt−4
mt ← ¬it−5
nt ← nt−4 ∧ ¬it−1

at ← ¬it−2
bt ← mt−2 ∧ ¬jt−4
ct ← kt−4 ∧ it−5
dt ← dt−5 ∧ ¬nt−5
et ← ¬ct−5 ∧ ¬dt−2
ft ← kt−1 ∧ it−3
gt ← dt−4 ∧ nt−2
ht ← ¬jt−4 ∧ ¬kt−2
it ← jt−3

jt ← ¬jt−2
kt ← kt−4 ∧ it−2
lt ← ¬it−5 ∧ ¬ct−5
mt ← ht−1 ∧ at−2
nt ← ¬ft−2

Table 4: Generated NLPs

References
Enguerrand Gentet, Sophie Tourret, and Katsumi Inoue,
2016. Learning from Interpretation Transition using Feed-
Forward Neural Network. Inductive Logic Programming.
Katsumi Inoue, Tony Ribeiro, and Chiaki Sakama, 2014.
A BDD-Based Algorithm for Learning from Interpretation
Transition. Inductive Logic Programming: Revised Selected
Papers from the 23rd International Conference, Vol. 8812,
pp. 4763.
Katsumi Inoue and Tony Ribeiro, 2015. Learning Prime Im-
plicant Conditions from Interpretaion Transition. Inductive
Logic Programming: Revised Selected Papers from the 24th
International Conference, Vol. 9046, pp. 108125.
Tony Ribeiro, Morgan Magnin, Katsumi Inoue, and Chi-
aki Sakama, 2014. Learning delayed influences of biologi-
cal systems. Frontiers in Bioengineering and Biotechnology,
Vol. 2, p. 81.
Abhinandan Khan, Sudip Mandal, Rajat Kumar Pal, and
Goutam Saha, 2016. Construction of gene regulatory net-
works using recurrent neural networks and swarm intelli-
gence. Scientifica, Vol. 2016.
Y. Bengio, P. Simard, and P. Frasconi, 1994. Learning long-
term dependencies with gradient descent is difficult. Trans.
Neur. Netw., Vol. 5, No. 2, pp. 157166.
Sepp Hochreiter and Jurgen Schmidhuber, 1997. Long short-
term memory. Neural Comput., Vol. 9, No. 8, pp. 17351780,
November 1997.
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le, 2014. Se-
quence to sequence learning with neural networks. CoRR,
Vol. abs/1409.3215.
Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudi-
nov, 2015. Unsupervised learning of video representations
using lstms. In David Blei and Francis Bach, editors, Pro-
ceedings of the 32nd International Conference on Machine
Learning (ICML-15), pp. 843852. JMLR Workshop and
Conference Proceedings.
Diederik P. Kingma and Jimmy Ba, 2014. Adam: A method
for stochastic optimization. CoRR, Vol. abs/1412.6980.
McLachlan, G. J, 2004. Discriminant Analysis and Statisti-
cal Pattern Recognition. Wiley Interscience..
Tensorflow. https://www.tensorflow.org/, 2017.
Alex Graves and Jurgen Schmidhuber, 2005. Frame-
wise phoneme classification with bidirectional LSTM
and other neural network architectures. Neural Networks,
18(56):602610, July 2005.
R. Albert, HG. Othmer, 2003. The topology of the regulatory
interactions predicts the expression pattern of the segment
polarity genes in Drosophila melanogaster. J. Theor. Biol.
D. L. Donoho, 2000. High-dimensional data analysis: the
curses and blessings of dimensionality. AMS Math Chal-
lenges Lecture, pp. 132.

