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Abstract

State-of-the-art neural part-of-speech (POS) taggers trained
only on labeled data from the Penn Treebank have compara-
ble performance to a structure perceptron tagger with hand-
engineered features. This paper explores three modeling tech-
niques for a neural POS tagger that address potential learning
challenges at the boundaries of the tagger’s discrete and con-
tinuous representations of data. First, a model that predicts
each tag independently, based on a joint representation of the
input sequence, only has access to the model’s hidden con-
tinuous representation of the sentence, but not discrete distri-
butions over neighboring tags. We show that also condition-
ing on a learned multinomial distribution over the discrete tag
space for neighboring positions improves performance. Sec-
ond, using only one embedding vector for each input sym-
bol leads to high variability in final tag accuracy, perhaps due
to the challenge of jointly optimizing the embeddings for so
many symbols. We show that embedding each symbol twice,
in combination with dropout on the embedding layers, also
improves performance. Finally, the choice of how each word
is decomposed into sub-words affects the way in which con-
tinuous parameters are allocated to a discrete sequence of
symbols. We describe a new data-driven technique for sub-
word segmentation designed to respect morpheme bound-
aries. However, our experiments indicate that this change
does not improve final tag accuracy, despite a large increase
in intrinsic segmentation quality when compared with human
segmentation annotations. Overall, these three approaches
highlight the learning challenges that arise when a model
embeds discrete symbols into continuous spaces. Combining
these techniques reduces test set errors by 3.8%.

Introduction
Deep learning has achieved state-of-the-art performance in
many natural language processing (NLP) tasks by embed-
ding words and tags into continuous vector spaces. An im-
portant technique for generalizing to unseen vocabularies is
to represent each word as a variable-length sequence of sym-
bols from a small fixed inventory of sub-words. This paper
explores the performance of a convolutional deep part-of-
speech (POS) tagger trained on the Penn Treebank, in order
to identify and address challenges that arise when sub-words
and tags are embedded as vectors.

A bidirectional LSTM (Hochreiter and Schmidhuber,
1997) represents the current state-of-the-art approach to

POS tagging (Ling et al., 2015; Wang et al., 2015). How-
ever, in order to achieve maximal performance, unlabeled
training data from a large external text corpus is required.
Using only labeled data from the Penn Treebank, the best
reported accuracy of a deep tagger is 97.36%, using a bidi-
rectional LSTM over characters to encode words, and an-
other bidirectional LSTM over words to encode sentence
context for tagging (Ling et al., 2015). The best reported
accuracy of a linear tagger trained with structured percep-
tron to combine hand-engineered features, trained only on
labeled data from the Penn Treebank, is a nearly identical
97.35% (Huang et al., 2012). The fact that a linear model
using hand-engineered features can match the performance
of a nonlinear model capable of feature induction indicates
that there may be some remaining learning challenges when
embedding discrete symbols into continuous spaces.

Rather than attempt to establish a new state-of-the-art
through known methods such as deeper models or ensem-
bles, we aim to provide insight into whether certain targeted
improvements provide reliable performance gains in POS
tagging, with the hope of informing research on other lan-
guage tasks. Toward this end, we explore three candidate
extensions to a convolutional tagger designed to address po-
tential learning challenges at the boundaries of the model’s
discrete and continuous representations of text and tags.

First, a model that predicts each tag independently using a
softmax output layer may not effectively learn tag-sequence
patterns. The output layer of a deep POS tagger conditions
on an internal representation of the word and its context,
but does not condition on the predicted tags of neighbor-
ing words. By contrast, state-of-the-art structured percep-
tron taggers benefit from tag-sequence features. In princi-
ple, a deep model’s hidden representation should be suffi-
ciently expressive to represent these features, but it may be
challenging to learn these patterns in practice. To investigate
this issue, we evaluate a model architecture that applies the
same output layer twice: once to generate preliminary prob-
abilities for each tag in each position, then again to generate
final probabilities conditioned on those preliminary proba-
bilities. In this way, the model has explicit access to its own
predicted distributions over discrete tags, rather than only
its embedded representations. This architecture change pro-
vides a small improvement, eliminating 1.47% of test set
errors on average.



The second challenge is that jointly learning embeddings
for a large inventory of sub-words may be a difficult numeri-
cal optimization problem. In an attempt to improve training,
we evaluate the following small architecture change. Each
input symbol, a sub-word in our experiments, is associated
with two different embedding vectors instead of one. During
training, dropout is applied to each dimension of each vector
independently, then the vectors are summed. At test time, the
vectors are summed without dropout, so the model is equiva-
lent at test time to having only one embedding for each sub-
word. This simple change reduces performance variability
and provides a small improvement, eliminating 0.8% of test
set errors on average. Combining these two techniques re-
duces errors by 3.8% on average.

The final challenge concerns how words are encoded as
sub-word symbols before being embedded in a vector space.
We investigate how a variable-length encoding technique
called byte-pair encoding, used to segment words into sub-
words, may impact the model’s ability to identify morpho-
logical patterns. For example, if earning and gaining are seg-
mented as earn- ing and gain- ing respectively, then both
word representations will share parameters since they share
a sub-word. However, if earning is instead segmented as
ear- ning (a common result from byte-pair encoding), then
these words won’t share an embedding, and the relation-
ship between the two words must be learned. We evaluate
a data-driven variant of byte-pair encoding that is designed
to impose sub-word segmentation boundaries between mor-
phemes. While we show a clear increase in intrinsic seg-
mentation quality, final tag accuracy does not appear to im-
prove. Overall, our experiments do not conclusively asso-
ciate increased segmentation quality with better tagger per-
formance.

This investigation of techniques related to embedding
for deep POS taggers produces a competitive model with
labeled-training-only test set accuracy of 96.68% on the
Penn Treebank, similar to the 96.61% accuracy of the best
bidirectional LSTM over words and case markers reported in
(Wang et al., 2015) and the 96.70% accuracy of the best bidi-
rectional LSTM over words reported in (Ling et al., 2015).

Related Work
State-of-the-Art POS Taggers
The bidirectional LSTM tagger of (Wang et al., 2015) em-
beds two discrete input sequences: lower-cased words and
indicator features describing the original capitalization pat-
tern of each word. The authors also describe using a se-
quence of two-letter suffixes as an additional input. The
model benefits substantially from large hidden layers and
from word embeddings trained on a large unlabeled text
corpus of 536 million words. The feed-forward network of
(Collobert et al., 2011) used similar input and also benefited
from unlabeled text data. The highest performing model
trained only on labeled data is reported in (Ling et al., 2015).
This work uses a bidirectional LSTM over characters to
form word representations, and then another bidirectional
LSTM over the words to embed sentence context and pre-
dict tag. One drawback of this method is that embedding

characters rather than words causes the model to be substan-
tially slower than a word-based alternative, especially during
training.

The best-performing linear POS taggers trained only on
labeled data combine hand-engineered features over tag se-
quences and morphological patterns. The structured percep-
tron tagger of (Huang et al., 2012) uses the features origi-
nally developed for the maximum entropy tagger of (Ratna-
parkhi, 1996). These features include tag bigrams and tag tri-
grams. Tagging by independent classifiers can achieve com-
parable performance, but only when trained on large unla-
beled corpora (Moore, 2014). Syntactic parsers also provide
excellent part-of-speech tagging performance, but are typi-
cally evaluated on a different test set than POS taggers.

Word Representation Methods
A substantial amount of recent research has investigated dif-
ferent methods of encoding text as a sequence of discrete
symbols. One simplistic approach is to embed each com-
mon word as its own vector and all uncommon words using
a single UNK vector. A promising alternative is to repre-
sent each word as a variable-length sequence of symbols
from a fixed-size inventory, for example using language-
model-based sub-word segmentation (Schuster and Naka-
jima, 2012), Huffman codes (Chitnis and DeNero, 2015),
or byte-pair encoding (Sennrich et al., 2015). The byte-pair
encoding (BPE) method that splits words into frequent sub-
words has proven particularly effective for machine transla-
tion. This approach uses only character n-gram frequencies
in order to segment words.

In addition to BPE, mixed word-character models have
also yielded performance gains over treating words as single
tokens. For example, one effective approach is to represent
common words as individual tokens and rare or unknown
words as a sequence of characters (Luong and Manning,
2016). An approach that has proven particularly effective for
language modeling and part-of-speech tagging is to treat all
words as a sequences of characters (Ling et al., 2015).

Model
Our model has two components: the first generates a repre-
sentation for each word from its embedded sub-word sym-
bols, and the second predicts a tag from the representations
of the word to be tagged and its context words. The word
and its context are combined using a convolution, rather an
an LSTM, because the faster training speed of this archi-
tecture allows us to perform a more thorough experimental
evaluation.

Word Representation
Generating vector embeddings for words in the corpus is
straightforward when each word is represented as a single
symbol, as multiple approaches exist for doing so (Penning-
ton et al., 2014). However, we focus in this work on repre-
senting each individual word as a sequence of sub-words,
for example chosen by byte-pair encoding (Sennrich et al.,
2015).



In order to generate the vector embedding for a word with
sub-words s1, ..., sn, we first embed each sub-word sj as a
vector ej , then combine e1, ..., en with an LSTM. The final
hidden state of the forward pass of the LSTM is a vector v
representing the word. This architecture allows the model to
embed words with arbitrarily many sub-words.

Convolutional Model
Once a vector embedding vi has been generated for each
word in a sentence, we apply a convolution operation to gen-
erate convolution vector ci that combines vi−k, . . . , vi, . . . ,
vi+k for the purpose of predicting the tag for word i. This
convolution operation involves the vector embedding for wi,
as well as the vector embeddings for all words within the
convolution window around wi. We denote this operation as
Cw(wi).

After computing the convolution vectors, we sum the vec-
tor embedding for each word with its corresponding convo-
lution vector, si = vi + ci. Finally, we apply a dense layer
to the resulting vectors with a softmax activation to produce
a multinomial distribution over possible tags for each word,
ti = D(si).

Extensions
We consider three extensions to this model, each designed
to target a potential learning challenge.

Conditioning on Neighbor Tag Predictions
When predicting a part-of-speech tag for a word, we incor-
porate predictions of neighboring tags as inputs into the fi-
nal output layer. That is, given the vector embedding vi of
a word wi and its convolutional output ci from the convolu-
tional network over its context, we first apply a dense layer
D to si = vi+ci in order to get preliminary estimates of the
tag distribution t′i for each wi. Then, in order to refine our
estimates, we apply a convolutional layer Ct over the tag
predictions t′i’s to get an output ri that serves as a residual
adjustment to si. Finally, we apply D again, with the same
parameters as before, to si + ri in order to generate final tag
distributions.

In summary, we incorporate neighboring tag information
as follows:

c← Cw(v) # Convolve over words
s← v + c # Sum the embeddings

t′ ← D(s) # Initial tag predictions

r ← Ct(t
′) # Convolve over tags

t← D(s+ r) # Final tag predictions

This architecture adds new parameters Ct to perform a
convolution over the intermediate multinomial tag distribu-
tions t′. We describe t′ as a multinomial over tags, not only
because of the softmax applied by D, but also because the
parameters of layer D are shared, both to predict t′ and t.
The model is trained to be a distribution over tags using a
cross-entropy loss over the final output t predicted by D,

and so we may expect that the intermediate output t′ also
predicted by D will give a similar distribution over tags.

Duplicate Embedding with Dropout
We embed each sub-word using two separate vectors that
are randomly initialized independently: e(1)j and e(2)j . The
embedding vector used as input to the LSTM over sub-words
is the sum of these duplicated embeddings.

ej = e
(1)
j + e

(2)
j

This modification only differs from a single embedding
vector per sub-word because dropout is applied indepen-
dently to each embedding vector during training. We use a
dropout probability of 0.2 in experiments. Therefore, each
dimension of ej is only dropped out completely with proba-
bility 0.04. More often, a dimension of ej during training is
computed from only one of the addends because the other is
dropped out, an event that occurs with probability 0.32. The
most common case is that the dimension of ej is the sum
of the addends, an event with probability 0.64. The result-
ing embedding ej is affected by dropout whenever e(1)j and

e
(2)
j differ, but remains mostly unaffected by dropout if the

contents of both embedding vectors converge to the same
values.

Morphological Pre-Segmentation
Our final extension involves segmenting words in the cor-
pus in a manner that is designed to respect morpheme
boundaries, as opposed to byte-pair encoding (BPE), which
is computed only from character n-gram frequencies. De-
scribed most generally, our approach enforces segmentation
boundaries in the corpus before BPE is applied, and then
applies BPE to these pre-segmented words. Therefore, the
result is an encoding of the corpus with a fixed number of
symbols chosen in advance. Therefore, the final model has
the same number of parameters using our morphological
pre-segmentation technique as it would when applied to a
corpus segmented directly with BPE.

Our pre-segmentation algorithm uses the output of
another data-driven corpus analysis technique, unsuper-
vised induction of morphological transformations using
word embeddings (Soricut and Och, 2015). This tech-
nique identifies triples (wold, wnew, type), where type ∈
{prefix, suffix}. The words wold and wnew are related
words that differ only in their prefix or suffix.

We only use transformations in which wold is a word
longer than wnew. We also assume the existence of trained
vector embeddings for full words in the corpus. For each in-
put rule, we define an example transformation vector ~v =
~vnew − ~vold, where ~vnew and ~vold are the trained vector em-
beddings for wnew and wold respectively.

We also compute sf and st for each such example trans-
formation. If a certain transformation has a type of “prefix”,
sf is the smallest substring ofwold that, when removed from
the front of wold, makes the remaining string a substring of
wnew. This is symmetric for the suffix case. The first step of
our algorithm iterates through all example transformations,
computing and storing the tuple (sf , st, ~v, type) for each.



Once all such 4-tuples have been computed from the
trained embeddings and the input transformations, pre-
segmentations are computed on all words in the corpus: for
each word wi, we test against all 4-tuples, with optimiza-
tions and heuristics to ensure tractability. Consider wi being
tested against (sf , st, ~v, type). If type is of “prefix”, sf
is replaced from the beginning of wi (if possible) with st to
create a new word wc. If wc is in the corpus, we define a
candidate transformation vector:

~vt = ~vc − ~vi
where ~vi and ~vc are the vector embeddings for wi and

wc respectively. If ~vt · ~v exceeds a threshold γ, we create a
pre-segmentation pi = [sf , wi − sf ] for wi, where wi − sf
denotes the remaining string when sf is removed from the
front or end of wi, depending on the type of transformation.
This use of direction vectors as measures of transform simi-
larity has previously been shown to be effective (Soricut and
Och, 2015).

We now have a list of pre-segmentations p1, p2, .....pn.
Each pi, is interpreted as a “hard boundary” in the word wi

it applies to. We apply BPE to the corpus, but impose an ad-
ditional constraint that these hard boundaries should always
exist between subwords, regardless of how other parts of wi

are merged through the creation of new symbols.
As a final optimization, we allow ignoring these pre-

segmentations in the k most frequent words. These words
may be important enough to warrant vector representations
on their own, instead of being broken into sub-words.

Results
We evaluate these extensions by performing repeated exper-
iments on the Penn Treebank 3. We used the standard section
split from prior work established in (Collins, 2002): Sections
0-18 for training, 19-21 for validation, and 22-24 for testing.
All results appear in Table 1.

For each condition, we trained the tagger parameters from
8 different random initializations. We report average test-set
accuracy for each condition over these 8 training runs. Vali-
dation set accuracy was measured every epoch, and training
was stopped early in each run whenever validation set accu-
racy decreased. In all experiments, words were segmented
into 8192 sub-words. Each sub-word was embedded into a
64-dimensional vector space, and all hidden layers also had
dimension 64. The Adam optimizer was used to minimize
cross-entropy loss.

Conditioning on Neighboring Tag Predictions
The extension of explicitly conditioning on neighboring tag
distributions (Tag Twice) resulted in a modest gain over the
baseline architecture. The improvement from the baseline
condition (row 1) to the tag-twice condition (row 2) with
baseline sub-word embeddings and segmentation was not
statistically significant according to a one-tailed permuta-
tion test to evaluate whether test set accuracy was reliably
higher under the Tag Twice condition (p=0.09). However,
the Tag Twice technique did provide a statistically signifi-
cant improvement on top of duplicate embedding (row 4 vs

Tagging Embedding Segmentation Accuracy
Baseline Baseline BPE 96.56%

Tag Twice Baseline BPE 96.61%
Baseline Embed Twice BPE 96.59%

Tag Twice Embed Twice BPE 96.68%
Baseline Baseline Morphology 96.54%

Tag Twice Baseline Morphology 96.61%
Baseline Embed Twice Morphology 96.57%

Tag Twice Embed Twice Morphology 96.61%

Table 1: Average test-set accuracy over 8 training runs for
each condition.

row 3; p=0.02), as well as when applied to the data set that
was pre-segmented (row 6 vs row 5; p=0.05). With only 8
samples for each condition, statistical significance may be
difficult to establish, even if the distribution of outcomes for
two conditions are in fact different. Therefore, with two of
three comparisons showing significance, it is reasonable to
conclude that conditioning on the discrete multinomial dis-
tribution of neighbor tag predictions does improve part-of-
speech tagging.

Duplicate Embedding with Dropout
The extension of embedding each input symbol twice and
applying dropout independently to both embedding vectors
(Embed Twice) also resulted in modest but consistent gains
in accuracy. The improvement over the baseline condition
was not statistically significant (row 3 vs row 1; p=0.26),
but the improvement when tagging twice in both conditions
was statistically significant (row 4 vs row 2; p=0.03). The
standard deviation of accuracies within a condition was 12%
smaller for the Embed Twice condition than the baseline
(row 3 vs row 1), indicating that this extension might reduce
variability in the outcome accuracy.

Morphological Pre-Segmentation
As part of testing our morphological pre-segmentations, we
ran an intrinsic segmentation quality experiment. The gold
standard segmentations were taken from the Morpho Chal-
lenge 2005 and Morpho Challenge 2010 (Kurimo et al,
2010).

We ran our pre-segmenter with γ = 0.6 in all experi-
ments. We chose to exclude the top k = 1000 words from
pre-segmentation. Vector embeddings were trained for the
corpus using the GloVe algorithm (Pennington et al., 2014).
The example transformations used as input were trained on
a separate corpus using the approach of Soricut and Och
(2015). In all sub-word experiments, 8000 merges were used
for BPE after pre-segmentations were imposed.

When compared against BPE, our morphological ap-
proach to sub-words displayed a substantial improvement
in F-measure against a gold standard segmentation favoring
morphological splits (Figure 1).

However, morphological pre-segmentation did not result
in better POS performance, despite the increase in intrin-
sic segmentation quality. Tagging after morphological pre-



Figure 1: F-measure of BPE method with and without mor-
phological pre-segmentations.

segmentation was slightly but consistently less accurate than
tagging with the segmentations from byte-pair-encoding
without any pre-segmentation.

Combined Improvements
The improvement that resulted from the combination of Tag
Twice and Embed Twice for BPE segmentations was highly
statistically significantly (row 4 vs row 1; p¡0.01). Neither
extension alone provided such a clear advantage over the
baseline, indicating that both extensions contributed to the
performance gain.

We found that these methods improved general POS tag-
ging performance, decreasing the number of errors for 33
out of 42 part-of-speech tags for which errors were observed.
Table 2 provides some examples for which mistakes made
by the baseline model were generally fixed by these two
modifications.

Conclusion and Discussion
Our convolutional POS tagging model that predicts tags
from sub-words is a typical example of a natural language
processing model with discrete inputs and outputs. By ad-
dressing issues related to embedding these discrete symbols
into vector spaces, we identified sources of modest improve-
ment that reduce test set errors by 3.8%. This allowed us
to provide a competitive model with average accuracy im-
proved from 96.56% to 96.68%.

Notably, two approaches that operated on the model level
fared well in our experiments compared to an approach that
instead modified the input to the model: in this case, by us-
ing superior word segmentations. It is indeed surprising that
our experiments did not associate intrinsic segmentation ac-
curacy with increased tagger performance.

We hope that these combined results provide some guid-
ance for future work in extending and refining NLP models
that mix discrete and continuous representations of text and
symbols.
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Sentence Word
Baseline
Correct
Tags

Tag
Twice +
Embed
Twice
Correct
Tags

The division had only minor damage at its Sunnyvale headquarters and plant in Palo
Altos, and no delays in deliveries are expected. deliveries 0 5

The firm brought in to strengthen the structure could be liable as well. liable 1 6
Los Angeles County Supervisor Kenneth Hahn yesterday vowed to fight the introduc-
tion of double-decking in the area. Kenneth 5 8

Table 2: Examples where the model using tag twice and dropout makes fewer errors than the baseline model. Number of correct
classifications out of 8 runs is shown. In the first case, the plural noun (NNS) was misclassified as an adjective (JJ). For the
second sentence, the adjective was misclassified as a preposition or subordinating conjunction (IN). In the third example, a
singular proper noun (NNP) was misclassified as either an adjective or a verb, gerund, or present participle.


