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In real-world machine learning tasks, the size of labeled
data is often limited due to laborious manual annotation. In
contrast, unlabeled data can be collected more cheaply and
abundantly. Based on this fact, various semi-supervised clas-
sification methods have been proposed in the past decades.

In an existing semi-supervised classification approach, we
often rely on particular assumptions on the data distribution
to utilize unlabeled data (Chapelle, Scholkopf, and Zien,
2006). For example, the cluster assumption supposes that
samples in the same cluster are likely to share the same la-
bel. Based on such a distributional assumption, the existing
framework leverages unlabeled data to construct a regular-
izer for a classifier and biases the classifier toward a better
one if the assumption is correct. However, if the distribu-
tional assumption does not agree with the data distribution,
the bias adversely affects the performance of the obtained
classifier that is even worse than the one obtained with su-
pervised classification algorithms.

Recently, positive-unlabeled classification (PU classifica-
tion), which trains a classifier from only positive and unla-
beled data, has been gathering growing attention (du Plessis,
Niu, and Sugiyama, 2015; Kanehira and Harada, 2016). In
PU classification, unlabeled data is utilized for risk evalu-
ation, implying that label information is directly extracted
from unlabeled data without specific distributional assump-
tions, unlike existing methods. Furthermore, state-of-the-
art theoretical analysis (Niu et al., 2016) showed that PU
classification can outperform positive-negative classification
(PN classification, i.e., ordinary supervised classification)
under some conditions. Thus, it is expected that combin-
ing PN with PU classification can be a promising approach
to semi-supervised classification without restrictive distribu-
tional assumptions.

More specifically, let x € R% and y € {£1} be equipped
with probability density p(x,y), where d is a positive inte-
ger, and 0p :=p(y=+1) and On :=p(y = —1) be the class-
priors. Suppose we have three sets of samples {z} R
{xN}"~ , and {xY}!'Y, drawn independently from p(x|y=
+1), p(xly=—1), and p(x), respectively. Furthermore, let
g: R?— R be a decision function for binary classification
and /: R—R be a loss function that imposes penalty on g
when a sample is wrongly classified. The goal of classifica-
tion is to minimize the true risk R(g) := Ep 5 ,)[((yg(x))].
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In PN classification, we use its equivalent expression (the
PN risk):

Rpn(g) := 0p Epll(g(x))] + On Ex[¢(—g(2))],
where Ep and Ey are the expectations over p(z|y = +1)
and p(x|y = —1), respectively. In contrast, the risk in PU
classification (the PU risk), which is equivalent to the PN
risk, can be computed from only positive and unlabeled data:

Rpu(g) = bp Ep[t(g(z))] + Eul(—g())];

where Ey is the expectation over p(x) and £(m) := ¢(m) —
£(—m). In addition to the PU risk, we also define the
risk in negative-unlabeled classification (the NU risk) as

Ryul(g) = Ox Ex[l(—g())] + Eull(g(z))].
Our idea is to combine the PN risk with the PU/NU risks:

Rloi(g) = {(1 —n)Rex(g) +1Rpulg) (1> 0),
Y (1+n)Ren(9) — nRxulg) (1 <0),

where 7 € [—1, 1] is the combination parameter. The empir-

ical risk can be obtained by replacing the expectations with

corresponding sample averages. For the proposed empirical
risk, we can theoretically guarantee the following properties
without the distributional assumptions that are imposed in

the existing methods: (i) it is unbiased to the true risk, (ii)

the variance is smaller than the plain PN risk, and (iii) the

confidence term of the generalization error bound converges
with the optimal parametric rate with respect to the num-
ber of positive, negative, and unlabeled samples. Through
extensive numerical experiments, we analyzed the behavior
of the proposed risk and demonstrated the usefulness of the

proposed method (see Section 5 in Sakai et al., 2017).
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