Deep Multi-view Representation Learning Based on Adaptive Weighted Similarity

Tetsuya Hada1,3, Akifumi Okuno2,3, Hidetoshi Shimodaira2,3

1Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
2Graduate School of Informatics, Kyoto University, 36-1 Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
3RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

Many real-world datasets consist of several types of data such as texts, images, and sounds, and these different kinds of data are referred to as views or domains. One of the best-known approaches for analyzing a multi-view dataset is canonical correlation analysis (CCA) that linearly transforms data vectors into their low-dimensional representations. Having two-view data matrices $X_1 := (x_{11}, x_{21}, \ldots, x_{n1})^\top \in \mathbb{R}^{n \times p_1}$, $X_2 := (x_{12}, x_{22}, \ldots, x_{n2})^\top \in \mathbb{R}^{n \times p_2}$, CCA considers linear transformations $(A_1^\top x_1, \ldots, A_k^\top x_1)$, $(A_2^\top x_2, \ldots, A_k^\top x_2)$, that maximize the total sum of similarities

\[\sum_{i=1}^n \langle (A_1^\top x_1^i, A_2^\top x_2^i) \rangle, \]

with a quadratic constraint $n^{-1} \sum_{i=1}^n [(A_1^\top x_1^i)^\top A_1 + (A_2^\top x_2^i)^\top A_2] = I_K$, that prevent the objective function (1) from diverging. $(a, b) = \sum_{k=1}^K a_k b_k$ denotes the inner product. The optimal matrices A_1, A_2 are obtained through eigenvalue decomposition of $\tilde{S} := \tilde{S}_{11}^{1/2} \tilde{S}_{12} \tilde{S}_{22}^{-1/2}$, where $\tilde{S}_{11} := n^{-1}(X_1^\top X_1)$, $\tilde{S}_{12} := n^{-1}(X_1^\top X_2)$, $\tilde{S}_{22} := n^{-1}(X_2^\top X_2)$. By substituting the solution to Eq.(1), we obtain the optimal value of the objective function as $\sum_{k=1}^K \lambda_k(\tilde{S})$, where $\lambda_k(\cdot)$ denotes the k-th largest eigenvalue.

Although CCA is widely-applicable, CCA sometimes fails to discover a complex structure underlying real-world datasets, because of its linearity. To address the issue, a non-linear extension of CCA, called DCCA (Andrew et al. 2013) has been proposed. DCCA non-linearly translates data matrices with neural networks $f_{\theta}^{1,2} : \mathbb{R}^{p_{1,2}} \rightarrow \mathbb{R}^{q_{1,2}}$, and applies CCA to the translated vectors $z_{\theta,1,i} := f_{\theta,1}(x_{1,i})$, $z_{\theta,2,i} := f_{\theta,2}(x_{2,i})$. Similar to CCA, we have the objective function of DCCA as

\[\sum_{k=1}^K \lambda_k(\tilde{S}_{\theta}), \]

where \tilde{S}_{θ} is computed with $\{z_{\theta,1,i}\}_{i=1}^n$ and $\{z_{\theta,2,i}\}_{i=1}^n$. DCCA optimizes Eq.(2) with respect to θ, then we obtain the optimal deep neural networks $f_{\theta,1}^1, f_{\theta,2}^2$. We compute feature vectors by applying CCA to the output of the neural networks.

Meanwhile, DCCA does not consider the importance degree of each feature element, which can be computed as the canonical correlation. By attaching weights to the elements depending on their importance degree, we may improve the result of DCCA. For that reason, we replace the inner product of Eq.(1) with

\[\langle a, b \rangle_{\nu} := \sum_{k=1}^q \nu_k a_k b_k, \]

where $\nu = (\nu_1, \nu_2, \ldots, \nu_q)$ is a weight vector. The flat weighting

\[\nu_k = \mathbb{1}(k \leq K), \]

are optimal as the weights, by considering the weighted CCA with a generalized setting. With Eq.(5), the weighted objective function of DCCA becomes

\[\sum_{k=1}^q \nu_k \lambda_k(\tilde{S}_{\theta}) = \sum_{k=1}^q \lambda_k(\tilde{S}_{\theta})^2, \]

that is the total sum of quadratic eigenvalues. We propose Deep Quadratic CCA (DeQ-CCA) that maximizes the criterion (6). We have verified that our methods outperform existing methods in the experiments on real-world datasets.

Figure 1: In contrast to DCCA, whose weights are specified as Eq.(4), DeQ-CCA uses smoothly decreasing weights.

References