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Abstract

We introduce the localized Lasso, which learns models that
both are interpretable and have a high predictive power in
problems with high dimensionality d and small sample size
n. More specifically, we consider a function defined by local
sparse models, one at each data point. We introduce sample-
wise network regularization to borrow strength across the
models, and sample-wise exclusive group sparsity (a.k.a., `1,2
norm) to introduce diversity into the choice of feature sets in
the local models. The local models are interpretable in terms
of similarity of their sparsity patterns. The cost function is
convex, and thus has a globally optimal solution. Moreover,
we propose a simple yet efficient iterative least-squares based
optimization procedure for the localized Lasso, which does
not need a tuning parameter, and is guaranteed to converge
to a globally optimal solution. The solution is empirically
shown to outperform alternatives for both simulated and ge-
nomic personalized/precision medicine data.

Problem Formulation
Let us denote an input vector by x = [x(1), . . . , x(d)]> ∈ Rd

and the corresponding output value y ∈ R. The set of sam-
ples {(xi, yi)}ni=1 has been drawn i.i.d. from a joint prob-
ability density p(x, y). We further assume a graph R ∈
Rn×n, where [R]i,j = rij ≥ 0 is the coefficient that rep-
resents the relatedness between the sample pair (xi, yi) and
(xj , yj). In this paper, we assume that R = R> and the
diagonal elements of R are zero.

The goal in this paper is to select multiple sets of features
such that each set of features is locally associated with an
individual data point or a cluster, from the training input-
output samples and the graph information R.

Proposed method
We employ the following linear model for each sample i:

yi = w>i xi. (1)

Here wi ∈ Rd contains the regression coefficients for sam-
ple xi and > denotes the transpose. Note that in regres-
sion problems the weight vectors are typically assumed to
be equal, w = w1 = . . . = wn. Since we cannot assume
the models to be based on the same features, and we want
to interpret the support of the model for each sample, we

use local models. The optimization problem of the localized
lasso can be written as

min
W

J(W ) =

n∑
i=1

(yi −w>i xi)
2 + λ1

n∑
i,j=1

rij‖wi −wj‖2

+ λ2

n∑
i=1

‖wi‖21, (2)

where λ1 ≥ 0 and λ2 ≥ 0 are the regularization parameters.
By imposing the network regularization (second term) (Hal-
lac, Leskovec, and Boyd 2015), we regularize the model pa-
rameters wi and wj to be similar if rij > 0. If λ1 is large, we
will effectively cluster the samples according to how simi-
lar the wis are, that is, according to the prediction criteria
in the local models. More specifically, when ‖wi −wj‖2 is
small (possibly zero), we can regard the i-th sample and j-th
sample to belong to the same cluster.

The third term is the `1,2 regularizer (a.k.a., exclusive
regularizer) (Kowalski 2009; Zhou, Jin, and Hoi 2010;
Kong 2014). By imposing the `1,2 regularizer, we can select
a small number of elements within each wi.

Predicting for new test sample: For predicting on test sam-
ple x, we use the estimated local models ŵk which are
linked to the input x. More specifically, we solve the We-
ber problem (Hallac, Leskovec, and Boyd 2015)

min
w

n∑
i=1

r′i‖w − ŵi‖2, (3)

where r′i ≥ 0 is the link information between the test sample
and the training sample xi. Since this problem is convex, we
can solve it efficiently by an iterative update formula. If there
is no link information available, we simply average all ŵis
to estimate ŵ, and then predict as ŷ = ŵ>x.
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