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♣ Problem of Primary Interest: Convex Minimization

Opt = minx∈X f (x) (P)

• X : convex compact subset of Euclidean space E
• f : X → R: convex Lipschitz continuous

♠ f is represented by a First Order oracle:
• given on input x ∈ X , FO returns the value f (x) and a
subgradient f ′(x) of f at x
• the vector field x 7→ f ′(x) is assumed to be bounded on X

♣ Mirror Descent for (P), milestones:

• Subgradient Descent (“Euclidean prototype”): N. Shor, 1967:
X 3 xτ 7→ xτ+1 = ProjX (xτ − γτ f ′(xτ ))

• γτ > 0: stepsizes • ProjX (y) = argminz∈X ‖y − z‖2

• General Mirror Descent scheme: Nem., 1979
• Modern Proximal Point form: A. Beck & M. Teboulle, 2003
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Proximal Setup
Opt = minx∈X f (x) (P)

• X : convex compact subset of Euclidean space E

♣ Setup for MD (“proximal setup”) is given by
• a norm ‖ · ‖ on E
• a distance-generating function ω(x) : X → R which should
be
• convex and continuous on X
• strongly convex, modulus 1, w.r.t. ‖ · ‖:

〈ω′(x)− ω′(x ′), x − x ′〉 ≥ ‖x − x ′‖2
for all x , x ′ ∈ X o = {x ∈ X : ∂ω(x) 6= ∅}

• admitting a continuous on X o selection ω′(x) of
subgradients

♠ Example: Euclidean setup:
E = Rn, ‖x‖ = ‖x‖2, ω(x) = 1

2xT x
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Proximal Setup (continued)

♣ Proximal setup ‖ · ‖, ω(·) for X ⊂ E induces:
• ω-center of X xω = argminx∈X ω(x)

• Bregman distance Vx (y) = ω(y)− ω(x)− 〈ω′(x), y − x〉,
x ∈ X o, y ∈ X . By strong convexity of ω(·),

Vx (y) ≥ 1
2‖y − x‖2

• ω-radius of X Ω = Ω[X , ω(·)] =
√

2[max
x∈X

ω(x)−min
x∈X

ω(x)]

For x ∈ X one has
1
2‖x − xω‖2 ≤ Vxω(x) ≤ ω(x)− ω(xω) ≤ 1

2Ω2

⇒ ‖x − xω‖ ≤ Ω ∀x ∈ X
• prox-mapping
[x ∈ X o, ξ ∈ E ] 7→ Proxx (ξ):= argminz∈X [〈ξ, z〉+ Vx (z)]∈ X o

♠With Euclidean setup,
Vx (y) = 1

2‖x − y‖22, Proxx (ξ) = ProjX (x − ξ)
⇒ Subgradient Descent is the recurrence

xτ+1 = Proxxτ (γτ f ′(xτ ))
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Basic Mirror Descent

• X : convex compact subset of Euclidean space E
• ‖ · ‖, ω(·): proximal setup for (E ,X )

♣ MD works with a sequence of vector fields {gτ (·) : X → E}τ
represented by an oracle. At call τ = 1,2, ..., the query point
being xτ , the oracle returns the vector gτ (xτ ) ∈ E .
• In most of applications, the sequence {gτ (·)}τ is just

stationary: gτ (·) ≡ g(·).
♠ MD is the recurrence

x1 = xω := argminX ω(·); xτ+1 = Proxxτ (γτgτ (xτ ))
• xτ ∈ X o: seach points • γτ > 0: stepsizes
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Basic Mirror Descent (continued)

x1 = xω := argminX ω; xτ+1 = Proxxτ (γτgτ (xτ ))

♣ Main Property of MD: Under Boundedness Assumption
supx∈X ,τ ‖gτ (x)‖∗ ≤ L <∞

• ‖ξ‖∗ = max{〈ξ, x〉 : ‖x‖ ≤ 1} is the conjugate of ‖ · ‖
the residual
εt := maxz∈X

∑
τ≤t λ

t
τ 〈gτ (xτ ), xτ − z〉, λt

τ = γτ/
∑

s≤t γs
obeys the bound

εt ≤
Ω2 +

∑
τ≤t γ

2
τ ‖gτ (xτ )‖2∗

2
∑

τ≤t γτ
, t = 1,2, ...

• In particular, when Ω
L
√

t
≤ γτ ≤ Ω

‖gτ (xτ )‖∗
√

t
for 1 ≤ τ ≤ t (e.g.,

γτ = Ω
L
√

t
, or γτ = Ω

‖gτ (xτ )‖∗
√

t
, 1 ≤ τ ≤ t), one has

εt ≤ ΩL/
√

t .
♠ Fact: When gτ (·) come from problem “with convex structure,”
the residual εt upper-bounds inaccuracy of the approximate
solution x t :=

∑
τ≤t λ

t
τxτ to the problem.
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Basic Mirror Descent (continued)

Example 1: Convex Minimization Opt = minX f . Applying MD
to {gτ (·) ≡ f ′(·)}τ and assuming w.l.o.g. the Lipschitz constant
L‖·‖(f ) of f taken w.r.t. ‖ · ‖ to upper-bound ‖f ′(·)‖∗, one has
f (x t )− Opt ≤ εt :
εt = max

z∈X

∑
τ≤t λ

t
τ 〈f ′(xτ ), xτ − z〉 ≥ max

z∈X

∑
τ≤t λ

t
τ [f (xτ )− f (z)]

≥ max
z∈X

[f (
∑

τ≤t λ
t
τxτ )− f (z)] = f (x t )− Opt

⇒ For every t, t-step MD with appropriate stepsizes ensures
f (x t )− Opt ≤ ΩL‖·‖(f )/

√
t

Example 1.A: Convex Online Minimization. When
gτ (x) = f ′τ (x), with convex functions fτ (·) : X → R satisfying
‖f ′τ (x)‖∗ ≤ L <∞ for all x ∈ X , τ , t-step MD with stepsizes
γτ = Ω

L
√

t
, 1 ≤ τ ≤ t , ensures that

1
t
∑

τ≤t fτ (xτ ) ≤ ΩL√
t

+ minx∈X
1
t
∑

τ≤t fτ (x)
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Basic Mirror Descent (continued)

Example 2: Convex-Concave Saddle Point problem
SadVal = minu∈Umaxv∈V f (u, v).

♣ Situation:
• X = U × V ⊂ Eu × Ev =: E with compact convex U,V
• f (u, v) : X → R: convex in x ∈ U, concave in v ∈ V ,

Lipschitz continuous
♠ f ,U,V give rise to two convex optimization problems:

Opt(P) = minu∈U

[
f (u) := maxv∈V f (u, v)

]
(P)

Opt(D) = maxv∈V [f (v) := minu∈U f (u, v)] (D)
with equal optimal values: Opt(P) = Opt(D), and to vector field

g(x = [u; v ]) =

[
gu(u, v) ∈ ∂uf (u, v)

gv (u, v) ∈ ∂v (−f (u, v))

]
: X := U × V → E

♠ Optimal solutions u∗, v∗ to (P), (D) are exactly the saddle
points of f on U × V :

f (u, v∗) ≥ f (u∗, v∗) ≥ f (u∗, v) ∀(u ∈ U, v ∈ V ) :
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MD for Saddle Point problems

Opt(P) = minu∈U

[
f (u) := maxv∈V f (u, v)

]
(P)

Opt(D) = maxv∈V [f (v) := minu∈U f (u, v)] (D)
⇒ g(u; v) = [f ′u(u, v);−f ′v (u, v)] : U × V → E

♣ Fact: Applying MD to gτ (·) ≡ g(·), the residual
εt = maxz∈X

∑
τ≤t λ

t
τ 〈g(xτ ), xτ − z〉, λt

τ = γτ/
∑

s≤t γs
upper-bounds the saddle point inaccuracy (“duality gap”) of the
approximate solution x t = [ut ; v t ] :=

∑
τ≤t λ

t
τxτ to (P,D):

[f (ut )− Opt(P)] + [Opt(D)− f (v t )] = f (ut )− f (v t ) ≤ εt

∀[u; v ] ∈ U × V : εt ≥
∑
τ≤t λ

t
τ 〈g(xτ ), xτ − [u; v ]〉

=
∑
τ≤t λ

t
τ [〈f ′u(uτ , vτ ),uτ − u〉+ 〈−f ′v (uτ , vτ ), vτ − v〉]

≥
∑
τ≤t λ

t
τ [f (uτ , vτ )− f (u, vτ )− f (uτ , vτ ) + f (uτ , v)]

=
∑
τ≤t λ

t
τ [f (uτ , v)− f (u, vτ )] ≥ f (ut , v)− f (u, v t )

⇒ εt ≥ maxu∈U,v∈V [f (ut , v)− f (u, v t )] = f (ut )− f (v t ).
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MD for Saddle Point problems (continued)

Opt(P) = minu∈U

[
f (u) := maxv∈V f (u, v)

]
(P)

Opt(D) = maxv∈V [f (v) := minu∈U f (u, v)] (D)
⇒ g(u; v) = [f ′u(u, v);−f ′v (u, v)] : U × V → E

♠ Assuming that ‖ · ‖ respects representation E = Eu × Ev :
‖[u; v ]‖ ≡ ‖[u;−v ]‖, we can ensure that ‖g(·)‖∗ ≤ L‖·‖(f ).
⇒ t-step MD with properly chosen stepsizes ensures that

[f (ut )− Opt(P)] + [Opt(D)− f (v t )] ≤ ΩL‖·‖(f )/
√

t .

♠ Similar results for other “problems with convex structure:”
• variational inequalities with monotone operators
• convex Nash equilibrium problems
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Reason for Main Property

♣ Fact: With Vx (z) = ω(z)− ω(x)− 〈ω′(x), z − x〉 one has
x+ = Proxx (ξ) := argminz∈X [〈ξ, z〉+ Vx (z)] (1)

⇒ ∀(z ∈ X ) : 〈ξ, x+ − z〉 ≤ Vx (z)− Vx+ (z)− Vx (x+) (2)
Proof: rearrange terms in the optimality conditions for (1):

〈ξ + ω′(x+)− ω′(x), z − x+〉 ≥ 0∀z ∈ X

♠ Fact: (2) implies that
∀(z ∈ X ) : 〈ξ, x − z〉 ≤ Vx (z)− Vx+ (z) + 1

2‖ξ‖
2
∗ (3)

Proof: by (2),
〈ξ, x − z〉 ≤ Vx (z)− Vx+ (z) + [〈ξ, x − x+〉 − Vx (x+)],

and 〈ξ, x − x+〉 − Vx (x+) ≤ ‖ξ‖∗‖x − x+‖ − 1
2‖x − x+‖2 ≤ 1

2‖ξ‖
2
∗.

• By (3), x1 = argminX ω; xτ+1 = Proxxτ (γτgτ ) implies
γτ 〈gτ , xτ − x〉 ≤ Vxτ (z)− Vxτ+1 (z) + 1

2γ
2
τ‖gτ‖2

∗ ∀(z ∈ X , τ)

⇒
∑
τ≤t γτ 〈gτ , xτ − z〉 ≤ 1

2 Ω2 + 1
2

∑
τ≤t γ

2
τ‖gτ‖2

∗ ∀z ∈ X
• Dividing by

∑
τ≤t γτ and maximizing in z ∈ X , we get

εt := maxz∈X

[∑
τ≤t λ

t
τ 〈gτ , xτ − z〉

]
≤ Ω2+

∑
τ≤t γ

2
τ‖gτ‖2

∗
2
∑

τ≤t γτ
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Role of Symmetry

εt ≤ Ω[supx∈X ,τ ‖gτ (x)‖∗]/
√

t (∗)

♣When X is “nearly symmetric,” the MD efficiency estimate
can be improved. Assume that
• X contains ‖ · ‖-ball of radius θΩ
• The vector fields {gτ (·)}τ are uniformly semi-bounded:

M := supx ,x ′∈X ,τ 〈gτ (x), x ′ − x〉 <∞
Then for every t ≥ 4/θ2, the t-step MD with the stepsizes

γτ = Ω
‖gτ (xτ )‖∗

√
t

1 ≤ τ ≤ t
ensures that

εt ≤ 2θ−1M/
√

t (!)

♠ Note: When θ = O(1),
• (!) can only be better than (∗)
•When gτ (·) ≡ g(·) comes from minu∈U maxv∈V f (u, v), we

have M ≤ maxU×V f −minU×V f ⇒ (!) becomes
εt ≤ O(1) [maxU×V f −minU×V f ] /

√
t
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O(1/
√

t) – good or bad?

♣ The MD convergence rate O(1/
√

t) is slow. However, this is
the best possible rate one can expect when solving nonsmooth
large-scale convex problems represented by FO oracles, or any
other oracles providing local information.

♠ Bad news: Consider Convex Minimization problem
Opt(f ) = minx{f (x) : ‖x‖ ≤ R} (Pf )

where ‖ · ‖ is either the norm ‖ · ‖p on E = Rn (p = 1,2), or the
nuclear norm on Rn×n. Let

F‖·‖(L) = {f : E → R : f is convex, L‖·‖(f ) ≤ L},
and assume that when solving (Pf ), f ∈ F‖·‖(L) is learned via
calls, one per step, to a FO (or any local) oracle.

Then for every t ≤ n and any t-step algorithm B one has

supf∈F‖·‖(L) [f (xB(f ))− Opt(f )] ≥ 0.01LR/
√

t
• xB(f ): solution generated in t steps by B as applied to (Pf )
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O(1/
√

t) – good or bad? (continued)

Opt(f ) = minx∈X f (x), X ⊂ XR := {x ∈ E : ‖x‖ ≤ R} (Pf )
‖ · ‖: ‖ · ‖p norm on E = Rn (p = 1,2), or nuclear norm on Rn×n.

♠ Relatively good news: With appropriate proximal setup,
t-step MD as applied to (Pf ) ensures

f (x t )− Opt(f ) ≤ O
(

L‖·‖(f )R/
√

t
)

• hidden factor: O(1) when ‖ · ‖ = ‖ · ‖2, otherwise O(1)
√

ln(n + 1)

Note:
• Rate of convergence is (nearly) dimension-independent
•When X is simple, computational effort per MD step in the

large scale case is by order of magnitudes smaller than in all
known polynomial time Convex Optimization techniques, like
Interior Point methods

⇒ When solving problems with convex structure to low or
medium accuracy, MD could be the method of choice...
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Favorable Geometry case

εt ≤ Ω[X , ω] sup
x∈X ,τ

‖gτ (x)‖∗/
√

t

♣ Question: How to choose a good proximal setup?
• In general, the answer depends on the geometry of X and on
a priori information on {gτ (·)}τ
• There is, however, a favorable geometry case when the
answer is clear:
• Assuming w.l.o.g. that X + = 1

2 [X − X ] linearly spans E , X +

is the unit ball of norm ‖ · ‖X given solely by X .
• A Favorable Geometry case is the one where X admits a

d.-g.f. ωX (·) such that ‖ · ‖X , ωX (·) is a valid proximal setup with
“moderate” ΩX := Ω[X , ωX ] (O(1), or O(1) lnO(1)(dim X )).
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Favorable Geometry case (continued)

εt ≤ Ω[X , ω] sup
x∈X ,τ

‖gτ (x)‖∗/
√

t

♠ Observation: Let ωX (·) complement ‖ · ‖X to a proximal
setup. Then for every proximal setup ‖ · ‖, ω(·) for X and every
{gτ (·)}τ one has

sup
x∈X ,τ

‖gτ (x)‖X ,∗ ≤ Ω[X , ω] sup
x∈X ,τ

‖gτ (x)‖∗ (!)

⇒ ΩX sup
x∈X ,τ

‖gτ (x)‖X ,∗ ≤ ΩX Ω[X , ω] sup
x∈X ,τ

‖gτ (x)‖∗

⇒ Passing from ‖ · ‖, ω(·) to ‖ · ‖X , ωX (·) spoils MD efficiency at
worst by factor ΩX = Ω[X , ωX ]. Thus, with moderate ΩX , the
proximal setup ‖ · ‖X , ωX (·) is nearly optimal.

♠ Reason for (!): For every g ∈ E and every x with ‖x‖X ≤ 1,
so that x = [u − v ]/2 with u, v ∈ X :
〈g, x〉 = 1

2 [〈g,u − xω〉+ 〈g, xω − v〉] ≤ 1
2‖g‖∗[‖u − xω‖+ ‖v − xω‖]

≤ Ω[X , ω]‖g‖∗ ⇒ ‖g‖X ,∗ ≤ Ω[X , ω]‖g‖∗
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Favorable Geometry: Examples

♠ Examples of Favorable Geometry domains X :
X = B1 × ...× BK

where K is moderate and Bk are favorable geometry atoms:
• `1/`2 balls B = {y = [y1; ...; yn] :

∑n
j=1 ‖y j‖2 ≤ 1}:

‖y‖B =
∑n

j=1 ‖y j‖2, ωB(y) = O(1)
√

ln(n + 1)
∑n

j=1 ‖y j‖ϑn
2

ϑn = min[2,1 + 1/ ln(n)]⇒ ΩB ≤ O(1)
√

ln(n + 1)
Note: n = 1 gives rise to Euclidean setup for ‖ · ‖2-ball.
• Nuclear norm balls B = {y ∈ Rm×n :

∑m
j=1 σj(y) ≤ 1}, m ≤ n:

‖y‖B =
∑m

j=1 σj(y), ωB(y) = O(1)
√

ln(m + 1)
∑m

j=1 σ
θm
j (y)

θm = min[2,1 + 1/ ln(2m)]⇒ ΩB ≤ O(1)
√

ln(m + 1)

♠ An induced proximal setup for X is, e.g.,
‖(x1, ..., xK )‖ = maxk ‖xk‖Bk , ω(x1..., xk ) =

∑
k ωBk (xk )

⇒ ΩX =
√∑

k Ω2
Bk ≤ O(1)

√
K ln(dim X )

• K = O(1)⇒ Favorable Geometry case. This remains true if
X⊂B1 × ...× BK and ‖ · ‖X is within O(1) factor of ‖ · ‖.
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Favorable Geometry: Counter-Examples

♠ A domain with intrinsically bad geometry is the usual box
X = {x ∈ Rn : ‖x‖∞ ≤ 1}. Here Ω[X , ω] ≥

√
n for all proximal

setups with ‖ · ‖ = ‖ · ‖X = ‖ · ‖∞.

♠ In fact, large-scale ‖ · ‖p-balls with all p > 2 “are bad:”
Let p ≥ 2. Consider Convex Minimization problem

Opt(f ) = minx{f (x) : x ∈ Rn, ‖x‖p ≤ R}, (Pf )
f ∈ Fn,p(L) = {f : Rn → R : f is convex, L‖·‖p (f ) ≤ L}

Assume that when solving (Pf ), f ∈ Fn,p(L) is learned via calls,
one per step, to a FO (or any local) oracle. Then for every t ≤ n
and any t-step algorithm B one has

supf∈Fn,p(L) [f (xB(f ))− Opt(f )]≥ 0.01LR/t1/p

• xB(f ): solution generated in t steps by B as applied to (Pf )

⇒ As p > 2 grows, our abilities to minimize oracle-represented
nonsmooth convex functions over ‖ · ‖p-balls at a dimension
independent rate deteriorate and disappear at p =∞.
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Favorable Geometry: Illustration

♣ The most attractive feature of MD is ability to adjust itself, to
some extent, to problem’s geometry and to ensure, under
favorable circumstances, (nearly) dimension independent rate
of convergence. For example:
•When minimizing convex f over `2-ball {x ∈ Rn : ‖x‖2 ≤ 1},

MD with Euclidean setup ensures
f (x t )−minx∈X f (x) ≤ O(1)[maxX f −minX f ]/

√
t

•When minimizing convex f over `1-ball {x ∈ Rn : ‖x‖1 ≤ 1},
MD with appropriate Non-Euclidean setup ensures

f (x t )−minx∈X f (x) ≤ O(1)
√

ln(n + 1)[maxX f −minX f ]/
√

t ,
and similarly for minimizing over nuclear norm ball in Rn×n.
• “Wrong setup” (Euclidean when minimizing over `1/nuclear

norm ball, or `1/nuclear norm when minimizing over `2-ball) can
spoil the efficiency by factor as large as O(

√
n/ ln(n)).
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Stochastic case

♣ Situation: Given X ⊂ E and proximal setup ‖ · ‖, ω(·), we
want to process vector fields gτ (x) : X → E represented by
Stochastic Oracle. At τ -th call to SO, the query point being
xτ ∈ X , the oracle returns an estimate hτ (xτ ; ξτ ) ∈ E of gτ (xτ ).
Here hτ (·; ·) are deterministic functions, and ξ1, ξ2, ... are i.i.d.
disturbances.
♠ Example: Problem minx∈X

[
f (x) = Eξ∼PF (x , ξ)

]
with convex

in x ∈ X integrant F .
The associated vector field g(x) = f ′(x) is usually difficult to
compute. However, assuming one can sample from P and F is
easy to compute, we can set

hτ (x ; ξτ ) = F ′x (x , ξτ ) with ξ1, ξ2, ... drawn from P

♠ Standing Assumption: When processing {gτ (·)}τ , for some
L, σ, µ and all x ∈ X, τ it holds:
‖gτ (x)‖∗ ≤ L, ‖Eξ{∆τ (x ; ξ)}‖∗ ≤ µ, Eξ{‖∆τ (x ; ξ)‖2∗} ≤ σ2

• ∆τ (x ; ξ) := hτ (x ; ξ)− gτ (x): oracle’s error
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Stochastic Mirror Descent

• X : convex compact subset of Euclidean space E
• ‖ · ‖, ω(·): proximal setup for (E ,X )⇒ Ω =

√
2[maxX ω −minx ω]

• {gτ (x) : X → E}τ : vector fields of interest, ‖gτ (x)‖∗ ≤ L <∞
• {hτ (x ; ξ) = gτ (x) + ∆τ (x ; ξ) : X × Ξ→ E}τ : Stochastic oracle

‖Eξ∼P∆τ (x ; ξ)‖∗ ≤ µ, Eξ∼P{‖∆τ (x ; ξ)‖2∗} ≤ σ2

♣ Stochastic Mirror Descent is the recurrence

x1 = xω := argminX ω; xτ+1 = Proxxτ (γτhτ (xτ ; ξτ ))
x t =

∑
τ≤t λ

t
τxτ , λt

τ = γτ/
∑

s≤t γs

• ξτ ∼ P: independent • γτ > 0: deterministic stepsizes
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Stochastic Mirror Descent (continued)
x1 = xω := argminX ω; xτ+1 = Proxxτ (γτ [gτ (xτ ) + ∆τ (xτ ; ξτ )])

x t =
∑

τ≤t λ
t
τxτ , λt

τ = γτ/
∑

s≤t γs

‖gτ (x)‖∗ ≤ L, ‖Eξ∼P∆τ (x ; ξ)‖∗ ≤ µ, Eξ∼P{‖∆τ (x ; ξ)‖2∗} ≤ σ2

♣ Main Property of SMD: One has

E
{
εt := max

z∈X

∑
τ≤t λ

t
τ 〈g(xτ ), xτ − z〉

}
≤

Ω2 + [L2 + 2σ2]
∑

τ≤t γ
2
τ∑

τ≤t γτ
+ 2µΩ

• In particular, γτ = Ω/
√

[L2 + 2σ2]t , 1 ≤ τ ≤ t , yields

E{εt} ≤ Θ/
√

t + 2µΩ, Θ = 2Ω
√

L2 + 2σ2.
• Strengthening the bound on the second moment of ‖∆τ‖∗ to
E{exp{‖∆τ‖2∗/σ2}} ≤ exp{1}, large deviation probabilities
obey an exponential bound:

∀θ > 0 : Prob
{
εt > [Θ + θΣ]/

√
t + 2µΩ

}
≤ O(1)e−θ[

Σ = 4Ωσ
]
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Stochastic Mirror Descent (continued)

♣When gτ (·) ≡ g(·) is associated with a problem with convex
structure, e.g.,

A. minx∈X f (x)⇒ g(x) = f ′(x), or
B. minu∈U maxv∈V f (u, v)⇒ g(u, v) = [f ′u(u, v);−f ′v (u, v)],

the residual εt upper-bounds inaccuracy of the approximate
solution x t to the problem of interest.
⇒ t-step SMD allows to solve stochastic convex problems with
expected inaccuracy O(1/

√
t). For example,

• in the case of A, we get
E{f (x t )−minX f} ≤ 2Ω

√
L2 + 2σ2/

√
t + 2µΩ

• in the case of B, we get
E{[f (ut )−min

U
f ] + [max

V
f − f (v t )]} ≤ 2Ω

√
L2 + 2σ2/

√
t + 2µΩ.

♠ Note: In typical stochastic problems, in every dimension, not
only a large one, O(1/

√
t) is the best rate allowed by Statistics.
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Stochastic Mirror Descent: Illustration

♣ Consider Binary Classification problem where we draw from
a distribution P examples ξτ = (ητ , yτ ) ∈ RN × {±1} and want
to build a linear classifier y ∼ sign(〈x , η〉).
♠ The problem can be modeled as

Opt(ρ) = min‖x‖≤1 [pρ(x) = p(ρx) := E{max[1− y〈ρx , η〉,0]}]
[p(x) : convex upper bound on the probability for x to mis-classify]

• Let ‖ · ‖ be (a) ‖ · ‖2, or (b) ‖ · ‖1, or (c) nuclear norm on RN = Rm×n

♠ Assuming E{‖η‖2
∗} ≤ R2 <∞ and setting

h(x ; η, y) ≡ −ρyχ(1− y〈ρx , η〉 > 0)η,
g(x) := Eη,y{h(x ; η, y)} ∈ p′ρ(x)

we satisfy Standing Assumption with
X = {‖x‖ ≤ 1}, L = ρR, σ = 2ρR, µ = 0.

⇒ For every t ≥ 1, drawing a t-element sample from P and
applying t-step SMD with appropriate proximal setup, we get a
linear classifier ρx t , ‖x t‖ ≤ 1, such that

E{p(ρx t )} ≤ Opt(ρ) + ρRt−1/2 ×
{

O(1), case (a)
O(1)

√
ln(N), cases (b), (c)
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Utilizing Problem’s Structure: Mirror Prox
Opt = minx∈X f (x) (P)

♣ Unimprovable or not, convergence rate O(1/
√

t) is slow.
When we can do better?
• One can use bundle versions of MD re-utilizing past

information. In practice, this improves the convergence pattern
at the price of controlled increase in the computational cost of a
step. Theoretical complexity bounds, however, remain intact.
•When f is smooth: ‖f ′(x)− f ′(x ′)‖∗ ≤M‖x − x ′‖, the MD

efficiency improves to f (x t )−minX f ≤ Ω2M/t . This is of no
actual interest: with Nesterov’s optimal method for smooth
convex minimization one achieves unimprovable in the
large-scale case efficiency O(1)Ω2M/t2.
•When f is strongly convex, properly modified MD converges

at the rate O(1/t).
• For a wide spectrum of “well-structured” f , rate O(1/t) can

be achieved by smooth saddle point reformulation of (P).
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Extra-Gradient MD – Mirror Prox

♣ Situation: X is a convex compact subset of Euclidean space
E , ‖ · ‖, ω(·) is a proximal setup, g(·) : X → E is a vector field
represented by an oracle.
• At τ -th call, xτ ∈ X being the query point, the oracle returns

an estimate h(xτ ; ξτ ) = g(xτ ) + ∆(xτ ; ξτ ) of g(xτ ), ξτ are i.i.d.,
‖Eξ{∆(x ; ξ)}‖∗ ≤ µ, Eξ{‖∆(x ; ξ)‖2∗} ≤ σ2, ∀x ∈ X

• g(·) satisfies
‖g(x)− g(x ′)‖∗ ≤M‖x − x ′‖+ L ∀(x , x ′ ∈ X )

• Note: L = σ = µ = 0⇔ g(·) is Lipschitz & precisely observed.

♣ Mirror Prox is the recurrence
x1 = xω;
xτ 7→ wτ = Proxxτ (γτh(xτ ; ξ2τ−1))

7→ xτ+1 = Proxxτ (γτh(wτ ; ξ2τ ))
x t =

∑
τ≤t λ

t
τwτ , λ

t
τ = γτ/

∑
s≤t γs

with deterministic stepsizes γτ > 0.
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Mirror Prox (continued)
• X ⊂ E , ‖ · ‖, ω ⇒ Ω
• g(·) : X → E : ‖g(x)− g(x ′)‖∗ ≤M‖x − x ′‖+ L
• oracle x 7→ h(x ; ξ) = g(x) + ∆(x ; ξ):

‖Eξ{∆(x ; ξ)}‖∗ ≤ µ, Eξ{‖∆(x ; ξ)‖2
∗} ≤ σ2

• xτ 7→ wτ = Proxxτ (γτh(xτ ; ξ2τ−1)) 7→ xτ+1 = Proxxτ (γτh(wτ ; ξ2τ ))
x t =

∑
τ≤t λ

t
τwτ , λ

t
τ = γτ/

∑
s≤t γs

♣ Main Property of MP: Let 0 < γτ ≤ 1
2M . Then

E
{
εt := max

z∈X

∑
τ≤t λ

t
τ 〈g(xτ ), xτ − z〉

}
≤

Ω2 + [3L2 + 7σ2]
∑

τ≤t γ
2
τ∑

τ≤t γτ
+ 2µΩ

• In particular, γτ = min
[
(2M)−1,Ω/

√
[3L2 + 7σ2]t

]
, τ ≤ t ,

yields

E{εt} ≤ 2Ω2M/t+Θ/
√

t + 2µΩ, Θ = 2Ω
√

3L2 + 7σ2.
♠ Note: In the smooth deterministic case L = σ = µ = 0, we get
O(1/t) convergence!
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Mirror Prox (continued)

• X ⊂ E , ‖ · ‖, ω ⇒ Ω
• g(·) : X → E : ‖g(x)− g(x ′)‖∗ ≤M‖x − x ′‖+ L
• oracle x 7→ h(x ; ξ) = g(x) + ∆(x ; ξ):

‖Eξ{∆(x ; ξ)}‖∗ ≤ µ, Eξ{‖∆(x ; ξ)‖2
∗} ≤ σ2

• xτ 7→ wτ = Proxxτ (γτh(xτ ; ξ2τ−1)) 7→ xτ+1 = Proxxτ (γτh(wτ ; ξ2τ ))
x t =

∑
τ≤t λ

t
τwτ , λ

t
τ = γτ/

∑
s≤t γs

♠ γτ = min
[
(2M)−1,Ω/

√
[3L2 + 7σ2]t

]
, 1 ≤ τ ≤ t , yields

E{εt} ≤ 2Ω2M
t + Θ√

t
+ 2µΩ, Θ = 2Ω

√
3L2 + 7σ2.

• Strengthening the bound on the second moment of ‖∆‖∗ to
E{exp{‖∆‖2∗/σ2}} ≤ exp{1}, large deviation probabilities obey
an exponential bound:

∀θ > 0 : Prob
{
εt > 2Ω2M/t + [Θ + θΣ]/

√
t + 2µΩ

}
≤ O(1)e−θ[

Σ = 9Ωσ
]
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Application: O(1/t) Nonsmooth Convex Minimization

Opt(P) = minu∈U f (u) (P)

♣ Corollary: Let (P) be a convex program with compact
U ⊂ EU and with f such that

f (u) = maxv∈V φ(u, v)
• V : compact convex subset of Euclidean space Ev
• φ(u, v): convex-concave with Lipschitz continuous gradient

so that (P) is the primal form of the saddle point problem
minu∈U maxv∈V φ(u, v) (SP)

The vector field g(u, v) = [φ′u(u, v);−φ′v (u, v)] associated with
(SP) is Lipschitz continuous. Equipping
• E := EU × EV ,X := U × V — with a proximal setup ‖ · ‖, ω,
• g(·) — with a precise deterministic oracle,

t-step MP yields (ut , v t ) ∈ U × V such that
f (ut )− Opt(P) ≤ O(1)ΩM/t

M = min{M : ‖g(x)− g(x ′)‖∗ ≤ M‖x − x ′‖ ∀(x , x ′ ∈ X )}
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O(1/t) Nonsmooth Convex Minimization (continued)

minu∈U [f (u) = maxv∈V φ(u, v)]

♣ Fact: If φ(u, v) is
• convex-concave with Lipschitz continuous gradient,
• affine in u,
• strongly concave in v,

then properly modified MP ensures O(1/t2) convergence rate.
♠ Note: The premise does not imply smoothness of f .
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Smooth and Bilinear Saddle Point Representations

♣ Fact: Representations f (u) = maxv∈V φ(u, v) with smooth
convex-concave, and even with bilinear φ are available for wide
spectrum of convex functions f . Whenever it is the case, f can
be minimized via MP at the rate O(1/t).

• f (u) = max
k≤K

fk (u) with smooth convex fk

⇒ f (u) = max
v≥0,

∑
k vk =1

∑
k vk fk (u)

• f (u) = ‖Au − b‖ ⇒ f (u) = max‖v‖∗≤1〈v ,Ay − b〉
• f (u) = ‖y‖+ 1

2‖Au − b‖22
⇒ f (u) = max‖v‖∗≤1,w

[
〈u, v〉+ 〈w ,Au − b〉 − 1

2wT w
]

• f (u): sum of k largest eigenvalues of A(u) = Au − b ∈ Sn

⇒ f (u) = maxv [Tr(vA(u)) : 0 � v � In,Tr(v) = k ]

• f (u) = infb∈R

[
1
N
∑N

i=1 max[1− yi(〈u, ηi〉+ b),0]
]

⇒ f (u) = maxv∈V
∑N

i=1 vi [1− yi〈u, ηi〉]
V = {v : 0 ≤ vi ≤ 1/N ∀i ,

∑
i yivi = 0} ⊂ {v ∈ RN : ‖v‖1 ≤ 1}
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O(1/t) Nonsmooth Convex Minimization: Comments

Opt(P) = minu∈U f (u) (P)
• Convex programs always have a lot of structure (otherwise, how
could we know that the problem is convex?)
Accelerating algorithms by utilizing problem’s structure is an old and
still challenging goal.
• A common way to utilize structure is via “structure-revealing” conic
formulations (Linear/Conic Quadratic/Semidefinite) and Interior Point
Methods. However, in the large scale case IPM iteration may become
prohibitively costly.
• Utilizing structure within the realm of oracle-oriented methods with
computationally cheap iterations is due to Nesterov (2003).
Nesterov’s Smoothing (2003) uses saddle point representation of a
nonsmooth f to approximate f by a smooth function which is further
minimized by Nesterov’s algorithm for smooth convex minimization.
The resulting convergence rate is O(1/t).
• MP offers another way to utilize saddle point representation to
achieve the same O(1/t) rate.
“Practical scopes” of these two approaches are nearly identical.
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O(1/t) Nonsmooth Convex Minimization: Examples

♣ Problem of interest:
Opt(P) = min‖u‖≤1 ‖Au − b‖p, A : M × N (P)

where p = 2 or p =∞, and ‖ · ‖ is
(a) ‖ · ‖2 on RN , or (b) ‖ · ‖1 on RN , or (c) nuclear norm on RN = Rm×n

♠ Bilinear saddle point reformulation is
SadVal = minu∈U maxv∈V 〈v ,Au − b〉

U = {‖u‖ ≤ 1}, V = {‖v‖q ≤ 1},q = p
p−1 ∈ {1,2}

and its domain is the product of two favorable geometry atoms.
♠ Applying t-step MP with appropriate setup, we get ut with
‖ut‖ ≤ 1 and

f (ut )− Opt(P) ≤ κ‖A‖‖·‖,p/t
‖A‖‖·‖,p = max{‖Au‖p : ‖u‖ ≤ 1}

κ = O(1) ln1/2−1/p(M + 1)×


1, case (a)√

ln(N + 1), case (b)√
ln(m + 1), case (c)
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O(1/t) Nonsmooth Convex Minimization: Examples
Opt(P) = min‖u‖≤1 ‖Au − b‖p, A : M × N, p ∈ {2,∞} (P)

‖ · ‖: (a) ‖ · ‖2 on RN
∣∣ (b) ‖ · ‖1 on RN

∣∣ (c) nuclear norm on RN = Rm×n

⇒ f (ut )− Opt(P) ≤ O(1) ln(MN)‖A‖‖·‖,p/t

♠ MP step reduces to computing O(1) matrix-vector products
involving A and A∗, plus
— O(M + N) a.o. in cases (a), (b)
— computing svd’s of two m × n matrices in case (c).
⇒ Except for case (c), MP is computationally cheap...

♠ Note: When solving a Least Squares problem
(LS) Opt(A,b) = min‖u‖2≤1 ‖Au − b‖2 [A : n × n]

with A represented by multiplication oracle u,u′ 7→ Au,AT u′,
the rate O(1/t) is unimprovable in the large-scale case:
• The worst-case, over (A,b) with ‖A‖2,2 ≤ 1 and Opt(A,b) = 0,
inaccuracy in terms of the objective of (LS) is, for every t-step
algorithm, at least O(1)/t , provided t ≤ n/4.
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Acceleration by Randomization

♣ Problem of interest:
Opt = min‖u‖1≤1 ‖Au − b‖p [A : m × n, p ∈ {2,∞}]

⇔ (`1) : min‖u‖1≤1 max‖v‖p/(p−1)≤1〈v ,Au − b〉
⇒ g(u, v) = [AT v ; b − Au] : X := U × V → Rm+n

U = {u : ‖u‖1 ≤ 1}, V = {v : ‖v‖p/(p−1) ≤ 1}.

♠ Omitting from now on logarithmic in m,n factors, MP solves
(`1) within accuracy ε in

N(ε) = ‖A‖1,p/ε, ‖A‖1,p = maxj≤n ‖Colj [A]‖p
steps, with two multiplications of vectors from U and from V by
A, AT , plus O(m + n) a.o. “overhead,” per step.
⇒ The arithmetic cost of ε-solution for a general-type A is

Cd (ε) = mn‖A‖1,p/ε a.o.
In fact, this is the best operation count achievable in the
large-scale case with known so far deterministic algorithms.
• For large m,n, matrix-vector multiplications may become too
time consuming...
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Acceleration by Randomization (continued)

♠ Matrix-vector multiplications are easy to randomize:
In order to compute Bu, B ∈ RM×N , we draw an index  at

random according to
Prob{ = j} = sign(uj)/‖u‖1, 1 ≤ j ≤ N

and return the vector
h = ‖u‖1sign(u)Col[B]

Note:
• E{h} = Bu, ‖h‖q ≤ ‖u‖1‖B‖1,q
• Generating h costs O(1)(M + N) a.o. (assuming cost O(1)

of computing/extracting individual entry of B).
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Acceleration by Randomization (continued)
Opt = min‖u‖1≤1 ‖Au − b‖p [A : m × n, p ∈ {2,∞}]

⇔ (`1) : min‖u‖1≤1 max‖v‖p/(p−1)≤1〈v ,Au − b〉
⇒ g(u, v) = [AT v ; b − Au] : X := U × V → Rm+n

U = {u : ‖u‖1 ≤ 1}, V = {v : ‖v‖p/(p−1) ≤ 1}.

♠When solving (`1) with p =∞ by MP with the precise values
of g(·) replaced with their cheap unbiased random estimates,
we (1− δ)-reliably get ε-solution to (`1) in ln(1/δ)

[
‖A‖1,∞/ε

]2
steps, the total computational effort being

Cr = (m + n) ln(1/δ)
[
‖A‖1,∞/ε

]2 a.o.

♠ The “deterministic” operation count is Cd = mn‖A‖1,∞/ε.
⇒ With the relative accuracy ε/‖A‖1,∞ and δ fixed and m,n large,

randomized algorithm by far outperforms its deterministic competitors.
• In addition, Randomized MP exhibits sublinear time behavior: when
m,n are large, ε-solution is obtained, in a (1− δ)-reliable fashion, by
inspecting negligibly small fraction of the mn data entries.
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Acceleration by Randomization (continued)

♠ In the case of p =∞, our construction basically recovers the
ad hoc sublinear time algorithm for matrix games (Grigoriadis &
Khachiyan, 1994).

♠ In the case of p = 2, randomization leads to iteration count
ln(1/δ)[‖A‖1,2/ε]2Γ2[A], Γ(A) =

√
m‖A‖1,∞/‖A‖1,2 ∈ [1,

√
m]

and operation count Cr = (m + n) ln(1/δ)[‖A‖1,2/ε]2Γ2[A] a.o.
vs. the “deterministic” operation count Cd = mn[‖A‖1,2/ε] a.o.
• with Γ[A] like O(1) ln(mn), everything is as when p =∞
• with Γ[A] as large as O(

√
m), randomization is really bad.

♠ However: Preprocessing [A,b]⇒ [Ā, b̄] = FDiag{χ}[A,b] with
m ×m DFT matrix F and χ ∼ Uniform({−1; 1}m) yields equivalent
problem and ensures (1− δ)-reliably Γ[Ā] ≤

√
ln(mn/δ).

⇒ With randomization and preprocessing, the operation count is
Cr = mn + (m + n) ln2(1/δ)[‖A‖1,2/ε]2

which for small and fixed ε/‖A‖1,2 and large m,n is negligibly small
as compared to Cd = mn[‖A‖1,2/ε] a.o.
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How it Works: Policeman vs. Burglar

♣ Problem: There are n houses in a city, i-th with wealth wi .
Every evening, Burglar chooses a house i to be attacked, and
Policeman chooses his post near a house j . The probability for
Policeman to catch Burglar is

exp{−θdist(i , j)}, dist(i , j): distance between houses i and j.
Burglar wants to maximize his expected profit

wi(1− exp{−θdist(i , j)}),
the interest of Policeman is completely opposite.

•What are the optimal mixed strategies of Burglar and
Policeman?

♠ Equivalently: Solve the matrix game
min
u≥0,∑n

j=1 uj =1

max
v≥0,∑n

i=1 vi =1

φ(u, v) := vT Au

Aij = wi(1− exp{−θdist(i , j)})
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Policeman vs. Burglar (continued)

Wealth on n × n square grid of houses

IPM MP Rand MP
N Steps/CPU, sec/ε Steps/CPU, sec/ε Steps/CPU, sec/ε

1600 21/120/6.0e-9 78/6/1.0e-3 10556/264/1.0e-3
6400 21/6930/1.1e-8 80/31/1.0e-3 10408/796/1.0e-3
14400 not tested 95/171/1.0e-3 9422/1584/1.0e-3
40000 out of memory 15†/5533†/0.022† 10216/4931/1.0e-3

Policeman vs. Burglar, N houses
Target residual εt ≤ 1.e-3 IPM: mosekopt
†: termination when reaching the CPU limit of 5,400 sec
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Policeman vs. Burglar (continued)
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Policeman Burglar
♠ The resulting highly sparse near-optimal solution can be refined by
further optimizing it on its support by an interior point method. This
reduces inaccuracy from 0.0008 to 0.0005 in just 39′.
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Tutorial: Mirror Descent Algorithms for Large-Scale Deterministic and Stochastic Convex Optimization
Selected Proofs

1 Mirror Descent: Stochastic Case

Situation: At t-th call to Stochastic Oracle, the query point being xt ∈ X, the SO returns vector gt(xt) + ∆t(xt, ξt), with independent
ξt ∼ P , t = 1, 2, .... Besides this, for all x ∈ X and all t it holds

‖gt(·)‖∗ ≤ L <∞,Eξ{‖∆t(x, ξ)‖2∗} ≤ σ2, ‖Eξ{∆t(x, ξ)}‖∗ ≤ µ. (1)

For the MD recurrence
x1 = xω;xt+1 = Proxxt(γt[gt(xt) + ∆t(xt, ξt)]) (2)

with deterministic stepsizes γt > 0, we have, setting gt = gt(xt), ∆t = ∆t(xt, ξt):

γt〈gt + ∆t, xt+1 − x〉 ≤ Vxt(x)− Vxt+1(x)− Vxt(xt+1) [see (2) in Transparencies]
⇒ γt〈gt + ∆t, xt − x〉 ≤ Vxt(x)− Vxt+1(x) + [γt〈gt + ∆t, xt − xt+1〉 − Vxt(xt+1)]
⇒ γt〈gt + ∆t, xt − x〉 ≤ Vxt(x)− Vxt+1(x) + 1

2γ
2
t ‖gt + ∆t‖2∗

⇒
∑T

t=1 γt〈gt, xt − x〉 ≤
1
2Ω2 + 1

2

∑T
t=1 ‖gt + ∆t‖2∗ +

∑T
t=1 γt〈∆t, x− xt〉

⇒
[∑T

t=1 γt

]
εT ≤ 1

2Ω2 + 1
2

∑T
t=1 ‖gt + ∆t‖2∗ + max

x∈X

∑T
t=1 γt〈∆t, x− xt〉

εT := max
x∈X

∑T
t=1 λt〈gt, xt − x〉, λt = γt/

∑T
s=1 γs.

The bottom line is that [
T∑
t=1

γt

]
εT ≤

1

2
Ω2 +

1

2

T∑
t=1

‖gt + ∆t‖2∗ + max
x∈X

T∑
t=1

γt〈∆t, x− xt〉 (3)

Our goal is to prove the following



Theorem 1.1 (i) Assuming (1), for the recurrence (2) for every T = 1, 2, ... one has

E {εT } ≤ Θ :=
Ω2 + [L2 + 3

2σ
2]
∑T

t=1 γ
2
t∑T

t=1 γt
+ 2µΩ. (4)

(ii) Strengthening (1) to
‖gt(·)‖∗ ≤ L <∞,Eξ{exp{‖∆t(x, ξ)‖2∗/σ2}} ≤ exp{1}, ‖Eξ{∆t(x, ξ)}‖∗ ≤ µ (5)

for all x ∈ X and all t, we have for every θ > 0:

Prob{εT > Ξ + θΥ} ≤ 6 exp{−θ}+ exp{−θ2/4},

Υ = 2
σ2

∑T
t=1 γ

2
t+σΩ

√∑T
t=1 γ

2
t∑T

t=1 γt
.

(6)

Note that with the stepsizes

γt =
Ω√

L2 + 3σ2/2
√
T
, 1 ≤ t ≤ T (7)

one has

Ξ =
2Ω
√
L2 + 3σ2/2√

T
+ 2µΩ, Υ ≤ 4

Ωσ√
T
. (8)

Proof.

10. We need the following

Lemma 1.1 Given deterministic γt and (perhaps, stochastic) gt, ∆t such that ‖gt‖∗ ≤ L <∞ and

E{‖∆t‖2∗} ≤ σ2 ∀t, (9)

one has

E{
T∑
t=1

γ2
t ‖gt + ∆t‖2∗} ≤ 2

T∑
t=1

γ2
t [L2 + σ2]. (10)



If (9) is strengthened to
E{exp{‖∆t‖2∗/σ2}} ≤ exp{1}, (11)

one has

∀θ > 0 : Prob

{
T∑
t=1

γ2
t ‖gt + ∆t‖2∗ > 2

T∑
t=1

γ2
t [L2 + σ2] + 2θσ2

T∑
t=1

γ2
t

}
≤ exp{1− θ}. (12)

Proof. (10) is evident due to ‖g + ∆‖2∗ ≤ 2[‖g‖2∗ + ‖∆‖2∗]. To prove (12), note that the quantity

χ(G(·)) = inf {s > 0 : E{exp{|G|/s}} ≤ exp{1}}

considered as functional on the space of measurable functions G(·) on the probability space associated with E{·} such that χ(G(·)) is
finite, clearly is a norm. It follows that in the case of (11), setting a = 2σ2

∑T
t=1 γ

2
t , we have

E{exp{[2
T∑
t=1

γ2
t ‖∆t‖2∗]/a}} ≤ exp{1},

whence Prob{[2
∑T

t=1 γ
2
t ‖∆t‖2∗] ≥ θa} ≤ exp{1− θ}. Since

T∑
t=1

γ2
t ‖gt + ∆t‖2∗ > 2

T∑
t=1

γ2
t [L2 + σ2] + 2θ

T∑
t=1

γ2
t σ

2

clearly implies that 2
∑T

t=1 γ
2
t ‖∆t‖2∗ > 2

∑T
t=1 γ

2
t σ

2 + 2θσ2
∑T

t=1 γ
2
t due to ‖gt‖∗ ≤ L, (12) follows. �

20. Our next observation is as follows:

Lemma 1.2 Let ∆t = Ht(ξ
t) ∈ E, where Ht(·) are deterministic functions, and ξt = (ξ1, ..., ξt) with independent ξt ∼ P , t = 1, 2, ...,

and let xt = Xt(ξ
t−1) ∈ X, with deterministic Xt(·). Assuming

(a) Eξt∼P
{
‖Ht(ξ

t)‖2∗
}
≤ σ2, ∀(t, ξt−1)

(b) ‖Eξt∼P {Ht(ξ
t)}‖∗ ≤ µ∀(t, ξt−1)

(13)



we have for deterministic γt ≥ 0:

E{max
x∈X

T∑
t=1

γt〈∆t, x− xt〉} ≤
1

2
Ω2 +

1

2
σ2

T∑
t=1

γ2
t + 2µΩ

T∑
t=1

γt. (14)

Strengthening (13.a) to
Eξt∼P

{
exp{‖Ht(ξ

t)‖2∗/σ2}
}
≤ exp{1}, (15)

we get
∀(θ > 0) :

Prob

{
maxx∈X

∑T
t=1 γt〈∆t, x− xt〉 ≥ 1

2Ω2 + 1
2σ

2
∑T

t=1 γ
2
t + 2µΩ

∑T
t=1 γt

+θ

[
2σΩ

√∑T
t=1γ

2
t + σ2

∑T
t=1 γ

2
t

]}
≤ exp{1− θ}+ exp{−θ2/4}

(16)

Proof. A. Let yt = Yt(ξ
t−1) be given by the recurrence

y1 = yω; yt+1 = Proxyt(−γt∆t).

Then, same as in the derivation of (3),

∀x ∈ X :

T∑
t=1

γt〈−∆t, yt − x〉 ≤
1

2
Ω2 +

1

2

T∑
t=1

γ2
t ‖∆t‖2∗,

so that

∀x ∈ X :

T∑
t=1

γt〈∆t, x− xt〉 ≤
1

2
Ω2 +

1

2

T∑
t=1

γ2
t ‖∆t‖2∗ +

T∑
t=1

γt〈∆t, yt − xt〉,

whence

A := max
x∈X

T∑
t=1

γt〈∆t, x− xt〉 ≤
1

2
Ω2 +

1

2

T∑
t=1

γ2
t ‖∆t‖2∗ +

T∑
t=1

γt〈∆t, yt − xt〉. (17)



Since yt, xt are deterministic functions of ξt−1 and γt are deterministic, we have

E{〈∆t, yt − xt〉} = E{Eξt∼P {〈∆t, yt − xt〉}} = E{〈Eξt∼P {∆t}, yt − xt〉} ≤ E{µ‖yt − xt‖} ≤ 2µΩ

(we have used that xt, yt ∈ X). Thus, taking expectation of both sides in (17), we get

E{A} ≤ 1

2
Ω2 +

1

2
σ2

T∑
t=1

γ2
t + 2µΩ

T∑
t=1

γt,

and (14) follows.
B. Now assume that in addition to (13.a) relation (15) takes place, and let us prove (16). Note that (15) implies (13.b) by Jensen’s
inequality.

C. We start with the following observation:

Lemma 1.3 Let η be a scalar random variable such that |E{η}| ≤ ν and E{exp{η2}} ≤ exp{1}. Then for all α ∈ R it holds
E{exp{αη}} ≤ exp{αν + α2}.

Proof. We have es ≤ s+ e2s2/3 for all s, whence E{eαη} ≤ E{αη + e2α2η2/3}. When α2 ≤ 3/2, we have E{e2α2η2/3} ≤ exp{2α2/3} due
to E{eη2} ≤ exp{1} and Moment inequality, so that

E{eαη} ≤ |α||E{η}|+ e2α2/3 ≤ e|α|ν+2α2/3, 0 ≤ α2 ≤ 3/2.

Besides this, we have αs ≤ 1
4α

2 +s2, whence E{eαη} ≤ e1+α2/4 due to E{exp{η2}} ≤ e. Combining the bounds, we get E{eαη} ≤ e|α|ν+α2

for all α. �

D. Let st = γt〈∆t, yt−xt〉. Since yt, xt depend solely on ξt−1 and |st| ≤ 2γt‖∆t‖∗Ω due to xt, yt ∈ X, (15) implies that setting σt = 2γtσΩ,
we have

Eξt∼P {es
2
t /σ

2
t } ≤ exp{1} ∀(t, ξt−1) (18)

Besides this, |Eξt∼P {st}| = |γt〈Eξt∼P {∆t}, yt−xt〉| ≤ 2γtΩµ for all t, ξt−1. Applying Lemma 1.3 to the random variable η = st/σt, which
allows to set ν = µ/σ, we get

Eξt∼P {eαst} ≤ eµασt/σ+α2σ2
t .



Now, for every r > 0 we have

Prob{
T∑
t=1

γt〈∆t, yt − xt〉 > r} ≤ E{exp{α
T∑
t=1

st}} exp{−αr} ∀α ≥ 0.

Setting S0 = 0, St =
∑t

τ=1 sτ , we have for α ≥ 0:

E{exp{αSt}} = E{exp{αSt−1 + αst}} = E{exp{αSt−1}Eξt∼P {eαst}}
≤ E{exp{αSt−1} exp{µασt/σ + α2σ2

t }},

so that

E{exp{αST }} ≤ exp{
T∑
t=1

[µασt/σ + α2σ2
t ]}

and thus

Prob{
T∑
t=1

γt〈∆t, yt − xt〉 > r} ≤ inf
α>0

[
exp{α[

T∑
t=1

µσt/σ − r] + α2
T∑
t=1

σ2
t

]
. (19)

Assuming

r = µ

T∑
t=1

σt/σ + ρ = 2µΩ

T∑
t=1

γt + ρ

with some positive ρ, and setting α = ρ

2
∑T
t=1 σ

2
t

, we get from (19) that

∀ρ > 0 : Prob{
T∑
t=1

γt〈∆t, yt − xt〉 > 2µΩ

T∑
t=1

γt + ρ} ≤ exp{−ρ2/

(
4
∑T

t=1
σ2
t

)
},

or, which is the same,

∀θ > 0 : Prob{
∑T

t=1
γt〈∆t, yt − xt〉 > 2µΩ

∑T

t=1
γt + 2θσΩ

√∑T

t=1
γ2
t } ≤ exp{−θ2/4}. (20)

E. Acting exactly as in the proof of Lemma 1.1 with L set to 0, we get

∀θ > 0 : Prob

{
T∑
t=1

γ2
t ‖∆t‖2∗ > σ2

T∑
t=1

γ2
t + θσ2

T∑
t=1

γ2
t

}
≤ exp{1− θ}. (21)



This combines with (20) and (17) to imply (16). Lemma 1.2 is proved. �

30. Now we can prove Theorem 1.1. Combining (14), (10) and (3), we arrive at (4); (i) is proved. In the case of (5), we have at our
disposal both (12) and (16), and these two relations clearly imply item (ii) of Theorem. �

2 Mirror Prox: Stochastic Case

Situation: For every t = 1, 2, ..., at (2t − 1)-st call to Stochastic Oracle, the query point being xt ∈ X, the SO returns vector
gt(xt) + ∆2t−1(xt, ξ2t−1); at (2t)-th call, the query point being wt ∈ X, the SO returns gt(wt) + ∆2t(wt, ξ2t), with independent ξs ∼ P ,
s = 1, 2, .... Besides this, we have

(a) ‖gt(x)− gt(x′)‖∗ ≤M‖x− x′‖+ L ∀(x, x′ ∈ X, t = 1, 2, ...) [M, L <∞],
(b) Eξ{‖∆s(x, ξ)‖2∗} ≤ σ2, ∀(x ∈ X, s = 1, 2, ...)
(c) ‖Eξ{∆s(x, ξ)}‖∗ ≤ µ∀(x ∈ X, s = 1, 2, ...)

(22)

For the MP recurrence

x1 = xω;wt = Proxxt(γt[gt(xt) + ∆2t−1(xt, ξ2t−1)]);xt+1 = Proxxt(γt[gt(wt) + ∆2t(wt, ξ2t)])

we have, setting ĝt = gt(xt), gt = gt(wt), ηt = ∆2t−1(xt, ξ2t−1), ζt = ∆2t(wt, ξ2t):

γt〈gt + ζt, xt+1 − x〉 ≤ Vxt(x)− Vxt+1(x)− Vxt(xt+1) [see (2) in Transparencies]
γt〈ĝt + ηt, wt − xt+1〉 ≤ Vxt(xt+1)− Vwt(xt+1)− Vxt(wt) [see (2) in Transparencies]

⇒ γt〈gt + ζt, wt − x〉 ≤ Vxt(x)− Vxt+1(x) + [γt〈gt + ζt, wt − xt+1〉 − Vxt(xt+1)]
⇒ γt〈gt + ζt, wt − x〉 ≤ Vxt(x)− Vxt+1(x) + γt〈gt + ζt − ĝt − ηt, wt − xt+1〉+〈ĝt + ηt, wt − xt+1〉 − Vxt(xt+1)
≤ Vxt(x)− Vxt+1(x) + γt〈gt + ζt − ĝt − ηt, wt − xt+1〉+Vxt(xt+1)− Vwt(xt+1)− Vxt(wt)− Vxt(xt+1)
⇒ γt〈gt + ζt, wt − x〉 ≤ Vxt(x)− Vxt+1(x)+[γt〈gt + ζt − ĝt − ηt, wt − xt+1〉 − Vwt(xt+1)− Vxt(wt)]
⇒ γt〈gt + ζt, wt − x〉 ≤ Vxt(x)− Vxt+1(x)+γt‖gt − ĝt‖∗‖wt − xt+1‖+ γt‖ζt − ηt‖∗‖wt − xt+1‖ − 1

2‖xt − wt‖
2 − 1

2‖xt+1 − wt‖2



Assuming
γtM≤ 1/2, (23)

we have
γt‖gt − ĝt‖∗‖wt − xt+1‖+ γt‖ζt − ηt‖∗‖wt − xt+1‖ − 1

2‖xt − wt‖
2 − 1

2‖xt+1 − wt‖2
≤ γtM‖wt − xt‖‖wt − xt+1‖+ γtL‖wt − xt+1‖+ γt‖ζt − ηt‖∗‖wt − xt+1‖

−1
2‖xt − wt‖

2 − 1
2‖xt+1 − wt‖2

≤ 1
2 [−‖xt − wt‖2 − 1

4‖xt+1 − wt‖2 + ‖wt − xt‖‖wt − xt+1‖]
+[γt[L+ ‖ζt − ηt‖∗]‖wt − xt+1‖ − 3

8‖wt − xt+1‖2]
≤ γ2

t [L+ ‖ζt‖∗ + ‖ηt‖∗]2 ≤ 3γ2
t [L2 + ‖ζt‖2∗ + ‖ηt‖2∗]

Thus, for every x ∈ X and every t we have

γt〈gt + ζt, wt − x〉 ≤ Vxt(x)− Vxt+1(x) + 3γ2
t [L2 + ‖ζt‖2∗ + ‖ηt‖2∗],

whence
T∑
t=1

γt〈gt, wt − x〉 ≤
1

2
Ω2 + 3

T∑
t=1

γ2
t [L2 + ‖ζt‖2∗ + ‖ηt‖2∗] +

T∑
t=1

γt〈ζt, x− wt〉.

Therefore with λt := λTt = γt/
∑T

s=1 γs we have

εT := max
x∈X

T∑
t=1

λt〈gt, wt − x〉 ≤
1
2Ω2 + 3

∑T
t=1 γ

2
t [L2 + ‖ζt‖2∗ + ‖ηt‖2∗] + max

x∈X

∑T
t=1 γt〈ζt, x− wt〉∑T

τ=1 γτ
(24)

Our goal is to prove the following

Theorem 2.1 (i) Assuming (22), (23), one has for every T = 1, 2, ...

E {εT } ≤ Ξ :=
Ω2 + [3L2 + 13σ2/2]

∑T
t=1 γ

2
t∑T

t=1 γt
+ 2µΩ. (25)

(ii) Strengthening (22.b) to
Eξ{exp{‖∆s(x, ξ)‖2∗/σ2}} ≤ exp{1} ∀(x ∈ X, s = 1, 2, ...) (26)



we have for every θ > 0:
Prob{εT > Ξ + θΥ} ≤ 6 exp{−θ}+ exp{−θ2/4},

Υ =
7σ2

∑T
t=1 γ

2
t+2σΩ

√∑T
t=1 γ

2
t∑T

t=1 γt
.

(27)

Note that with the stepsizes

γt = min

[
1

2M
,

Ω√
3L2 + 13σ2/2

√
T

]
, 1 ≤ t ≤ T (28)

one has

Ξ =
2Ω2M
T

+
2Ω
√

3L2 + 13σ2/2√
T

+ 2µΩ, Υ ≤ 9
Ωσ√
T
. (29)

Proof repeats word by word the one of Theorem 1.1, with (24) in the role of (3).

3 Proximal Setup for `1/`2 Ball

Let

X = {x = [x1; ...;xn] ⊂ E = Rk1 × ...Rkn :
n∑
j=1

‖xj‖2 ≤ 1}

and

ω(x) =
1

pγ

p∑
j=1

‖xj‖p2, p =

{
2, n ≤ 2
1 + 1

lnn , n ≥ 3
, γ =


1, n = 1
1
2 , n = 2

1
e ln(n) , n > 2



We have for x ∈ X ′ = {x ∈ X : xj 6= 0∀j}:

γDω(x)[h] =
∑n

j=1 ‖xj‖
p−2
2 〈xj , hj〉

γD2ω(x)[h, h] = −(2− p)
∑n

j=1 ‖xj‖
p−4
2 [〈xj , hj〉]2 +

∑n
j=1 ‖xj‖

p−2
2 ‖hj‖22

≥
∑n

j=1 ‖xj‖
p−2
2 ‖hj‖22 − (2− p)

∑n
j=1 ‖xj‖

p−4
2 ‖xj‖22‖hj‖22

≥ (p− 1)
∑n

j=1 ‖xj‖
p−2
2 ‖hj‖22

⇒
[∑

j ‖hj‖2
]2

=

[∑n
j=1[‖hj‖2‖xj‖

p−2
2

2 ]‖xj‖
2−p
2

2

]2

≤
[∑n

j=1 ‖hj‖22‖xj‖
p−2
2

] [∑n
j=1 ‖xj‖

2−p
2

]
⇒
[∑

j ‖hj‖2
]2
≤
[∑n

j=1 ‖xj‖
2−p
2

]
γ
p−1D

2ω(x)[h, h]

Setting tj = ‖xj‖2 ≥ 0, we have
∑

j tj ≤ 1, whence due to 0 ≤ 2− p ≤ 1 it holds
∑

j t
2−p
j ≤ nn−(2−p) = np−1. Thus,∑

j

‖hj‖2

2

≤ np−1 γ

p− 1
D2ω(x)[h, h]

while

max
x∈X

ω(x)−min
x∈X

ω(x) ≤ 1

γp
(30)

With p, γ as above, when n ≥ 3 we get γ
p−1n

p−1 = 1
e ln(n)/ ln(n)n

1/ ln(n) = 1, and similarly for n = 1, 2. Consequently,

∀(x ∈ X ′, h) :

 n∑
j=1

‖hsj‖2

2

≤ D2ω(x)[h, h]. (31)

Since ω(·) is continuously differentiable and the complement of X ′ in X is the union of finitely many proper linear subspaces of E, (31)
implies that ω is strongly convex on X, modulus 1, w.r.t. the `1/`2 norm. Besides this, we have

1

γp
=


1
2 , n = 1
2, n = 2
≤ e ln(n), n ≥ 3

 ≤ O(1) ln(n+ 1).

which combines with (30) to imply that the ω-radius of X is ≤ O(1)
√

ln(n+ 1).



4 Proximal Setup for Nuclear Norm Ball

For y ∈ Sn, let λ(y) be the vector of eigenvalues of y (taken with their multiplicities in the non-ascending order), and let |y|1 = ‖λ(y)‖1
be the trace norm.

Proposition 4.1 Let N ≥M ≥ 3, and let E be a linear subspace in SN such that every matrix y ∈ E has at most M nonzero eigenvalues.
Let q = 1

ln(M) , so that 0 < q < 1, and let

ω̂(y) =
4e ln(M)

1 + q

N∑
j=1

|λj(y)|1+q : SN → R.

The function ω̂(·) is continuously differentiable, convex, and its restriction on the set YE = {y ∈ E : |y|1 ≤ 1} is strongly convex, modulus
1, w.r.t. | · |1. Besides this,

∀(y ∈ Y, h ∈ SN ) : |〈ω′(y), h〉| ≤ 4e ln(M)|h|1. (32)

Proof. 10. Let 0 < q < 1. Consider the following function of y ∈ SN :

χ(y) =
1

1 + q

N∑
i=1

|λi(y)|1+q = Tr(f(y)), f(s) =
1

1 + q
|s|1+q.

20. Function f(s) is continuously differentiable on the axis and twice continuously differentiable outside of the origin; consequently, we
can find a sequence of polynomials fk(s) converging, as k →∞, to f along with their first derivatives uniformly on every compact subset
of R and, besides this, converging to f uniformly along with the first and the second derivative on every compact subset of R\{0}. Now
let y, h ∈ SN , let y = uDiag{λ}uT be the eigenvalue decomposition of y, and let h = uĥuT . For a polynomial p(s) =

∑K
k=0 pks

k, setting



P (w) = Tr(
∑K

k=0 pkw
k) : SN → R, and denoting by γ a closed contour in C encircling the spectrum of y, we have

(a) P (y) = Tr(p(y)) =
∑N

j=1 p(λj(y))

(b) DP (y)[h] = Tr(
∑K

k=0 kpkTr(yk−1h)) = Tr(p′(y)h) =
∑N

j=1 p
′(λj(y))ĥjj

(c) D2P (y)[h, h] = d
dt

∣∣
t=0

DP (y + th)[h] = d
dt

∣∣
t=0

Tr(p′(y + th)h)

= d
dt

∣∣
t=0

1
2πı

∮
γ

Tr(h(zI − (y + th))−1)p′(z)dz = 1
2πı

∮
γ

Tr(h(zI − y)−1h(zI − y)−1)p′(z)dz

= 1
2πı

∮
γ

∑N
i,j=1 ĥ

2
ij

p′(z)
(z−λi(y))(z−λj(y))dz =

∑n
i,j=1 ĥ

2
ijΓij ,

Γij =

{
p′(λi(y))−p′(λj(y))

λi(y)−λj(y) , λi(y) 6= λj(y)

p′′(λi(y)), λi(y) = λj(y)

We conclude from (a, b) that as k → ∞, the real-valued polynomials Fk(·) = Tr(fk(·)) on SN converge, along with their first order
derivatives, uniformly on every bounded subset of SN , and the limit of the sequence, by (a), is exactly χ(·). Thus, χ(·) is continuously
differentiable, and (b) says that

Dχ(y)[h] =
N∑
j=1

f ′(λj(y))ĥjj . (33)

Besides this, (a-c) say that if U is a closed convex set in SN which does not contain singular matrices, then Fk(·), as k → ∞, converge
along with the first and the second derivative uniformly on every compact subset of U , so that χ(·) is twice continuously differentiable
on U , and at every point y ∈ U we have

D2χ(y)[h, h] =

N∑
i,j=1

ĥ2
ijΓij , Γij =

{
f ′(λi(y))−f ′(λj(y))

λi(y)−λj(y) , λi(y) 6= λj(y)

f ′′(λi(y)), λi(y) = λj(y)
(34)

and in particular χ(·) is convex on U .

30. We intend to prove that (i) χ(·) is convex, and (ii) its restriction on the unit ball Y of the trace norm is strongly convex, with certain
modulus α > 0, w.r.t. the trace norm | · |1. Since χ is continuously differentiable, all we need to prove (i) is to verify that

〈χ′(y′)− χ′(y′′), y′ − y′′〉 ≥ 0 (∗)



for a dense in Sn × SN set of pairs (y′, y′′), e.g., those with nonsingular y′ − y′′. For a pair of the latter type, the polynomial q(t) =
Det(y′ + t(y′′ − y′)) of t ∈ R is not identically zero and thus has finitely many roots on [0, 1]. In other words, we can find finitely many
points t0 = 0 < t1 < ... < tn = 1 such that all “matrix intervals” ∆i = (yi, yi+1), yk = y′ + tk(y

′′ − y′), 1 ≤ i ≤ n − 1, are comprised of
nonsingular matrices. Therefore χ is convex on every compact subset of every interval ∆i, and since χ is continuously differentiable, (∗)
follows.

40. Now let us prove that with properly defined α > 0 one has

〈χ′(y′)− χ′(y′′), y′ − y′′〉 ≥ α|y′ − y′′|21 ∀y′, y′′ ∈ YE

Let ε > 0, and let Y ε be a convex open in Y = {y : |y|1 ≤ 1} neighbourhood of YE such that for all y ∈ N ε at most M eigenvalues of y
are of magnitude > ε. We intend to prove that for some αε > 0 one has

〈χ′(y′)− χ′(y′′), y′ − y′′〉 ≥ αε|y′ − y′′|21 ∀y′, y′′ ∈ Y ε. (35)

Same as above, it suffices to verify this relation for a dense in Y ε × Y ε set of pairs y′, y′′ ∈ Y ε, e.g., for those pairs y′, y′′ ∈ Y ε for which
y′− y′′ is nonsingular. Defining matrix intervals ∆i as above and taking into account continuous differentiability of χ, it suffices to verify
that if y ∈ ∆i and h = y′ − y′′, then D2χ(y)[h, h] ≥ αε|h|21. To this end observe that by (34) all we have to prove is that

D2χ(y)[h, h] =
N∑

i,j=1

ĥ2
ijΓij ≥ αε|h|21. (#)

Setting λj = λj(y), observe that λi 6= 0 for all i due to the origin of y, and if |λi| ≥ |λj |, then Γij ≥ q|λi|q−1. Indeed, the latter

relation definitely holds true when λi = λj . Now, if λi and λj are of the same sign, then Γij =
|λi|q−|λ|qj
|λi|−|λj | ≥ q|λi|q−1, since the derivative

of the concave (recall that 0 < q ≤ 1) function tq of t > 0 is positive and nonincreasing. If λi and λj are of different signs, then

Γij =
|λi|q+|λj |q
|λi|+|λj | ≥ |λi|

q−1 due to |λj |q ≥ |λj ||λi|q−1, and therefore Γij ≥ q|λi|q−1. Without loss of generality, we can assume that the

positive reals µi = |λi|, i = 1, ..., N , form a nondecreasing sequence, so that, by above, Γij ≥ qµq−1
j when i ≤ j. Besides this, at most M

of µj are ≥ ε, since y′, y′′ ∈ Y ε and therefore y ∈ Y ε by convexity of Y ε. By the above,

D2χ(y)[h, h] = 2q
∑

i<j≤N
ĥ2
ijµ

q−1
j + q

N∑
j=1

ĥ2
jjµ

q−1
j ,



or, equivalently by symmetry of ĥ, if

hj =



ĥ1j

ĥ2j
...

ĥj1 ĥj2 · · · ĥjj


and Hj is the Frobenius norm of hj , then

D2χ(y)[h, h] = q

N∑
j=1

H2
j µ

q−1
j ≥ qεq−1

N−M∑
j=1

H2
j + q

N∑
j=N−M+1

H2
j µ

q−1
j .

Now note that µj > 0 and
∑N

j=N−M+1 µj ≤ 1 due to y ∈ Y . It follows that setting η = [HN−M+1;HN−M+2; ...;HN ], we have

∑N
j=N−M+1H

2
j µ

q−1
j ≥ min

νj>0:
∑N
j=N−M+1 νj≤1

∑N
j=N−M+1H

2
j ν

q−1
j =

[∑N
j=N−M+1H

2
2−q
j

]2−q

= ‖η‖2 2
2−q
≥M−2[1− 2−q

2
]‖η‖21 = M−q‖η‖21,

(when computing the minimum, take into account that 0 < q < 1). Besides this, setting ζ = [H1;H2; ...;HN−M ], we have

‖ζ‖21 ≤ (N −M)

N−M∑
j=1

H2
j ≤ [ε1−q(N −M)]εq−1

N−M∑
j=1

H2
j

We see that for every positive δ one has[∑N
j=1Hj

]2
= [‖ζ‖1 + ‖η‖1]2 ≤ (1 + δ)‖η‖21 + (1 + δ−1)‖ζ‖21

≤ (1 + δ)M q
∑N

j=N−M+1H
2
j µ

q−1
j + (1 + δ−1)[ε1−q(N −M)]εq−1

∑N−M
j=1 H2

j

≤ max[(1 + δ)M q, (1 + δ−1)ε1−q(N −M)]
[
ε1−q

∑N−M
j=1 H2

j +
∑N

j=N−M+1H
2
j µ

q−1
j

]
≤ q−1 max[(1 + δ)M q, (1 + δ−1)ε1−q(N −M)]D2χ(y)[h, h].



Now observe that ĥ =
∑N

j=1 h
j and hj is of rank ≤ 2, so that |hj |1 is at most twice the Frobenius norm Hj of hj . Therefore

|h|21 = |ĥ|21 ≤ 4

[∑N

j=1
Hj

]2

≤ 4q−1 max[(1 + δ)M q, (1 + δ−1)ε1−q(N −M)]D2χ(y)[h, h].

This inequality holds true for all δ. Setting

α−1
ε = min

δ>0
4q−1 max[(1 + δ)M q, (1 + δ−1)ε1−q(N −M)],

we ensure the validity of (#), and consequently the validity of (35). The latter relation, combined with αε → α = qM−q/4 as ε → +0
due to q < 1, implies that

〈χ′(y′)− χ′(y′′), y′ − y′′〉 ≥ α|y′ − y′′|21 ∀(y′, y′′ ∈ YE), α = qM−q/4.

Setting q = 1
ln(M) and observing that with this q, α = [4e ln(M)]−1, so that ω̂(·) = α−1χ(·), we see that ω̂ indeed is continuously

differentiable convex function on SN which is strongly convex, modulus 1 w.r.t. | · |1, on YE . It remains to note that by (33) for y ∈ Y
and h ∈ SN we have

|〈ω′(y), h〉| = 4e ln(M)|〈χ′(y), h〉| ≤ 4e ln(M)
∑N

j=1 |λj(y)|q|ĥjj |
≤ 4e ln(M)

∑
j |ĥjj | ≤ 4e ln(M)|ĥ|1 = 4e ln(M)|h|1.

�

Now let m,n be positive integers with 2 ≤ m ≤ n, and let N = m + n, M = 2m. For x ∈ Rm×n, let σi(x), 1 ≤ i ≤ m, be the singular

values of x, let ‖x‖nuc be the nuclear norm of x, and let Ax = 1
2

[
x

xT

]
∈ SN . Observe that the image space E of A is a linear

subspace of SN , and that the eigenvalues of y = Ax are the 2m reals ±σi(x)/2, 1 ≤ i ≤ m, and N −m zeros, so that ‖x‖nuc ≡ |Ax|1 and
M = 2m,E satisfy the premise of Proposition 4.1. Setting

ω(x) = ω̂(Ax) =
4e ln(2m)

2q(1 + q)

∑
i

σ1+q
i (x), q =

1

ln(2m)
,

and invoking Proposition 4.1, we see that ω is a convex continuously differentiable function on Rm×n which, due to the identity
‖x‖nuc ≡ |Ax|1, is strongly convex, modulus 1 w.r.t. ‖ · ‖nuc, on the ‖ · ‖nuc-unit ball X. Observe that

Ω[X,ω(·)] ≤ 2
√

2e ln(2m) ≤ 5
√

ln(2m).



5 Mirror Descent in Semi-Bounded Case

Theorem 5.1 Let ‖ · ‖, ω be a proximal setup for X ⊂ E, and assume that X contains ‖ · ‖-ball of positive radius θΩ centered at some
point c. Consider MD trajectory

x1 = xω;xτ+1 = Proxxτ (γτgτ (xτ )) (36)

with stepsizes

γτ =

{
ντ/‖gτ (xτ )‖∗, gτ (xτ ) 6= 0
ντ , gτ (xτ ) = 0

(37)

Assume the vector fields gτ (·) are uniformly semi-bounded on X:

sup
x,x′∈X,τ

〈gτ (x), x′ − x〉 ≤M <∞ (38)

Then with xt defined as

xt =
∑t

τ=1 λ
t
τxτ , λ

t
τ = γτ/

∑t
s=1γs

when gτ (xτ ) 6= 0 for all τ ≤ t, otherwise defined as (any) xτ such that gτ (xτ ) = 0, the following holds true: when

∆t :=
Ω2 +

∑t
τ=1 ν

2
τ

2
∑t

τ=1 ντ
< θΩ,

one has

εt := max
x∈X

t∑
τ=1

λtτ 〈gτ (xτ ), xτ − x〉 ≤
M∆t

θΩ−∆t
. (39)

In particular, when t ≥ 4θ−2 and ντ = Ω√
t
, 1 ≤ τ ≤ t, one has

εt ≤
2M

θ
√
t
.

Proof. There is nothing to prove when xt = xτ such that gτ (xτ ) = 0; thus assume that gτ (xτ ) 6= 0 for all τ ≤ t. Let hτ (x) =
gτ (x)/‖gτ (x)‖∗ when gτ (x) 6= 0, and hτ (x) = 0 when gτ (x) = 0. Then the recurrence (36) reads

x1 = xω;xτ+1 = Proxxτ (ντhτ (xτ )) (40)



and ‖hτ (xτ )‖∗ ≤ 1, whence

maxx∈X
∑t

τ=1 µτ 〈hτ (xτ ), xτ − x〉 ≤ ∆t :=
Ω2+

∑t
τ=1 ν

2
τ

2
∑t
τ=1 ντ

,

µτ = ντ/
∑t

s=1 νs
(41)

or
max
x∈X

∑
τ≤t

µτ
‖gτ (xτ )‖∗

〈gτ (xτ ), xτ − x〉 ≤ ∆t. (42)

Assuming w.l.o.g. c = 0, we have by (38)

∀(x, ‖x‖ ≤ r := θΩ, τ) : 〈gτ (xτ ), x− xτ 〉 ≤M,

whence
‖gτ (xτ )‖∗ ≤ r−1[M + 〈gτ (xτ ), xτ 〉]∀τ

or, equivalently,

∀(τ ≤ t) :
1

‖gτ (xτ )‖∗
≥ r

M
− 1

M

〈gτ (xτ ), xτ 〉
‖gτ (xτ )‖∗

and therefore ∑
τ≤t

µτ
‖gτ (xτ )‖∗

≥ r

M

∑
τ≤t

µτ −
1

M

∑
τ≤t

µτ
〈gτ (xτ ), xτ 〉
‖gτ (xτ )‖∗

.

In other words,
r

M
≤
∑
τ≤t

µτ
‖gτ (xτ )‖∗

+
1

M

∑
τ≤t

µτ
〈gτ , xτ 〉
‖gτ (xτ )‖∗

≤
∑
τ≤t

µτ
‖gτ (xτ )‖∗

+
1

M
∆t,

where the concluding ≤ is due to (42) and 0 ∈ X. We see that∑
τ≤t

µτ
‖gτ (xτ )‖∗

≥ r −∆t

M
.

Assuming the right hand side in this inequality positive and taking into account that

λtτ =
µτ/‖gτ (xτ )‖∗∑
s≤t µs/‖gs(xs)‖∗

,



we get from (42)

max
x∈X

∑
τ≤t

λtτ 〈gτ (xτ ), xτ − x〉 ≤
M∆t

r −∆t
,

as claimed in (39). �


