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Tutorial on Mirror Descent



& Problem of Primary Interest: Convex Minimization
Opt = minyex f(x) (P)

e X: convex compact subset of Euclidean space E
e f: X — R: convex Lipschitz continuous
& f is represented by a First Order oracle:
e given on input x € X, FO returns the value f(x) and a
subgradient f'(x) of f at x
e the vector field x — f/(x) is assumed to be bounded on X

V.

& Mirror Descent for (P), milestones:

e Subgradient Descent (“Euclidean prototype”): N. Shor, 1967:
X 3 Xr = Xp1q4 = Projy(X- — -1 (X7))
e 7. > 0: stepsizes e Projy(y) = argmin,_y ||y — 2|2

e General Mirror Descent scheme: Nem., 1979
e Modern Proximal Point form: A. Beck & M. Teboulle, 2003
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Proximal Setup

Opt = minyex f(x) (P)
e X: convex compact subset of Euclidean space £

& Setup for MD (“proximal setup”) is given by
eanorm| -| onE
e a distance-generating function w(x) : X — R which should
be
e convex and continuous on X
e strongly convex, modulus 1, w.r.t. || - ||:
(W'(x) = W/ (x'), X = X'} > ||x = X'||2
forall x,x’ € X° = {x € X : dw(x) # 0}
e admitting a continuous on X? selection «’(x) of
subgradients

& Example: Euclidean setup:
E =R" x| = [Ix]2, w(x) = 5x
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Proximal Setup (continued)

& Proximal setup | - ||, w(-) for X C E induces:
e w-center of X x,, = argmin, y w(X)
e Bregman distance Vy(y) = w(y) — w(x) — (W'(x), ¥y — x),
x € X9 y € X. By strong convexity of w(-),
V(y) = 3lly — x|IP

e w-radius of X Q = Q[X,w()] = \/Z[rpea)?(w(x) - Xmei)rgw(x)]

For x € X one has
21X = xo[? < Vi (%) S w(x) —w(x) < 592
=[x — X <QVxeX
e prox-mapping
[x € X°,¢ € E] Proxx(§):= argmin,y [({, Z) + Vx(Z)]€ X°

& With Euclidean setup,

Vi(y) = 311X = yI13, Proxx(€) = Projx(x — &)
= Subgradient Descent is the recurrence

Xr11 = Proxy, (v (Xz))
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Basic Mirror Descent

e X: convex compact subset of Euclidean space E
| - ||,w(-): proximal setup for (E, X)

& MD works with a sequence of vector fields {g,(-) : X — E}
represented by an oracle. Atcall - = 1,2, ..., the query point
being x;, the oracle returns the vector g.(x;) € E.

¢ In most of applications, the sequence {g,(-)}- is just
stationary: g,.(-) = g(-)-
& MD is the recurrence

Xy = X, := argminy w(-); Xr+1 = Proxy (7-9-(X:))
e X, € X% seach points e ~, > 0: stepsizes
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Basic Mirror Descent (continued)

| X1 = X, := argminy w; X; 41 = Proxy, (7-9-(X7)) |
& Main Property of MD: Under Boundedness Assumption

SUDxex + HQT(X)H* <L<
o [[€]l. = max{(&,x) : ||x|| < 1} is the conjugate of || - |
the residual

1= Mt 3, A9, e = 2), M =30/ Sy

obeys the bound
02 + ZTSt’nggT(XT)”g

Er < =12, ..
227<t’77’
eln part/cular when L\/ <, < W for1 <7t <t(eg.,
~ Q
Vr = L\/f or~, = = vt 1 <7 <t),one has
€< QL/VL.

& Fact: When g.(-) come from problem “with convex structure,”
the residual € upper-bounds inaccuracy of the approximate
solution x' := Y __; A.x; to the problem.

Tutorial on Mirror Descent




Basic Mirror Descent (continued)

Example 1: Convex Minimization Opt = miny f. Applying MD
to {g-(-) = f'(-)}- and assuming w.l.0.g. the Lipschitz constant
Ly. ”(f) of f taken w.r.t. || - || to upper-bound ||f'(-)||., one has
( ) Opt < &

Er = max >, M(F(x), % — 2) > max >, M [f(x) — K(2)]
zeX - zeX =
> max[f(X, < Mxr) — f(2)] = f(x) - Opt
ze -

= For every t, t-step MD with appropriate stepsizes ensures

f(x!) — Opt < QL (f)/Vt

Example 1.A: Convex Online Minimization. When

g-(x) = f.(x), with convex functions f.(-) : X — R satisfying
IfL(x)|l« < L < oo forall x € X, r, t-step MD with stepsizes
Ny = LS\Z/ 1 <7 <'t, ensures that

7 ZTgt (X)) < ?/L + Minyex 127<t - (X)

<
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Basic Mirror Descent (continued)

Example 2: Convex-Concave Saddle Point problem
SadVal = min,cymax,cvf(u, v).

& Situation:
e X =UxV CE, x E, =: E with compact convex U,V
e f(u,v): X — R: convex in x € U, concaveinv € V,
Lipschitz continuous
& . U,V give rise to two convex optimization problems:

Opi(P) = mingey |H(u) :i= maxyevf(u,v)| (P)

Opt(D) = maxyey [f(v) := mingeyf(u, V)] (D)
with equal optimal values: Opt(P) = Opt(D), and to vector field

_ . _ gU(uv V) € auf(uv V) . R
glx =[u;v]) = { GUV) € By (f(u,v) | X =UxVE
& Optimal solutions u,, v. to (P), (D) are exactly the saddle
points of fon U x V:
f(u,vi) > f(ue, vi) > f(u, v) Y(ue U,v e V) :
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MD for Saddle Point problems

Opi(P) = minuey [f(u) = maxyevf(u,v)| (P)
Opt(D) = maxyey [f(V) := mingeyf(u,v)] (D)
= g(u;v) =[fi(u,v),—f(u,Vv)]: Ux V= E

& Fact: Applying MD to g-(-) = g(+), the residual
Et=MaXzex D <y AA(g(x), % — 2), AL = Yr/ dos<tVs
upper-bounds the saddle point inaccuracy (“duality gap”) of the

approximate solution x' = [u'; v!] := 7 __; ALx; to (P, D):

[f(u") — Opt(P)] + [Opt(D) — f(v!)] = F(u") — (V') < &;
Viuivie Ux Vi€ =30 A Ag(x:), X — [u; v])
= 2 M lfl(Ur ve), U — U) + (= (Ur, vy ), Ve — V)]
> 3 Al (Ur, vi) = F(u, vi) — f(ur, ve) + F(ur, V)]
= 2 ALlf(ur, v) = f(u, vi)] > F(Uf, v) — F(u, V')
= & > maxyeyvev[f(u!, v) — f(u, vt)] = f(u') — £(V1).
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MD for Saddle Point problems (continued)

Opi(P) = minuey [f(u) := maxeyf(u,v)| (P)
Opt(D) = max,ey[f(v) = mnueuf(u,v)] (D)
= g(u;v) = [fy(u, v); =fy(u, V)] : Ux V = E

& Assuming that || - || respects representation E = E;, x E,:
[[u; V]|l = |l[u; —V]||, we can ensure that |[g(-)[[« < L. (f)-
= t-step MD with properly chosen stepsizes ensures that

[f(u") — Opt(P)] + [Opt(D) — £(v')] < Ly (f)/ VL.

& Similar results for other “problems with convex structure:”
e variational inequalities with monotone operators
e convex Nash equilibrium problems
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Reason for Main Property

& Fact: With V,(2) = w(z) — w(x) — (W'(X),Z — x) one has
X4 = Proxy(§) := argmin, .y [(§, Z) + Vi(2)] (1)
= V(z € X): (€, % — 2) < Vx(2) — Vi, (2) = Vu(xy) ()
Proof: rearrange terms in the optimality conditions for (1):
(€+uw'(Xy) —w(X),z—x4) >0Vze X

& Fact: (2) implies that

V(z € X): (€, x—2) < Vi(2) = Vi (2) + SIEIE (3)
Proof: by (2),

(€, x —2) < Vu(2) = Vi (2) + [(€, x — x1) = V(x4 )],
and (&, x — x¢) — Vie(xt) < [IEll[Ix = xe [l = 3llx = X |? < 3]

e By (3), xy = argminy w; X, 1 = Proxx_(v,9,) implies
Ve (Gr, Xr — X) < Vi (2) — VXT+1( )+ 277”9‘1'”2 V(z e X,T)
= ZTSIA//T<g77XT —2z) < %Qz +3 ZT<{ THQTH2 vze X
e Dividing by 3. _; v+ and maximizing in z € X, we get

P+, g |2
— t r<tVr *
Et = MaXzex {5 r<t Ar{Grs X — z>} < e
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Role of Symmetry

Et < Qlsupyex - lg-()|]/VE (*)

& When X is “nearly symmetric,” the MD efficiency estimate
can be improved. Assume that
e X contains || - ||-ball of radius 62
e The vector fields {g; ()} are uniformly semi-bounded:
M = Supxx/eXr<gT( ), X" — X) < o0
Then for every t > 4/62, the t-step MD with the stepsizes
= oot 1 ST S
ensures that
Er <207 M/Vt ()

& Note: When 6 = O(1),
e (!) can only be better than (x)
e When g.(-) = g(-) comes from min,cy max,cy f(u, v), we
have M < maxyxy f — minyxy f = (!) becomes
€t < O(1) [maxyxy f — minyyy f] /V't

”
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O(1/+/t) — good or bad?

& The MD convergence rate O(1/+/1) is slow. However, this is
the best possible rate one can expect when solving nonsmooth
large-scale convex problems represented by FO oracles, or any
other oracles providing /ocal information.

<

& Bad news: Consider Convex Minimization problem
opt(f) = min{f(x) : [Ix| <R} (Py)
where || - || is either the norm || - ||, on E = R" (p =1,2), or the
nuclear norm on R™", Let
Fi(L) ={f: E— R: fisconvex, L (f) <L},

and assume that when solving (Py), f € F|. (L) is learned via
calls, one per step, to a FO (or any local) oracle.

Then for every t < n and any t-step algorithm B one has

suprer, ) [f(s()) — Opt(F)] > 0.01LR/V
e x;(f): solution generated in ¢ steps by B as applied to (Fs)

v
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O(1/+/t) — good or bad? (continued)

Opt(f) = minyex f(x), X C Xg:={x € E:||x]| <R} (P)
| -[]:]|-]lpnormon E = R" (p = 1,2), or nuclear norm on R"*".

& Relatively good news: With appropriate proximal setup,
t-step MD as applied to (Pr) ensures
f(xt) — opt(f) < O (Ly(HA/V1)

e hidden factor: O(1) when || - || = || - ||2, otherwise O(1)./In(n+ 1)
Note:

e Rate of convergence is (nearly) dimension-independent

e When X is simple, computational effort per MD step in the
large scale case is by order of magnitudes smaller than in all
known polynomial time Convex Optimization techniques, like
Interior Point methods

= When solving problems with convex structure to low or
medium accuracy, MD could be the method of choice...
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Favorable Geometry case

Er < QX ] sup [|g(x)]+/Vt

xeX,r

& Question: How to choose a good proximal setup?
e In general, the answer depends on the geometry of X and on
a priori information on {g-(-)}~-
e There is, however, a favorable geometry case when the
answer is clear:

e Assuming w.l.o.g. that X+ = 2[X X] linearly spans E, X
is the unit ball of norm || - | x given solely by X.

e A Favorable Geometlry case is the one where X admits a
d.-g.f. wx(-) such that || - || x, wx(-) is a valid prOX|maI setup with
‘moderate” Qx := Q[X,wx] (O(1), or O(1) In°"(dim X)).
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Favorable Geometry case (continued)

€ < QIX,w] sup [|g-(X)[+/Vt

xeX,T

& Observation: Let wx(-) complement || - || x to a proximal

setup. Then for every proximal setup || - ||, w(-) for X and every
{9-(-)}- one has
sup [|9-(X)llx,« < Q[X,«] sup [lg-(x)[« (1)
xeX,T xeX,T
= Qx sup [|g-(X)[Ix« < QxQUX,w] sup [|g-(x)]l«
XeX,T xeX,
= Passing from || - ||,w(:) to || - || x,wx(-) spoils MD efficiency at

worst by factor Qx = Q[X,wx]. Thus, with moderate Qx, the
proximal setup || - || x,wx(+) is nearly optimal.

& Reason for (!): For every g € E and every x with ||x||x <1,
so that x = [u — v]/2 with u, v € X:

(9, %) = 3 [{g,u—x0) + (g, % = V] < 5llglllu = X[l + v = %]
<QX.ullglls = gllx. < QX gl
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Favorable Geometry: Examples

& Examples of Favorable Geometry domains X:
X=B"x..xBX

where K is moderate and BX are favorable geometry atoms:

ol1/lrballs B={y=1[y';...; ”] : Z/” IV e < 1}
lylle = 71 1Y/ll2s we(y) = O()/In(n+ 1) 374 [1y/1l5"

Up=min[2,1 + 1/In( )] = Qg < O(1)y/In(n+1)
Note: n = 1 gives rise to Euclidean setup for || - ||2-ball.
e Nuclear norm balls B = {y € R’”X” Y moi(y) <1y, m<

Iyl = Zjn;1 (Tj(}/), wa(y \/WZI 1 j’"
Om = min[2,1 + 1/In(2m)] = Qg < O(1)y/In(m+1)

& An induced proximal setup for X'is, e.g.,
1(x1, -, Xk) | = maxy || Xl e, w(Xt-.., Xk) = > wpk (Xk)
= Qx = /> k 25, < O(1)/KIn(dim X)
e K = O(1) = Favorable Geometry case. This remains true if
XCB' x ... x BK and || - ||x is within O(1) factor of || - ||.
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Favorable Geometry: Counter-Examples

& A domain with intrinsically bad geometry is the usual box
X ={x€R":||x||sx < 1}. Here Q[X,w] > /n for all proximal
setups with || - || = || - lx = [| - [|cc-

# In fact, large-scale || - ||p-balls with all p > 2 “are bad:”
Let p > 2. Consider Convex Minimization problem
Opt(f) = miny{f(x) : x € R", ||x||p < R}, (Pf)
fe Fnp(L)={f:R"— R: fisconvex, L, (f) <L}
Assume that when solving (Ps), f € Fnp(L) is learned via calls,
one per step, to a FO (or any local) oracle. Then for every t < n
and any t-step algorithm B one has
SUPre, (L) [F(X5(f)) — Opt(f)]> 0.01LR/t'/P
e x;(f): solution generated in t steps by B as applied to (F¥)
= As p > 2 grows, our abilities to minimize oracle-represented
nonsmooth convex functions over || - ||p-balls at a dimension
independent rate deteriorate and disappear at p = .
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Favorable Geometry: lllustration

& The most attractive feature of MD is ability to adjust itself, to
some extent, to problem’s geometry and to ensure, under
favorable circumstances, (nearly) dimension independent rate
of convergence. For example:

e When minimizing convex f over ¢>-ball {x € R" : ||x||2 < 1},
MD with Euclidean setup ensures

f(x1) — minyex f(x) < O(1)[maxy f — miny f]/V/t

e When minimizing convex f over ¢4-ball {x € R" : ||x|[; < 1},
MD with appropriate Non Euclidean setup ensures

f(x!) — minyex f(x 1)y/In(n+ 1)[maxy f — miny f]//t,
and similarly for mlnlmlzmg over nuclear norm ball in R"*".

e “Wrong setup” (Euclidean when minimizing over ¢;/nuclear
norm ball, or ¢/1/nuclear norm when minimizing over /»>-ball) can
spoil the efficiency by factor as large as O(+/n/In(n)).
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Stochastic case

& Situation: Given X C E and proximal setup || - ||, w(-), we
want to process vector fields g-(x) : X — E represented by
Stochastic Oracle. At 7-th call to SO, the query point being
x; € X, the oracle returns an estimate h.(x;;¢;) € E of g-(x;).
Here h.(-; -) are deterministic functions, and &1, &, ... are i.i.d.
disturbances.
& Example: Problem min,cx [f(x) = E¢.pF(x, &)] with convex
in x € X integrant F.
The associated vector field g(x) = f/(x) is usually difficult to
compute. However, assuming one can sample from P and F is
easy to compute, we can set

h-(x;&:) = Fy(x, &) with &1, &5, ... drawn from P

& Standing Assumption: When processing {g-(-)}., for some
Lo, and all x € X, 7 it holds:
lgr ()l < L, [Ee{Ar(x: )}l < 1 Ee{l|A-(x:€)[13} < 02
o A (x;€) = h-(x;&) — g-(x): oracle’s error

Tutorial on Mirror Descent




Stochastic Mirror Descent

X: convex compact subset of Euclidean space E

| - |],w(-): proximal setup for (E, X) = Q = /2[maxx w — miny w]

{g-(x) : X — E},: vector fields of interest, ||g,(x)||. < L < oo

{h:(x;€) = 9-(x) + A (x;€) : X x = — E},: Stochastic oracle
|EcmpBr (X €Il < 1, Eep{[|A-(x; )2} < 02

& Stochastic Mirror Descent is the recurrence

Xq = X, i= argminy w; X, 11 = Proxx, (v-h-(X-; &)

xt = ZTSt)\’I;'XT7 AL = %/ngﬂ/s
e &, ~ P:independent e -, > 0: deterministic stepsizes
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Stochastic Mirror Descent (continued)

Xy = X, = argminy w; X, 11 = Proxx, (v-[9:(X:) + A-(X7; &7)])
xt = ngt )\LXT: /\5— — ”/"r/ ngt“/s
lg-()lls < L, [[EenpBr(x; &)l < 1o Eeop{l|Ar(x: )2} < 0?

& Main Property of SMD: One has

E{er = max s Algx) o - 2
ZE -
. Q%+ [L2 +20%] )0, 42
B ZTSt F\//T
e In particular, v, = Q/\/[L2 + 202]t, 1 < 7 < t, yields
E{€:} <O/Vi+2uQ, © =202+ 252,
e Strengthening the bound on the second moment of ||A||« to
E{exp{||A.|2/0%}} < exp{1}, large deviation probabilities
obey an exponential bound:
¥ > 0 : Prob {a > [0 + 6%]/VE + 2;@} < O(1)e™*
[Z = 490]
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Stochastic Mirror Descent (continued)

& When g;(-) = g(-) is associated with a problem with convex
structure, e.g.,

A. minyex f(x) = g(x) = f'(x), or

B. min,cy maxyecy f(u, v) = g(u, v) = [f(u, v), —f,(u, v)],
the residual £; upper-bounds inaccuracy of the approximate
solution x! to the problem of interest.
= t-step SMD allows to solve stochastic convex problems with
expected inaccuracy O(1/+/t). For example,

¢ in the case of A, we get

E{f(x!) — miny f} <2QV12 + 202/t + 2uQ

¢ in the case of B, we get

E{[f(u!) — min ]+ [maxf — f(VD]} < 2QV12 + 202 /VE 4 2uQ.

& Note: In typical stochastic problems, in every dimension, not
only a large one, O(1/+/1) is the best rate allowed by Statistics.

Tutorial on Mirror Descent



Stochastic Mirror Descent: lllustration

& Consider Binary Classification problem where we draw from
a distribution P examples &, = (1, y,) € RN x {+1} and want
to build a linear classifier y ~ sign((x,n)).
& The problem can be modeled as
Opt(p) = minyx <1 [Po(X) = p(px) := E{max[1 — y(px,n),0]}]
[p(x) : convex upper bound on the probability for x to mis-classify]
elet| -| be ()] |2 or(b)] -], or (c) nuclear norm on RN = R™*"

v

& Assuming E{|[n]?} < R? < co and setting
h(x;n,y) = —pyx(1 = y{px,n) > 0)n,
9(x) := Eyy{h(x;n,y)} € py(x)
we satisfy Standing Assumption with
X ={|x|| <1}, L=pR, 0 =2pR, u=0.
= Forevery t > 1, drawing a t-element sample from P and
applying t-step SMD with appropriate proximal setup, we get a
linear classifier px!, || xt|| < 1, such that

B o(1), case (a)
t 1/2
E{p(px')} < Opt(p) + pRt X{ O(1),/In(N), cases (b), (c)

____________________________________________________________________________________/
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Utilizing Problem’s Structure: Mirror Prox

Opt = minyex f(x) (P)

& Unimprovable or not, convergence rate O(1/+/t) is slow.
When we can do better?

e One can use bundle versions of MD re-utilizing past
information. In practice, this improves the convergence pattern
at the price of controlled increase in the computational cost of a
step. Theoretical complexity bounds, however, remain intact.

e When f is smooth: ||f'(x) — f'(x")||« < M||x — x'||, the MD
efficiency improves to f(x!) — miny f < Q> M/t. This is of no
actual interest: with Nesterov’s optimal method for smooth
convex minimization one achieves unimprovable in the
large-scale case efficiency O(1)Q2M /2.

e When f is strongly convex, properly modified MD converges
at the rate O(1/1).

e For a wide spectrum of “well-structured” f, rate O(1/t) can
be achieved by smooth saddle point reformulation of (P).
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Extra-Gradient MD — Mirror Prox

& Situation: X is a convex compact subset of Euclidean space
E,| - |l,w(:) is a proximal setup, g(-) : X — E is a vector field
represented by an oracle.

e At 7-th call, x; € X being the query point, the oracle returns
an estimate h(x;;¢:) = g(x;) + A(x-; &) of g(x;), & are i.i.d.,

IE{AMX O+ < g Ec{|A(X:€)]I2} < 02, ¥x € X
e g(-) satisfies
19(x) — g(x)l« < Mlx = X|| + L ¥(x,x" € X)

e Note: L =0 = =0« g(-) is Lipschitz & precisely observed.

& Mirror Prox is the recurrence
X1 = Xu;
Xy = Wr = PrOXX‘r (’\Y/Th(XT; §or—1 ))
= Xr 41 = Proxy (v-h(w;; §27))
xt = ZT<Z‘/\£'WT? AL = Yo/ Ds<t s
with deterministic stepsizes ~, > 0.
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Mirror Prox (continued)

XCE, | ],w=Q
9() : X = Ex{lg(x) = g(x)|[« < Mllx = x'[| + L
oracle x — h(x; &) = g(x) + A(x; §):

[E{AM s < py Ee{l|A(X: )2} < 0
o X, — W, = Proxy_(7-h(Xr;&r—1)) = Xr11 = Proxx,_ (v-h(Ws; &2,))

xt= ZT<f)\‘IFW A= T/Zs<17'/s

& Main Property of MP: Let 0 < ~, < . Then

E {1 = max s AL (gl 20 - z>}
- Q2 +[3L2 + 702 30, 4172
B D <tV
e In particular, 7, = min {(2/\4)*1,9/\/m} T <t
yields

E{€} <20°M/t+O/Vt+2uQ, © = 2Q+/3L2 4 702.
& Note: In the smooth deterministic case L = 0 = u = 0, we get
O(1/t) convergence!
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Mirror Prox (continued)

XCE, | |,w=Q
g() : X = E: [lg(x) = g(X) [l < Mllx — x| + L
oracle x — h(x; &) = g(x) + A(x; §):
[E{ACGEOH < 1y Ec{ A G2} < 0
o Xy — W, = Proxy, (v:-h(Xr; §27 1)) = Xry1 = Proxy, (v-h(Wr; §2,))
xt= ngt/\trwfs AL = W/T/ngt“/s

&, = min [(2/\4)*1./9/\/[&2 T 702]4, 1< r<t,yields

E{€:} < 2ﬂjM+% +2uQ, © =203[2 + 702.
e Strengthening the bound on the second moment of ||A||. to
E{exp{||A||2/o%}} < exp{1}, large deviation probabilities obey

an exponential bound:
V0 > 0: Prob { ¢ > 202M/t + [0+ 0%]/Vi+2uQ} < O(1)e~
[Z = QQU]

v
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Opt(P) = minyey f(u) (P)

& Corollary: Let (P) be a convex program with compact
U c Ey and with f such that
f(u) = maxyey (u, v)
e V: compact convex subset of Euclidean space E,
e  ¢(u,Vv): convex-concave with Lipschitz continuous gradient
so that (P) is the primal form of the saddle point problem
MiNyey Maxyey ¢(U, v) (SP)
The vector field g(u, v) = [¢,(u, v); —¢, (u, v)] associated with
(SP) is Lipschitz continuous. Equipping
o £E:=Eyx Ey,X:=U x V —with a proximal setup || - ||, w,
e g(-) — with a precise deterministic oracle,
t-step MP yields (u!,v!) € U x V such that
f(u!) — Opt(P) < O(1)QM /t
M=min{M: |g(x) — g(x')]l < Mllx — x| ¥(x, x' € X)}

Application: O(1/t) Nonsmooth Convex Minimization

v
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O(1/t) Nonsmooth Convex Minimization (continued)

mingyey [f(u) = maxyev o(u, v)]

& Fact: Ifo(u,v) is

e convex-concave with Lipschitz continuous gradient,

e affine in u,

e strongly concave in v,
then properly modified MP ensures O(1/t?) convergence rate.
& Note: The premise does notimply smoothness of f.
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Smooth and Bilinear Saddle Point Representations

& Fact: Representations f(u) = maxycy ¢(u, v) with smooth
convex-concave, and even with bilinear ¢ are available for wide
spectrum of convex functions f. Whenever it is the case, f can
be minimized via MP at the rate O(1/t).

o f(U) = max fx(u) with smooth convex f

= f(u) = vzo,n%ak)\(/kﬂ >k Vi (u)
o f(u) = ||Au—b| = f(u) = maxiy|, <1 (v, Ay — b)
o f(u) = Iyl + 3/l Au— b3
= f(u) = max|yj,<tw [(U, V) + (W, Au— b) — SwTw]
e f(u): sum of k largest eigenvalues of A(u) = Au— b € S"
= f(u) = maxy [Tr(vA(u)) : 0 <X v < I, Tr(v) = K]
o f(u) = infper | 3 21y max[1 = yi((u,m) + b), 0]

= f(u) = maxyey SN vil1 — yi(u, m)]
V={v:0<v,<1/NVi,Y,yivi=0}c{veRN:|v|; <1}

Tutorial on Mirror Descent
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O(1/t) Nonsmooth Convex Minimization: Comments

Opt(P) = miney f(u) (P)

e Convex programs always have a lot of structure (otherwise, how
could we know that the problem is convex?)

Accelerating algorithms by utilizing problem’s structure is an old and
still challenging goal.

e A common way to utilize structure is via “structure-revealing” conic
formulations (Linear/Conic Quadratic/Semidefinite) and Interior Point
Methods. However, in the large scale case IPM iteration may become
prohibitively costly.

e Utilizing structure within the realm of oracle-oriented methods with
computationally cheap iterations is due to Nesterov (2003).
Nesterov’'s Smoothing (2003) uses saddle point representation of a
nonsmooth f to approximate f by a smooth function which is further
minimized by Nesterov’s algorithm for smooth convex minimization.
The resulting convergence rate is O(1/1).

o MP offers another way to utilize saddle point representation to
achieve the same O(1/1t) rate.

“Practical scopes” of these two approaches are nearly identical.
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O(1/t) Nonsmooth Convex Minimization: Examples

& Problem of interest:

Opt(P) = miny <1 [|[Au— bllp, A: M x N (P)
wherep 2orp=oc,and | - | is
a) || - |lz.on RN, or (b) || - ||y on RN, or (c) nuclear norm on RN = R™*”"

& Bilinear saddle point reformulation is
SadVal = min,cy max,cy (v, Au — b>
U={llul <1}, V=A{llvllg <1}, 9= 55 € {1,2}
and its domain is the product of two favorable geometry atoms.
& Applying t-step MP with appropriate setup, we get u! with
|ut|| <1 and
f(u') — Opt(P) < | Alljy.p/t
[All).,p = max{||Aullp : [lul| < 1}

Il
/-@O(1)In1/21/p(M+1)><{ In(N + 1), case (b)
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O(1/t) Nonsmooth Convex Minimization: Examples

Opt(P) = minyy <1 [Au = bllp, A: M x N, pe{2,00}  (P)
|-]: @) -ll2on RY| (b) | - |1 on R| (c) nuclear norm on RN = R™*"
:>‘ f(u') — Opt(P) < O(1) In(MN)|Ally.;1,0/t ‘

& MP step reduces to computing O(1) matrix-vector products
involving A and A*, plus

— O(M + N) a.o. in cases (a), (b)

— computing svd’s of two m x n matrices in case (c).

= Except for case (c), MP is computationally cheap...

& Note: When solving a Least Squares problem

(LS) Opt(A, b) = minHquQ HAU = ng [A 1N X n]
with A represented by multiplication oracle u, u' s Au, AT U/,
the rate O(1/t) is unimprovable in the large-scale case:
e The worst-case, over (A, b) with ||All22 < 1 and Opt(A, b) = 0,
inaccuracy in terms of the objective of (LS) is, for every t-step
algorithm, at least O(1)/t, provided t < n/4.

v
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Acceleration by Randomization

& Problem of interest:
Opt = minyy, <+ [Au—bll,  [A:mxn, pe {2.00)]
= (ﬁ1) : minHu||1§1 maX||VHp/(p71)§1 <V,AU — b>
= g(u,v)=[ATvib—Au]: X := U x V — R™"
U={u:lluls <1}, V={v:[IVip/p-1) = 1}

& Omitting from now on logarithmic in m, n factors, MP solves
(¢1) within accuracy < in

N(e) = |All1p/e,  ||All1,p = MaXxj<n ||Coli[A]l|p
steps, with two multiplications of vectors from U and from V by
A, AT, plus O(m + n) a.o. “overhead,” per step.
= The arithmetic cost of c-solution for a general-type A is

Cq(e) = mn||Al|1 p/€ a.o.

In fact, this is the best operation count achievable in the
large-scale case with known so far deterministic algorithms.
e For large m, n, matrix-vector multiplications may become too
time consuming...

v
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Acceleration by Randomization (continued)

& Matrix-vector multiplications are easy to randomize:
In order to compute Bu, B ¢ RN we draw an index j at
random according to
Prob{y = j} = sign(uy)/||ufl1, 1 <j < N
and return the vector
h = ||ul|1sign(u;)Col, [B]

Note:

e E{h} = Bu, ||hllg < [[ull1]Bll1,q

e Generating h costs O(1)(M + N) a.o. (assuming cost O(1)
of computing/extracting individual entry of B).
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Acceleration by Randomization (continued)

Opt =miny <1 [[AU—=blp  [A:mxn, pe {2 00}]
= ((1) : mlnHu” <1 max”‘,Hp/ H<1 <V Au — b>
L GV) = ATV b AU X = U x V — R
U={u:llulls <1}, V={v:|[Vlp/p-1) <1}

& When solving (¢1) with p = oo by MP with the precise values
of g(-) replaced with their cheap unbiased random estimates,
we (1 — 6)-reliably get e-solution to (¢1) inIn(1/6) [HAHLw/s]z
steps, the total computational effort being

Cr = (m+n)In(1/8) [||Al1.00/¢]% 2.0

& The “deterministic” operation count is C4 = mn||Al|1 /<.

= With the relative accuracy €/||Al|1,.. and é fixed and m, n large,
randomized algorithm by far outperforms its deterministic competitors.
¢ In addition, Randomized MP exhibits sublinear time behavior: when
m, n are large, €-solution is obtained, in a (1 — 0)-reliable fashion, by
inspecting negligibly small fraction of the mn data entries.

.
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Acceleration by Randomization (continued)

& In the case of p = oo, our construction basically recovers the
ad hoc sublinear time algorithm for matrix games (Grigoriadis &
Khachiyan, 1994).

& In the case of p = 2, randomization leads to iteration count
In(1/8)[|All1.2/2M2[A], T(A) = VallAl1co/llAll1.2 € [1, Vi
and operation count C, = (m+ n)In(1/48)[||All1 2/]?T3[A] a.o.
vs. the “deterministic” operation count Cy = mnl||A||12/¢] a.0.
e with I'[A] like O(1) In(mn), everything is as when p = co
e with I'[A] as large as O(v/m), randomization is really bad.

& However: Preprocessing [A, b] = [A, b] = FDiag{x}[A, b] with

m x m DFT matrix F and x ~ Uniform({—1; 1}") yields equivalent

problem and ensures (1 — §)-reliably I[A] < \/In(mn/s).

= With randomization and preprocessing, the operation count is
Cr = mn+ (m+ n)In?(1/6)[||All1.2/€]?

which for small and fixed €/||Al|1,2 and large m, n is negligibly small

as compared to Cq = mn([||Al|12/€] a.o.
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How it Works: Policeman vs. Burglar

& Problem: There are n houses in a city, i-th with wealth w;.
Every evening, Burglar chooses a house / to be attacked, and
Policeman chooses his post near a house j. The probability for
Policeman to catch Burglar is

exp{—6@dist(/, )}, dist(/, j): distance between houses i and j.
Burglar wants to maximize his expected profit

wi(1 — exp{—0dist(/,j)}),
the interest of Policeman is completely opposite.
e What are the optimal mixed strategies of Burglar and
Policeman?

& Equivalently: Solve the matrix game
- T
max V) =V
min - max ¢(u, v) Au
Ziy y=1 XL vi=t

A,'j = W,'(1 = exp{—@dist(i,j)})
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Policeman vs. Burglar (continued)

Wealth on n x n square grid of houses

V.

IPM MP Rand MP
[ N Steps/CPU, sec/€ || Steps/CPU, sec/E || Steps/CPU, sec/E
1600 21/120/6.0e-9 78/6/1.0e-3 10556/264/1.0e-3
6400 21/6930/1.1e-8 80/31/1.0e-3 10408/796/1.0e-3
14400 not tested 95/171/1.0e-3 9422/1584/1.0e-3
40000 out of memory 157/55337/0.0227 10216/4931/1.0e-3

Policeman vs. Burglar, N houses
Target residual ¢; < 1.e-3 IPM: mosekopt
t: termination when reaching the CPU limit of 5,400 sec



Policeman vs. Burglar (continued)

Policeman Burglar
& The resulting highly sparse near-optimal solution can be refined by
further optimizing it on its support by an interior point method. This
reduces inaccuracy from 0.0008 to 0.0005 in just 39'.

Policeman, refined Burglar, refined

200 x 200 grid of houses
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Tutorial: Mirror Descent Algorithms for Large-Scale Deterministic and Stochastic Convex Optimization
Selected Proofs

1 Mirror Descent: Stochastic Case

Situation: At t-th call to Stochastic Oracle, the query point being z; € X, the SO returns vector g;(z;) + A¢(zy, &), with independent
&~ P, t=1,2,.... Besides this, for all x € X and all ¢ it holds

lge()lls < L < 00, Ee{[|A(, )17} < 07, |Be{Ai(z, )}« < po. (1)

For the MD recurrence
T1 = Tw; Te41 = Proxg, (% [gt(mt) + At(l’n ft)]) (2)
with deterministic stepsizes v, > 0, we have, setting g; = g¢(x¢), A = Ay(x4,&):
Ye(ge + A, 241 — ) < Vi (x) = Vi () — Vi (2441) [see (2) in Transparencies]

Yilge + Ar, vp — ) < Vi, (2) = Vi, (1) + [’Yt( gt + At v — vp41) — Vi, (0041))]
%<jgt + Ay wp —x) < Vo (1) — zm( r) + Q’Yt Zllge + AtH*
Sy velge e — 2) <34+ 330 g+ A2+ S (A — )
[Zl i) er <302+ 4 ztll lge + A2+ max S (Ar,x — )

er 1= max S Mg ae — ), =/ S, 'ys

L R

The bottom line is that .

T
1
[Z’Y] er < 92 ZHgt—f—AtH*‘f‘maXZ% AN )] 3)
t=1

Our goal is to prove the following



Theorem 1.1 (i) Assuming (1), for the recurrence (2) for every T =1,2,... one has

T
02 + [L2+ 307 3,1 7F

E{er} <0 :=
E?:l Tt

+ 2ufd.

(ii) Strengthening (1) to
lge ()l < L < 00, Ee{exp{[|Ac(z,€)2/0?}} < exp{1}, [Ee{A(z, )}« < p
for allx € X and all t, we have for every 6 > 0:

Prob{er > Z + 0T} < 6exp{—0} + exp{—02/4},
T = 2‘72 S AoV .

T
Zt:l 7t

Note that with the stepsizes

Q
_ L 1<t<T
IR T 302 )2VT
one has
20./L? + 302/2 Q
== +30%/ Fou0, T <422
VT VT
Proof.

19, We need the following
Lemma 1.1 Given deterministic v and (perhaps, stochastic) g¢, A¢ such that ||g:||« < L < co and
E{[|AdZ} < o? V1,

one has

T T
E{Y fllo+ A2 <2 AP+ 0%,
t=1 t=1

(10)



If (9) is strengthened to

E{exp{||A¢]2/0?}} < exp{1}, (11)
one has
T T T
V6 > 0 : Prob {Z’YtQHgt + A2 > 227?[L2 + 0?] + 200* Zﬁ} < exp{l — 0}. (12)
t=1 t=1 t=1

Proof. (10) is evident due to ||g + Al|? < 2][||g||2 + [|A]|?]. To prove (12), note that the quantity

V(G()) = inf {s > 0: E{exp{|G|/s}} < exp{1}}

considered as functional on the space of measurable functions G(-) on the probability space associated with E{-} such that x(G(-)) is
finite, clearly is a norm. It follows that in the case of (11), setting a = 202 Zthl 72, we have

T
E{exp{[2) 7/l Acl%)/a}} < exp{1},

t=1

whence Prob{[2 "1 | 72|/ A¢||2] > fa} < exp{1 — 0}. Since
T T T
D villge+ AelE>2) APL+ 0% +20) Hio”
) t=1 t=1

clearly implies that 2 377 v2[|A|2 > 2325 7202 + 2002 " 2 due to ||ge||« < L, (12) follows. O

20, Our next observation is as follows:

Lemma 1.2 Let Ay = Hy(€Y) € E, where Hy(+) are deterministic functions, and & = (£1,...,&) with independent & ~ P, t = 1,2, ...,
and let vy = Xy (€17Y) € X, with deterministic X;(-). Assuming

(a) Egp {IIH(E]Z} < 0®, V(t,€7) (13)
(b) [ Eenp{H(E)H < p¥(t, g1



we have for deterministic ~¢ > 0:

T T T
Lo 1 5 2
E{I&%?(ZVt(At,x — )} < S+ 50 > A2 . (14)
t=1 t=1 t=1
Strengthening (13.a) to
E¢,~p {exp{[|H:(€")]7/0°}} < exp{1}, (15)

we get
V(6 >0):

Prob{ maxgex Z;le Ye(Ay,x — x) > %QZ + %02 Zthl V2 421 23;1 Ve

L [%Q@ +a2y T %2} }

(16)

< exp{l — 6} + exp{—6?/4}
Proof. A. Let y; = Y;(¢/!) be given by the recurrence

Y1 = Yoo Yer1 = Proxy, (—1ely).

Then, same as in the derivation of (3),

Ve X : Z’Yt —Apyr —x) < Qz‘f‘ Z’YtHAtH
=1

so that
Ve X : Z’Yt Az —my) < 92 Z’Yt HAt”*‘i‘Z% Ay, yr — 1),
t=1
whence

T
= —_ < 2 2 -
A {Cnezg( tz:; (BT = ap) Q + - Z% | A5 + Z’Yt (D¢, yr — x¢). (17)

t=1



Since ¢, z¢ are deterministic functions of £&£~! and +; are deterministic, we have

E{(An y = 2)} = B{Eg, o p{(As, 4 — 20) 1} = E{(Egnr{A}, 4r — 24) } < E{pflye — 24|} < 200

(we have used that xy,y; € X). Thus, taking expectation of both sides in (17), we get

T T
Ly 1o 2
E{A4} < 59 + 27 Z’Yt +2HQZ%7
t=1 t=1
and (14) follows.
B. Now assume that in addition to (13.a) relation (15) takes place, and let us prove (16). Note that (15) implies (13.b) by Jensen’s
inequality.

C. We start with the following observation:

Lemma 1.3 Let n be a scalar random wvariable such that |E{n}| < v and E{exp{n®}} < exp{1}. Then for all « € R it holds
E{exp{an}} < exp{av + o?}.

Proof. We have ¢* < s+ ¢2°/3 for all s, whence E{e®"} < E{an + ¢2*°7°/3}. When o? < 3/2, we have E{e2?"7°/3} < exp{2a2/3} due
to E{e"} < exp{1} and Moment inequality, so that

E{e™} < |a||[E{n}| + e2**/3 < elol+20%/3 0 < 0% < 3/2.

Besides this, we have as < Ta?+ s?, whence E{e®} < el+o*/4 que to E{exp{n?}} < e. Combining the bounds, we get E{e®} < elolvte?
for all a. 0

D. Let s; = v, (Ay, y¢ —2¢). Since y;, 2, depend solely on €71 and [s;| < 2v;[|A¢ |« due to x4, 3, € X, (15) implies that setting oy = 2,01,
we have

E¢,.p{e®/7} < exp{1}V(t,€'7)) (18)

Besides this, |[E¢,~p{st}| = [7e(Eeop{At} yr —24)| < 27 Qpu for all ¢,£71. Applying Lemma 1.3 to the random variable = s;/oy, which
allows to set v = p/o, we get
Eg,p{e®t} < etaot/o+aeiof,



Now, for every r > 0 we have
T

T
Prob{z V(A gy — ) > 1} < E{exp{az si}}exp{—ar}Va > 0.
t=1 t=1

Setting So =0, S; = Zt s-, we have for o > 0:

=1
E{exp{aSi}} = E{exp{aS;—1 + as;}} = E{exp{aSi—1}E¢,~p{e***}}
< E{exp{asS;_1} exp{paoc,/o + a*o}}},

so that .
E{exp{aSr}} < exp{} [paoi/o + a’o}]}
and thus . - . .
Pmb{; Ve(Ae,yr — ap) > 1} < Sfifo exp{a[; poifo —r]+a? ;%2] :
Assuming

T T
r:uZOt/a+p=2MQZ%+P
t=1 t=1

with some positive p, and setting o = —.
23107

we get from (19) that

T T
T
Vp>0: Prob{z Ye( Ay, yp — ) > Q;J,QZ% + p} < exp{—p?/ (427510752)}’
t=1 t=1

or, which is the same,

T T =T
VO >0: Prob{ztzlfyt<At,yt — ) > QMQthlfyt + 20002 thlfyf} < exp{—6%/4}.

E. Acting exactly as in the proof of Lemma 1.1 with L set to 0, we get

T T T
V0 > 0 : Prob {Z%QHAtHE > 022%2 +‘902Z%2} < exp{l — 6}.

t=1 t=1 t=1

(20)

(21)



This combines with (20) and (17) to imply (16). Lemma 1.2 is proved. O

3. Now we can prove Theorem 1.1. Combining (14), (10) and (3), we arrive at (4); (i) is proved. In the case of (5), we have at our
disposal both (12) and (16), and these two relations clearly imply item (ii) of Theorem. O

2 Mirror Prox: Stochastic Case

Situation: For every ¢t = 1,2,..., at (2t — 1)-st call to Stochastic Oracle, the query point being z; € X, the SO returns vector
gt(e) + Aor—1(wt, E2e—1); at (2t)-th call, the query point being w; € X, the SO returns g;(wy) + Agt(wy, Eo¢), with independent & ~ P,
s=1,2,.... Besides this, we have

(a) |lge(x) — (x)” <M|z—2||+LV(z,2' e X,t=1,2,...) [M,L < o0,
(0) Ee{l|As(x 75)H }<o? V(reX,s=1,2,..) (22)
() |E{As(z, O}« < pV(ze X,s=1,2,..)

For the MP recurrence
T = Ty wr = Proxg, (V[ge(xe) + Aor—1(xt, E2t-1)]); Te41 = Proxg, (1 [ge(we) + Aop(we, ar)])
we have, setting gr = gi(z1), g+ = ge(we), e = Dor—1(ze, E2e—1), Gt = Dor(wy, ar):

x) — Vg, +1( x) — Vi, (z44+1) [see (2) in Transparencies|
(1) = Vi, (241) — Vi, (wy) [see (2) in Transparencies]
) Vi (@) + [y {ge + Ct,wt — Tp41) — Vo, (Te41)]
) th+1( x) + gt + Ct — Gt — N, W — Teg1) (G + e we — Tpp1) — Vi (Te41)
— gt — N, Wt — $t+1>+VIt (1) = Vi, (@e41) — Vi, (wi) — Vi, (@e41)
z) — th+1( z)+[velge + G — Ge — ey we — Tg1) — Vi, (Te41) — Vi, (wi)]
) = Vaua (@) +7ellge — ?tH*Hwt — x|l + el G = mellsllwe = 2ol = gllee = wil* = 3l — wel|?

V{9t + Gty Te1 — ) < Vi
Ve Ge + N, We — Tyg1)
Yelge + Gy wy — x) <
V(g + Co, w — )
th (-T) - sz+1(x)
)
)

SSM

Ye(ge + G, wi —
Yelge + G, wi —

b 4ind y



Assuming
VM <172, (23)
we have
Vellge — Gell«llwe — zesall +7ellGe = mellllwe — zegall = Sllze — well® = Fllwer — wel|?
< yMllwe = zl|[lwe — T || + v Lllwe — 2o || + Vel G — mellllwe — 2]
—sllee = we]|* = gllwes — w?
< gl=llze — well? = fllween — wel® + lwe — 2ol lwe — 241 )]
L + 16— nellsllwe — zeqa || = S llwe — 24 [|]
< ARIL (1G4 NImell]? < BPIL% + 1G1E + [mellZ]

Thus, for every x € X and every t we have
e{ge + Gy wp — @) < Vi (€) = Vi () + 377 (L + [IGIIE + el 2]

whence

T T T

1
> wlgewe —x) < SO 43% AP+ G+ ImelZ) + Y (G w — wn).
t=1 t=1 t=1

Therefore with \; := A/ = 4/ ZST:1 ~vs we have

T T
3%+ 330 L+ NG + [lmel12) + max > 1 Ye(Gt, & — wr)

T
= A —x) <
€T I;le%?z t<gtawt 33) =

24)
T (
t=1 ZT::[ Vr
Our goal is to prove the following
Theorem 2.1 (i) Assuming (22), (23), one has for every T = 1,2, ...
02 4 [3L2 +1302/2) S0, 77
E{er} <Z:= T BLTH 1807213 i + 208 (25)

T
Zt:l Yt

(ii) Strengthening (22.b) to
Befexp{| A (2, €)[2/0%}} < exp{1} ¥z € X,5 = 1,2,..) (26)



we have for every 6 > 0:
Prob{er > Z + 0T} < 6exp{—0} + exp{—02/4},

T = 70? 23:1 V7 +20Qy 23:1 %2_ <27)
23:1 Tt
Note that with the stepsizes
1 Q
= min , , 1<t <T 28
R 2M’ /32 + 1302 /2VT (28)
one has )
20°M 2Q4/3L2% 4 1302/2 Qo
== + + 200, T <9, 29
T VT g VT (29)

Proof repeats word by word the one of Theorem 1.1, with (24) in the role of (3).

3 Proximal Setup for ¢; /¢, Ball

Let .,
X={z=[z5. ;2" c E=R" x .RF: Z |27 |2 < 1}
j=1
and
1 n =
1 &, 2 n<?2 %
= — J||P = ’ - = 5 n =2
w@ =Yl o ={ 3, L 255 =1

In(n)’ n>2

)



We have for v € X' = {x € X : 27 #0Vj}:

yDw ()] = 37y |27l (a?, 1)

vDw()[h, h] = (2 = p) S5y a7 I~ [(2? W) + 35 [l 152 1A7 3
> S0 27 52113 = (2 = p) X a1 127 1301713

> (p = 1) 5 27521013

= [0 =[z e 5 )l ”]2s[Z?:luhjnauxfuﬂ [ 2?15
= (55 100 < [ 1912 77] 2 D2es(a) . ]

Setting t; = [|27]]2 > 0, we have >_;tj <1, whence due to 0 <2 —p <1t holds }, t?_p < nn~(GP) = pP~1 Thus,

SoIWll| <t D)

while .
maxw(z) —minw(z) < — (30)
zeX zeX Yp

With p,~ as above, when n > 3 we get Z%npfl = mnl/ In(n) = 1, and similarly for n = 1, 2. Consequently,

V(z e X' h Z Hhsjug < D%w(x)[h, h). (31)

Since w(+) is continuously differentiable and the complement of X’ in X is the union of finitely many proper linear subspaces of E, (31)
implies that w is strongly convex on X, modulus 1, w.r.t. the ¢;/¢3 norm. Besides this, we have

1 %, n=1
— =1 2, n=2 ) <O(1l)Iln(n+1).
P <eln(n), n>3

which combines with (30) to imply that the w-radius of X is < O(1)/In(n + 1).



4 Proximal Setup for Nuclear Norm Ball

For y € S™, let A\(y) be the vector of eigenvalues of y (taken with their multiplicities in the non-ascending order), and let |y|1 = [|A(y)]1
be the trace norm.

Proposition 4.1 Let N > M > 3, and let E be a linear subspace in SN such that every matrizy € E has at most M nonzero eigenvalues.
Let g = ln(l]\/[)’ so that 0 < g < 1, and let

The function W(+) is continuously differentiable, convex, and its restriction on the set Yg = {y € E : |y|1 < 1} is strongly convex, modulus
1, w.r.t. |-|1. Besides this,
Yy € Vihe 8Y) - |(w(y), B} < deln(M)[hls. (32)

Proof. 1°. Let 0 < ¢ < 1. Consider the following function of y € SV:

1
— s

’1+q‘
1+g¢

Hq ZM W) = Tr(f (), f(s) =

29, Function f(s) is continuously differentiable on the axis and twice continuously differentiable outside of the origin; consequently, we
can find a sequence of polynomials fi(s) converging, as k — oo, to f along with their first derivatives uniformly on every compact subset
of R and, besides this, converging to f uniformly along with the first and the second derivative on every compact subset of R\{O} Now
let y,h € SV, let y = uDlag{)\}uT be the eigenvalue decomposition of y, and let h = uhu®. For a polynomial p(s) = Zk:o prs®, setting



P(w) = Tr(ZkKZO prw®) : SV — R, and denoting by v a closed contour in C encircling the spectrum of 3, we have

(@) Ply) ="Tr(p(y)) = X0, (A ()
(0) (y [h] = Te (> py kpiTr(y*~1h)) = Tr(p’(y)h) = PN w)hy;
(c) D*P(y)[h,h] = dt‘t Dp(y+th)[h = 4|, _oTr(@'(y + th)h)
= dt}t 0212 fTr ZI (y +th)) Hp'(2)dz = L fTr(h(zI — ) (2] — y)"Hp'(2)dz
v

27
p'(2) _ N P27
szzu Ve ey @ = L= ML

P'Qa(y)=p" (i () ,
T :{ e o N
P (Niy)), Ai(y) =

b@w

We conclude from (a,b) that as k — oo, the real-valued polynomials Fy(-) = Tr(fx(-)) on SV converge, along with their first order
derivatives, uniformly on every bounded subset of S, and the limit of the sequence, by (a), is exactly x(-). Thus, x(-) is continuously
differentiable, and (b) says that

Dx()[h] = £ (w)hy;. (33)

Besides this, (a-c) say that if U is a closed convex set in 8% which does not contain singular matrices, then Fj(-), as k — oo, converge
along with the first and the second derivative uniformly on every compact subset of U, so that x(-) is twice continuously differentiable
on U, and at every point y € U we have

MWD=F @) () £ A i(y)
.. )\‘7( ' ’
Zhw7z{f%uxy M) = h

1,j=1

and in particular x(-) is convex on U.

3Y. We intend to prove that (i) x(+) is convex, and (ii) its restriction on the unit ball Y of the trace norm is strongly convex, with certain
modulus a > 0, w.r.t. the trace norm |- |;. Since x is continuously differentiable, all we need to prove (i) is to verify that

X'W) =Xy —y") >0 (*)



for a dense in S™ x SY set of pairs (v/,y"), e.g., those with nonsingular 3 — ¢”. For a pair of the latter type, the polynomial ¢(t) =
Det(y' + t(y" — y')) of t € R is not identically zero and thus has finitely many roots on [0, 1]. In other words, we can find finitely many
points tg = 0 < t; < ... < t;, = 1 such that all “matrix intervals” A; = (yi, ¥i+1), y& = ¥ + tx(y" —v'), 1 <i < n — 1, are comprised of
nonsingular matrices. Therefore y is convex on every compact subset of every interval A;, and since x is continuously differentiable, (x)
follows.

49, Now let us prove that with properly defined a@ > 0 one has

/"

X)) =Xy =y > aly —y'F W,y €YE

Let € > 0, and let Y© be a convex open in Y = {y : |y|1 < 1} neighbourhood of Yz such that for all y € N¢ at most M eigenvalues of y
are of magnitude > e. We intend to prove that for some a,. > 0 one has

X)) =Xy —y") = ady —y"[F v,y € Y*. (35)

Same as above, it suffices to verify this relation for a dense in Y¢ x Y¢ set of pairs 3/, y” € Y€, e.g., for those pairs 3/, y” € Y€ for which
y' — 1 is nonsingular. Defining matrix intervals A; as above and taking into account continuous differentiability of y, it suffices to verify
that if y € A; and h =y — ", then D?x(y)[h, h] > ac|h|?. To this end observe that by (34) all we have to prove is that

N
D*x(y)[h,h] = > h3Ty; > adhfi. (#)

1,j=1

Setting A; = \;j(y), observe that A\; # 0 for all i due to the origin of y, and if |\;| > |);|, then I';; > ¢|\;|?"!. Indeed, the latter
Al 7= |3

relation definitely holds true when A; = A;. Now, if A\; and \; are of the same sign, then I';; = W > q\)\i]q_l, since the derivative
i J
of the concave (recall that 0 < ¢ < 1) function t¢ of t > 0 is positive and nonincreasing. If \; and \; are of different signs, then
Iij = W > | XN]771 due to [Aj|7 > |A]|Ai|97L, and therefore T;; > ¢|Ai[7~!. Without loss of generality, we can assume that the
i j

positive reals p; = |A\;|, i = 1,..., N, form a nondecreasing sequence, so that, by above, I';; > qug_l when ¢ < j. Besides this, at most M
of pu; are > ¢, since i, y” € Y and therefore y € Y by convexity of Y. By the above,

N
Dx(y)[h, k] =2q Y hiud T +qy Bl
i<j<N Jj=1



or, equivalently by symmetry of ﬁ, if

hgj
B = :
hji  hjo hijj
and Hj is the Frobenius norm of h7, then
N-M N
l —
SO ST EEPERD b B S )
J=1 Jj=1 j=N-M+1

Now note that p; > 0 and Zj'\]:N—M-i-l pj < 1duetoyeY. It follows that setting n = [Hy_nr+1; HN—n+2; -..; Hn], we have

2—q

N 9 g-1 . N 2,,94-1 _ N 2=q

Ej:NfMJrlH'ru‘ 2 min Zj:N7M+1HjVj = Zj:N7M+1Hj
v;>0: Z]:N—]MJA vj<1

2—g _
_HTIH2 > M2 5 g)2 = M) 2,

—q

(when computing the minimum, take into account that 0 < ¢ < 1). Besides this, setting { = [Hy; Ha;...; Hy—pr], we have

I8 < Z 2 < [N = M)t Z

We see that for every positive § one has

(S 1] = Ul + 2 < (1 4+ )l + (1 + 57l

< (1 +5)qujv=N7M+1 szug—l + (146 H[e"9N — M)]ed™ 1EN MH2

< max|(1 + §)M9, (1 + 6~ V)l =4(N — M)] [ ey N 2 LY H]?u‘j_l
< g lmax[(1+ )M, (146 Hel=4(N — M)|D?*x(y)[h, h].



Now observe that i = Zj\[:l h/ and K’ is of rank < 2, so that |h/|; is at most twice the Frobenius norm H; of k7. Therefore

2
h|2 =[h? <4 [ZylHj] < 4q  max[(1 4+ )M, (14 6 Ve "IN — M)]|D*x(y)[h, h).

This inequality holds true for all §. Setting

all = %Ili(l)l 4q7  max[(1 4 6)M9, (14 61 "Y(N — M),
>

we ensure the validity of (#), and consequently the validity of (35). The latter relation, combined with ae = o = ¢M~9/4 as € — 40
due to g < 1, implies that

KW= X"y =) = aly' ="V y" € YE), a=qM /4.
Setting ¢ = ﬁ and observing that with this ¢, a = [4eln(M)]™}, so that &(-) = a~!x(:), we see that & indeed is continuously

differentiable convex function on S which is strongly convex, modulus 1 w.r.t. |- |1, on Yz. It remains to note that by (33) for y € Y’
and h € SV we have N R
[(W'(y), )] = 4eIn(M)[(x'(y), h)| < deIn(M) 325 | (y)|?]hys]

~ ~ O
< deln(M) Y, [y < deln(M)[hl; = deln(M)|hl;.

Now let m,n be positive integers with 2 < m < n, and let N = m +n, M = 2m. For z € R"*" let 0;(x), 1 <i < m, be the singular

values of z, let ||z|[auc be the nuclear norm of z, and let Az = % [ T o } € SN. Observe that the image space E of A is a linear

subspace of SV, and that the eigenvalues of y = Az are the 2m reals +0;(x)/2, 1 < i < m, and N —m zeros, so that ||z|/me = |Az|; and
M = 2m, F satisfy the premise of Proposition 4.1. Setting

w(x):@(Ax):‘MZguq(x)’q: L

)

and invoking Proposition 4.1, we see that w is a convex continuously differentiable function on R™*" which, due to the identity

|||l nue = |Az|1, is strongly convex, modulus 1 w.r.t. || - ||auc, on the || - ||nuc-unit ball X. Observe that

Q[X,w(-)] < 2y/2eln(2m) < 5v/In(2m).



5 Mirror Descent in Semi-Bounded Case

Theorem 5.1 Let || - ||,w be a prozimal setup for X C E, and assume that X contains || - ||-ball of positive radius 02 centered at some
point c. Consider MD trajectory

T = Tw; Try1 = Proxg, (Vrg-(77)) (36)
with stepsizes

Ny = { ve/llgr(zo)lls,  gr(zr) f 0 (37)

Vr, gT(xT) =0
Assume the vector fields g-(-) are uniformly semi-bounded on X :
sup (g-(z),2' —x) < M < o0 (38)
z,x'eX,T

Then with xt defined as
ot =30 M, A= 77/22:1’78
when g-(z;) # 0 for all T < 't, otherwise defined as (any) x, such that g-(x;) = 0, the following holds true: when

_ D +3 v

< 09,
23 v

t -

one has .
MA
= ¢ — < 0t .
<t %?Tzl Arlgr(@r), 2r =) < a1 (39)

In particular, when t > 4072 and v, = %, 1 <7<t one has

<2M
€ ——
t_G\/Z

Proof. There is nothing to prove when z! = z, such that g;(x,) = 0; thus assume that g (z;) # 0 for all 7 < t. Let h,(z) =
gr(x)/||gr (x)||« when g,(z) # 0, and h,(x) = 0 when g,(x) = 0. Then the recurrence (36) reads

T1 = Ty Try1 = Proxg, (vrhe (7)) (40)



and ||hr(x,)|« < 1, whence
QQ t_ 2
maxgex >ovq fr (e (), 27 — ) < Ay = LS4

Hr = VT/ ZZ:I Vs

or

Assuming w.l.o.g. ¢ = 0, we have by (38)
V(z,|lz|| <r:=0Q,7): (9-(x;),x —x7) < M,

whence

lgr (@)l < r7 M + {gr(2r), 27)] V7

or, equivalently,

L e
V(T St) Hgf(xr)H* =z M M HQT(UUT)H*

<gT($T)7 x‘l’)
ZHgT @l - Z“”*Z '

<t T<t r<t lgr (z=)1+

and therefore

In other words,

gT? ':L‘T
Z eI Z‘” Z eI 3o

HgT Zr ||*

where the concluding < is due to (42) and 0 € X. We see that

Z Hr > r— At‘
lgr(ar)e = M

Assuming the right hand side in this inequality positive and taking into account that

st e/ llgr (o)l
T Yec s/ llgs(@s) |l

(41)

(42)



we get from (42)

as claimed in (39).




