
Dark knowledge

Geoffrey Hinton, Oriol Vinyals & Jeff Dean

Google Inc.

The conflicting constraints
of learning and using

•  The easiest way to extract a lot of knowledge from the
training data is to learn many different models in parallel.
–  We want to make the models as different as possible

to minimize the correlations between their errors.
–  We can use different initializations or different

architectures or different subsets of the training data.
–  It is helpful to over-fit the individual models.

•  A test time we average the predictions of all the models
or of a selected subset of good models that make
different errors.
–  That’s how almost all ML competitions are won

(e.g. Netflix)

Why ensembles are bad at test time

•  A big ensemble is highly redundant. It has very
very little knowledge per parameter.

•  At test time we want to minimize the amount of
computation and the memory footprint.
– These constraints are generally much more

severe at test time than during training.

leaves

caterpillar

butterfly

planet

paydirt

gold

training data

big ensemble of
learned models

small production
model

An analogy

The main idea

•  The ensemble implements a function from input
to output. Forget the models in the ensemble
and the way they are parameterized and focus
on the function.
– After learning the ensemble, we have our

hands on the function.
– Can we transfer the knowledge in the function

into a single smaller model?
•  Caruana et. al. 2006 had the same idea but

used a different way of transferring the
knowledge.

Soft targets: A way to transfer the function

•  If the output is a big N-way softmax, the targets
are usually a single 1 and a whole lot of 0’s.
– On average each target puts at most log N

bits of constraint on the function.
•  If we have the ensemble, we can divide the

averaged logits from the ensemble by a
“temperature” to get a much softer distribution.

pi =

exp zi
T
!

"
#

$

%
&

exp
z j
T
!

"
#

$

%
&

j
∑

This reveals much
more information
about the function
on each training
case.

An aside: Two ways to average models

•  We can combine models
by averaging their
output probabilities:

•  We can combine models by taking the geometric

means of their output probabilities:

Model A: .3 .2 .5
Model B: .1 .8 .1
Combined .2 .5 .3

Model A: .3 .2 .5
Model B: .1 .8 .1
Combined .03 .16 .05 /sum

cl
as

s
3

cl
as

s
2

cl
as

s
1

An example of hard and soft targets

 0 1 0 0

 .9 .1

.05 .3 .2 .005

original hard
targets

output of
geometric
ensemble

softened output
of ensemble

dog

dog

cat

cow cat car

10−910−6

Softened outputs reveal the dark knowledge in the ensemble.

cow car

dog cat cow car

Adding in the true targets

•  If we just train the final model on the soft targets
from the ensemble, we do quite well.

•  We learn fast because each training case
imposes much more constraint on the
parameters than a single hard target.

•  But it works better to fit both the hard targets and
the soft targets from the ensemble.

How to add hard targets during
distillation

•  We try to learn logits in the distilled model that
minimize the sum of two different cross entropies.

•  Using a high temperature in the softmax,
we minimize the cross entropy with the soft
targets derived from the ensemble at high
temperature.

•  Using the very same logits at a temperature of 1,
we minimize the cross entropy with the hard
targets.

Relative weighting of the hard and soft
cross entropies

•  The derivatives for the soft targets tend to be
much smaller.
– They also have much less variance from case

to case.

•  So we down-weight the cross entropy with the
hard targets.
– Even though its down-weighted, this extra

term is important for getting the best results.

Training an ensemble of models

•  This is a beautiful problem to parallelize.

•  But if we do not want to use a lot of cores, is
there a way to train an ensemble that involves
much less total computation?

Dropout: An efficient way to average
many large neural nets.

•  Consider a neural net with
one hidden layer.

•  Each time we present a
training example, we
randomly omit each hidden
unit with probability 0.5.

•  So we are randomly
sampling from 2^H
different architectures.
– All architectures share

weights.

Dropout as a form of model averaging

•  We sample from 2^H models. So only a few of
the models ever get trained, and they only get
one training example.

•  The sharing of the weights means that every
model is very strongly regularized.
–  It’s a much better regularizer than L2 or L1

penalties that pull the weights towards zero.
–  It pulls the weights towards what other models

want.

But what do we do at test time?

•  We could sample many different architectures
and take the geometric mean of their output
distributions.

•  Its faster to use all of the hidden units, but to
halve their outgoing weights.
– This exactly computes the geometric mean of

the predictions of all 2^H models.

What if we have more hidden layers?

•  Use dropout of 0.5 in every layer.

•  At test time, use the “mean net” that has all the
outgoing weights halved.

•  This is not exactly the same as averaging all the
separate dropped out models, but it’s a pretty
good approximation, and its fast.

Experiment on MNIST

•  Vanilla backprop in a 784 -> 800 -> 800 -> 10 net
with rectified linear hidden units gives 146 test
errors.
RELU: y = max(0, x)

•  If we train a 784 -> 1200 -> 1200 -> 10 net using
dropout and weight constraints and jittering the
input, we eventually get 67 errors.

•  How much of this improvement can be transferred to
the 784 -> 800 -> 800 -> 10 net?

Transfer to the small net

•  Using both the soft targets obtained from the big

net and the hard targets, we get 74 errors in the
784 -> 800 -> 800 -> 10 net.
– The transfer training uses the same training set

but with no dropout and no jitter.
–  Its just vanilla backprop (with added soft targets).

•  The soft targets contain almost all the knowledge.
– The big net learns a similarity metric for the

training digits even though this isn’t the objective
function for learning.

The soft outputs
(one row per training case) 0 1 2 3 4 5 6 7 8 9

this 2 resembles a 1
and nothing much else

this 2 resembles
0, 3, 7, 8

this 2 resembles
4 and 7

A very surprising result on MNIST

•  Train the 784 -> 800 -> 800 -> 10 net on a
transfer set that does not contain any examples of
a 3. After this training, raise the bias of the 3 by
the right amount.
– The distilled net then gets 98.6% of the test

threes correct even though it never saw any
threes during the transfer training.

An even more surprising result on
MNIST

•  Train the 784 -> 800 -> 800 -> 10 net on a

transfer set that only contains images of 7 and 8.

•  After training, lower the biases of 7 and 8 by the
optimal amount.

•  The net then gets 87% correct over all classes.

Conclusion so far

•  It is well known that object recognition is greatly
improved by transforming the input images in ways
that do not change the label.
– But this brute-force method means we need to

train on a lot more images.
•  Transforming the targets has similarly big effects on

generalization.
– This does not change the size of the training set.
– But you have to get the soft targets from

somewhere.

A popular way to transform the targets

•  Organize the labels into a tree and instead of
just predicting a label, predict all of the labels on
the path to the root.
– Many groups have tried this and it helps, but

not nearly as much as using soft targets
produced by a good model.

•  Visual similarity cannot be modeled well by any
tree.

An intriguing result on speech

•  Start with a trained model that classifies 58.9%
of the test frames correctly.
– The model is a slightly outdated version of the

acoustic model used in Android phones.
•  Use that model to provide soft targets for a new

model (that also sees hard targets).
– The new model converges to 57.0% correct

even when it is only trained on 3% of the data.
– Without the soft targets it peaks at 44.5% on

3% of the data and then gets much worse.

Conclusion

•  Soft targets area a VERY good regularizer.
– They prevent the model from being too sure.
– They allow each training case to impose much

more constraint on the weights.

Improving a production speech model

•  Train 10 models separately. The individual
models average 58.9% correct.
– The models only differ in their initial weights.
– The ensemble gets 61.1% correct.

•  Now distill the ensemble into a single model of
the same size using both hard and soft targets.
– The distilled model gets 60.8% correct.
– This is 6/7 of the ensemble win.

Relation to prior work by Caruana and
his collaborators

•  They perform transfer from the ensemble by
trying to match the logits produced by the
ensemble average.
– This is just a regression problem during the

transfer learning.

•  How does matching logits relate to minimizing
the cross entropy with soft targets derived by
using a high temperature in the softmax?

The high temperature limit

T ∂C
∂zi

= pi − ti =
exp zi

T
!

"
#

$

%
&

exp
z j
T
!

"
#

$

%
&

j
∑

−
exp vi

T
!

"
#

$

%
&

exp
vj
T
!

"
#

$

%
&

j
∑

T ∂C
∂zi

≈
1+ zi

T
N +

z j
Tj

∑
−

1+ vi
T

N +
vj
Tj

∑
=

1
NT

zi − vi()

assume we have zero-meaned both sets of logits for every case

eε ≈ 1+ε if ε is small logits
for soft
targets logits of

distilled model

Training a community of neural nets

•  If we train ten 784 -> 500 -> 300 -> 10 nets
independently on MNIST, they average about
158 test errors, but the geometric ensemble gets
143 errors.

•  What if we let each net try to match soft targets
derived by averaging the opinions of the whole
community as it is training (in addition to
matching the hard targets)?
– The nets now average 126 errors!
– The ensemble gets 120 errors.

How to make an ensemble
mine knowledge more efficiently

•  We can encourage different members of the
ensemble to focus on resolving different
confusions.
–  In ImageNet, one “specialist” net could see

examples that are enriched in mushrooms.
–  Another specialist net could see examples

enriched in sports cars.
•  We can choose the confusable classes in several

ways.
– K-means clustering on the soft target vectors

produced by a generalist model works nicely.

The main problem with specialists

•  Specialists tend to over-fit.
•  To prevent this we need a very strong regularizer.

– Making them small doesn’t work well. They
need all the lower levels of a general vision
system to make the right fine distinctions.

– Freezing the lower levels does not work well.
The early filters need to be slightly adapted.

•  So how can we regularize specialists effectively
without making them too weak?

One way to prevent specialists over-fitting

•  Each specialist uses a reduced softmax that has
one dustbin class for all the classes it does not
specialize in.

•  The specialist estimates two things:
–  1. Is this image in my special subset?
–  2. What are the relative probabilities of the classes in my

special subset?
•  After training we can adjust the logit of the dustbin

class to allow for the data enrichment.
•  The specialist is initialized with the weights of a

previously trained generalist model and uses early
stopping to prevent over-fitting.

The JFT dataset

•  This is a Google internal dataset with about 100
million images with 15,000 different class labels.

•  A large convolutional neural net trained for about
six months on many machines gets 25% correct
on the test set (using top-1 criterion).

•  Can we improve this significantly with only a few
weeks of training?

Early stopping specialists on JFT

•  Start from JFT model that gets 25% top-1 correct.

 0 350037 0 0.0%
 1 141993 +1421 +3.4%
 2 67161 +1572 +7.4%
 3 38801 +1124 +8.8%
 4 26298 +835 +10.5%
 5 16474 +561 +11.1%
 6 10682 +362 +11.3%
 7 7376 +232 +12.8%
 8 4703 +182 +13.6%
 9 4706 +208 +16.6%
 10+ 9082 +324 +14.1%

#spec #cases #win relative accuracy

Combining models that have dustbin classes

•  Its not trivial. A specialist is NOT claiming that
everything in its dustbin class is equally
probable. Its making a claim about the sum of
those probabilities.

•  Basic idea: For each test case, we iteratively
revise the logits for the detailed classes to try to
agree with all of the specialists.
–  i.e. We try to make the sum of the relevant

detailed probabilities match the dustbin
probability.

A picture of how to combine models
that each have a dustbin class

•  For each test or transfer case we run a fast
iterative loop to find the set of logits that fit best
with the partial distributions produced by the
trained specialists.

p1 p2 p3 p456

q1 q2 q3 q4 q5 q6

target probs from a specialist

actual probs of combination

A better way to prevent specialists over-fitting?

•  Each specialist gets data that is very enriched in its
particular subset of classes but its softmax covers
all of the classes.

•  On data from its special subset (50% of its training
cases) it just tries to fit the hard targets with T=1.

•  On the remaining data it just tries to match the soft
targets produced by a previously trained generalist
model at high temperature.
– The soft targets will prevent overfitting.
– Remember the 3% effect in the speech

experiment.

•  Conclusion: When extracting knowledge from
data we do not need to worry about using very
big models or very big ensembles of models that
are much too cumbersome to deploy.
–  If we can extract the knowledge from the data

it is quite easy to distill most of it into a much
smaller model for deployment.

•  Speculation: On really big datasets, ensembles
of specialists should be more efficient at
extracting the knowledge.
– Soft targets for their non-special classes can

be used to prevent them from over-fitting.

THE END

