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The conflicting constraints  
of learning and using 

•  The easiest way to extract a lot of knowledge from the 
training data is to learn many different models in parallel. 
–  We want to make the models as different as possible 

to minimize the correlations between their errors. 
–  We can use different initializations or different 

architectures or different subsets of the training data. 
–  It is helpful to over-fit the individual models. 

•  A test time we average the predictions of all the models 
or of a selected subset of good models that make 
different errors. 
–  That’s how almost all ML competitions are won     

(e.g. Netflix) 



Why ensembles are bad at test time  

•  A big ensemble is highly redundant. It has very 
very little knowledge per parameter. 

•  At test time we want to minimize the amount of 
computation and the memory footprint. 
– These constraints are generally much more 

severe at test time than during training.  
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The main idea 

•  The ensemble implements a function from input 
to output.  Forget the models in the ensemble 
and the way they are parameterized and focus 
on the function. 
– After learning the ensemble, we have our 

hands on the function.  
– Can we transfer the knowledge in the function 

into a single smaller model? 
•  Caruana et. al. 2006 had the same idea but 

used a different way of transferring the 
knowledge. 



Soft targets: A way to transfer the function 

•  If the output is a big N-way softmax, the targets 
are usually a single 1 and a whole lot of 0’s. 
– On average each target puts at most log N 

bits of constraint on the function. 
•  If we have the ensemble, we can divide the 

averaged logits from the ensemble by a 
“temperature” to get a much softer distribution.  
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about the function 
on each training 
case. 



An aside: Two ways to average models 

•  We can combine models                                      
by averaging their                                           
output probabilities: 

 
•  We can combine models by taking the geometric 

means of their output probabilities: 

Model A:    .3   .2   .5 
Model B:    .1   .8   .1 
Combined  .2   .5   .3 

Model A:    .3    .2    .5 
Model B:    .1    .8    .1 
Combined  .03  .16  .05   /sum 
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An example of hard and soft targets 

  0            1             0                       0    

               .9            .1  

.05            .3             .2                    .005 

original hard 
targets 

output of 
geometric 
ensemble 

softened output 
of  ensemble 

dog 

dog 

cat 

cow cat car 

10−910−6

Softened outputs reveal the dark knowledge in the ensemble. 
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Adding in the true targets 

•  If we just train the final model on the soft targets 
from the ensemble, we do quite well. 

•  We learn fast because each training case 
imposes much more constraint on the 
parameters than a single hard target. 

•  But it works better to fit both the hard targets and 
the soft targets from the ensemble.  



How to add hard targets during 
distillation 

•  We try to learn logits in the distilled model that 
minimize the sum of two different cross entropies. 

•  Using a high temperature in the softmax,           
we minimize the cross entropy with the soft 
targets derived from the ensemble at high 
temperature. 

•  Using the very same logits at a temperature of 1, 
we minimize the cross entropy with the hard 
targets.  



Relative weighting of the hard and soft 
cross entropies 

•  The derivatives for the soft targets tend to be 
much smaller. 
– They also have much less variance from case 

to case. 

•  So we down-weight the cross entropy with the 
hard targets. 
– Even though its down-weighted, this extra 

term is important for getting the best results. 



Training an ensemble of models 

•  This is a beautiful problem to parallelize. 

•  But if we do not want to use a lot of cores, is 
there a way to train an ensemble that involves 
much less total computation?  



Dropout: An efficient way to average 
many large neural nets. 

•  Consider a neural net with 
one hidden layer. 

•  Each time we present a 
training example, we 
randomly omit each hidden 
unit with probability 0.5. 

•  So we are randomly 
sampling from 2^H 
different architectures. 
– All architectures share 

weights. 



Dropout as a form of model averaging 

•  We sample from 2^H models. So only a few of 
the models ever get trained, and they only get 
one training example. 

•  The sharing of the weights means that every 
model is very strongly regularized. 
–  It’s a much better regularizer than L2 or L1 

penalties that pull the weights towards zero. 
–  It pulls the weights towards what other models 

want. 



But what do we do at test time? 

•  We could sample many different architectures 
and take the geometric mean of their output 
distributions. 

•  Its faster to use all of the hidden units, but to 
halve their outgoing weights. 
– This exactly computes the geometric mean of 

the predictions of all 2^H models. 



What if we have more hidden layers? 

•  Use dropout of 0.5 in every layer. 

•  At test time, use the “mean net” that has all the 
outgoing weights halved. 

•  This is not exactly the same as averaging all the 
separate dropped out models, but it’s a pretty 
good approximation, and its fast. 



Experiment on MNIST 

•  Vanilla backprop in a 784 -> 800 -> 800 -> 10 net 
with rectified linear hidden units gives 146 test 
errors. 
RELU:  y = max(0, x) 

•  If we train a 784 -> 1200 -> 1200 -> 10 net using 
dropout and weight constraints and jittering the 
input, we eventually get 67 errors. 

•  How much of this improvement can be transferred to 
the 784 -> 800 -> 800 -> 10 net?   



Transfer to the small net 
 
•  Using both the soft targets obtained from the big   

net and the hard targets, we get 74 errors in the   
784 -> 800 -> 800 -> 10  net. 
– The transfer training uses the same training set 

but with no dropout and no jitter. 
–  Its just vanilla backprop (with added soft targets).  

•  The soft targets contain almost all the knowledge. 
– The big net learns a similarity metric for the 

training digits even though this isn’t the objective 
function for learning. 



The soft outputs 
(one row per training case) 0  1  2  3 4  5  6  7  8  9 

this 2 resembles a 1 
and nothing much else  

this 2 resembles 
0, 3, 7, 8  

this 2 resembles 
4 and 7  



A very surprising  result on MNIST 

•  Train the 784 -> 800 -> 800 -> 10 net on a 
transfer set that does not contain any examples of 
a 3. After this training, raise the bias of the 3 by 
the right amount. 
– The distilled net then gets 98.6% of the test 

threes correct even though it never saw any 
threes during the transfer training. 



An even more surprising result on 
MNIST 

 
•  Train the 784 -> 800 -> 800 -> 10 net on a 

transfer set that only contains images of 7 and 8. 

•  After training,  lower the biases of 7 and 8 by the 
optimal amount.  

  
•  The net then gets 87% correct over all classes. 



Conclusion so far 

•  It is well known that object recognition is greatly 
improved by transforming the input images in ways 
that do not change the label. 
– But this brute-force method means we need to 

train on a lot more images. 
•  Transforming the targets has similarly big effects on 

generalization. 
– This does not change the size of the training set. 
– But you have to get the soft targets from 

somewhere. 



A popular way to transform the targets 

•  Organize the labels into a tree and instead of 
just predicting a label, predict all of the labels on 
the path to the root. 
– Many groups have tried this and it helps, but 

not nearly as much as using soft targets 
produced by a good model.  

•  Visual similarity cannot be modeled well by any 
tree.  



An intriguing result on speech 

•  Start with a trained model that classifies 58.9% 
of the test frames correctly. 
– The model is a slightly outdated version of the 

acoustic model used in Android phones. 
•  Use that model to provide soft targets for a new 

model (that also sees hard targets). 
– The new model converges to 57.0% correct 

even when it is only trained on 3% of the data. 
– Without the soft targets it peaks at 44.5% on 

3% of the data and then gets much worse. 



Conclusion 

•  Soft targets area a VERY good regularizer. 
– They prevent the model from being too sure. 
– They allow each training case to impose much 

more constraint on the weights. 



Improving a production speech model 

•  Train 10 models separately. The individual 
models average 58.9% correct. 
– The models only differ in their initial weights.  
– The ensemble gets 61.1% correct. 

•  Now distill the ensemble into a single model of 
the same size using both hard and soft targets. 
– The distilled model gets 60.8% correct. 
– This is 6/7 of the ensemble win. 



Relation to prior work by Caruana and 
his collaborators 

•  They perform transfer from the ensemble by 
trying to match the logits produced by the 
ensemble average. 
– This is just a regression problem during the 

transfer learning. 

•  How does matching logits relate to minimizing 
the cross entropy with soft targets derived by 
using a high temperature in the softmax? 



The high temperature limit 
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Training a community of neural nets 

•  If we train ten 784 -> 500 -> 300 -> 10 nets 
independently on MNIST, they average about 
158 test errors, but the geometric ensemble gets 
143 errors. 

•  What if we let each net try to match soft targets 
derived by averaging the opinions of the whole 
community as it is training (in addition to 
matching the hard targets)? 
– The nets now average 126 errors! 
– The ensemble gets 120 errors. 



How to make an ensemble  
mine knowledge more efficiently 

•  We can encourage different members of the 
ensemble to focus on resolving different 
confusions. 
–  In ImageNet, one “specialist” net could see 

examples that are enriched in mushrooms. 
–   Another specialist net could see examples 

enriched in sports cars. 
•  We can choose the confusable classes in several 

ways.  
– K-means clustering on the soft target vectors 

produced by a generalist model works nicely.  



The main problem with specialists 

•  Specialists tend to over-fit. 
•  To prevent this we need a very strong regularizer. 

– Making them small doesn’t work well. They 
need all the lower levels of a general vision 
system to make the right fine distinctions. 

– Freezing the lower levels does not work well. 
The early filters need to be slightly adapted. 

•  So how can we regularize specialists effectively 
without making them too weak? 



One way to prevent specialists over-fitting 

•  Each specialist uses a reduced softmax that has 
one dustbin class for all the classes it does not 
specialize in. 

•  The specialist estimates two things:  
–  1. Is this image in my special subset? 
–  2. What are the relative probabilities of the classes in my 

special subset? 
•  After training we can adjust the logit of the dustbin 

class to allow for the data enrichment. 
•  The specialist is initialized with the weights of a 

previously trained generalist model and uses early 
stopping to prevent over-fitting. 



The JFT dataset 

•  This is a Google internal dataset with about 100 
million images with 15,000 different class labels. 

•  A large convolutional neural net trained for about 
six months on many machines gets 25% correct 
on the test set (using top-1 criterion). 

•  Can we improve this significantly with only a few 
weeks of training? 



Early stopping specialists on JFT 

•  Start from JFT model that gets 25% top-1 correct. 

   
  0     350037             0          0.0% 
  1     141993     +1421        +3.4% 
  2       67161     +1572        +7.4% 
  3       38801     +1124        +8.8% 
  4       26298       +835      +10.5% 
  5       16474       +561      +11.1% 
  6       10682       +362      +11.3% 
  7         7376       +232      +12.8% 
  8         4703       +182      +13.6% 
  9         4706       +208      +16.6% 
 10+      9082       +324      +14.1% 

#spec   #cases      #win     relative accuracy 



Combining models that have dustbin classes 

•  Its not trivial. A specialist is NOT claiming that 
everything in its dustbin class is equally 
probable.  Its making a claim about the sum of 
those probabilities. 

•  Basic idea: For each test case, we iteratively 
revise the logits for the detailed classes to try to 
agree with all of the specialists. 
–  i.e. We try to make the sum of the relevant 

detailed probabilities match the dustbin 
probability. 



A picture of how to combine models 
that each have a dustbin class 

•  For each test or transfer case we run a fast 
iterative loop to find the set of logits that fit best 
with the partial distributions produced by the 
trained specialists.  

p1 p2 p3 p456

q1 q2 q3 q4 q5 q6

target probs from a specialist 

actual probs of combination 



A better way to prevent specialists over-fitting? 

•  Each specialist gets data that is very enriched in its 
particular subset of classes but its softmax covers 
all of the classes.  

•  On data from its special subset (50% of its training 
cases) it just tries to fit the hard targets with T=1. 

•  On the remaining data it just tries to match the soft 
targets produced by a previously trained generalist 
model at high temperature. 
– The soft targets will prevent overfitting.  
– Remember the 3% effect in the speech 

experiment. 



•  Conclusion: When extracting knowledge from 
data we do not need to worry about using very 
big models or very big ensembles of models that 
are much too cumbersome to deploy. 
–  If we can extract the knowledge from the data 

it is quite easy to distill most of it into a much 
smaller model for deployment. 

•  Speculation: On really big datasets, ensembles 
of specialists should be more efficient at 
extracting the knowledge. 
– Soft targets for their non-special classes can 

be used to prevent them from over-fitting. 



THE  END 


