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Abstract— The ability of robots to estimate their location is
crucial for a wide variety of autonomous operations. In settings
where GPS is unavailable, range- or bearing-only observations
relative to a set of fixed beacons provide an effective means of
estimating a robot’s location as it navigates. The accuracy of
such a beacon-based localization system depends both on how
beacons are spatially distributed in the environment, and how
the robot’s location is inferred based on noisy measurements of
range or bearing. However, it is computationally challenging to
search for a placement and an inference strategy that, together,
are optimal. Existing methods decouple these decisions, forgoing
optimality for tractability. We propose a new optimization
approach to jointly determine the beacon placement and infer-
ence algorithm. We model inference as a neural network and
incorporate beacon placement as a differentiable neural layer.
This formulation allows us to optimize placement and inference
by jointly training the inference network and beacon layer. We
evaluate our method on different localization problems and
demonstrate performance that exceeds hand-crafted baselines.

I. INTRODUCTION

Placing sensors and beacons in a physical environment can
assist robots and autonomous systems in understanding their
surroundings. However, measurements from these devices
provide only indirect or noisy information towards physical
properties of interest, and require additional computational
processing for inference. Such inference must take into
account sources of degradation in the measurement process,
as well as any other prior statistical knowledge of the
environment. At the same time, the degree to which this
inference succeeds is limited by how the beacons and sensors
are distributed physically in the first place.

Consider location-awareness, which is critical to enabling
navigation by robots and humans, resource discovery, asset
tracking, logistical operations, and resource allocation [1].
In situations for which GPS is unavailable (indoors, under-
ground, or underwater) or impractical, measurements (e.g.,
range and bearing) relative to fixed beacons [2–11] provide
an attractive alternative. Designing a system for beacon-
based location-awareness requires simultaneously making the
following design decisions: (a) how the beacons should be
distributed (e.g., spatially and possibly across transmission
channels); and (b) how location should be determined based
on measurements from these beacons.

Note that these decisions are inherently coupled. The
placement of beacons and their channel allocation influence
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Fig. 1. Our algorithm optimizes beacon allocation jointly with receiver
localization (inference). The image depicts the optimized placement and
channel assignments (colored circles) along with a map of the RMSE for
the environment shown.

the nature of the ambiguity in measurements at different
locations, and therefore which inference strategy is optimal.
One must therefore search over the space of both bea-
con placements (and possibly transmission channels) and
inference strategies to find a pair that is jointly optimal.
Unfortunately, due to phenomena such as noise, interference,
and attenuation due to obstructions (e.g., walls), this search
rarely has a closed-form solution in all but the most simplistic
of settings.

Consequently, most existing techniques decouple these
decisions and rely upon approximations to make the search
tractable. Beacon placement is typically performed either by
relying on expert system designers to identify “good” loca-
tions, by using heuristics (e.g., coverage), or according to the
functionality of a particular inference method. For example,
a simple approach is to assume that transmitters have a fixed
sensing radius and to formulate placement as a solution to
the art-gallery problem [12]. This formulation relies upon
simplistic assumptions regarding the sensing geometry, and
does not account for the effects of the environment (e.g.,
signal attenuation due to walls), noise, or interference.

Recently, Chakrabarti [13] introduced a method that suc-
cessfully uses stochastic gradient descent (SGD) to jointly
learn sensor multiplexing patterns and reconstruction meth-
ods in the context of imaging. Motivated by this, we propose
a new learning-based approach to designing the beacon
distribution and inference algorithm jointly for the task of
localization. We instantiate the inference method as a neural
network, and encode the beacon distribution as a differ-



entiable neural layer. We show that the inference network
and beacon layer can be jointly trained in combination
with a general signal propagation model for an arbitrary
environment, to automatically discover an optimized design
for a location-awareness system in that environment.

We show that these designs yield localization accuracies
that exceed hand-crafted approaches to beacon placement,
and can be adjusted to trade-off location accuracy and
the number of beacons. Our approach is general, and can
be applied to produce localization systems without expert
intervention for arbitrary environments and signal types.

II. RELATED WORK

A great deal of attention has been paid within the robotics
community and beyond to the problem of estimating location
and other spatial phenomena using sensor networks. Existing
work typically focuses either on the problem of inference
for a given network or the task of choosing an optimal
network allocation for a given inference strategy. While
the following discussion focuses on localization within a
network of beacons, many of the concepts apply to the
more general problem of estimating spatial phenomena using
sensor networks.

A common approach to localization within existing radio
frequency (RF)-based beacon networks is to use the Received
Signal Strength (RSS) as a fingerprint that is matched against
a database of RSS-location pairs in order to determine the
receiver’s location [14]. This database is typically generated
via a manually performed site-survey, though there has been
work to generate this map automatically or “organically”
during operation [15, 16]. In similar fashion to our inference
model, Sala et al. [17] use a neural network (a multilayer
perceptron) to predict a receiver’s location within an existing
network based upon Received Signal Strength. Altini et al.
[18] take a similar approach for networks that employ
Bluetooth for communication.

Many beacon networks provide direct, albeit noisy, mea-
surements of inter-node range or bearing. For example,
acoustic long baseline (LBL) networks are frequently used to
localize underwater vehicles [3, 4], while a number of low-
cost systems exist that use RF and ultrasound to measure
range [19, 20]. Moore et al. [21] propose an algorithm
for estimating location based upon noise-corrupted range
measurements, formulating the problem as one of realizing
a two-dimensional graph whose structure is consistent with
the observed ranges. Detweiler et al. [7] propose a geometric
technique that estimates a robot’s location as it navigates
a network of fixed beacons using either range or bearing
observations. Kennedy et al. [10] employ spectral methods
to localize camera networks using angular measurements,
without the need for a global coordinate frame. Alternatively,
Shareef et al. [22] evaluate the use of feedforward and
recurrent neural network architectures to localize a receiver
based upon noisy range measurements.

Meanwhile, beacon allocation traditionally relies on cov-
erage as a heuristic to guide the placement of beacons in
a particular environment. When beacons are assumed to

have a fixed transmission radius, the art-gallery problem [12]
provides a reasonable formulation of the coverage problem.
However, a beacons’s field-of-view is typically not fixed and
is instead a function of the layout and composition of the
environment, beacon noise, and signal interference, which
itself varies according to the placement of other beacons.
Agarwal et al. [23] propose a greedy landmark-based method
that solves for the placement of minimum number of beacons
(within a log factor) necessary to cover all but a fraction of
a given polygonal environment.

When the inferred phenomena is modeled using a Gaus-
sian process (GP), a common technique is to greedily intro-
duce sensors at the location with the highest entropy under
the GP [24, 25]. However, this approach does not model
the accuracy of the predictions at the selected locations.
Alternatively, Krause et al. [26] consider the problem of
choosing the location for a fixed sensor network that max-
imizes mutual information using a Gaussian process model
for phenomena over which inference is performed (e.g.,
temperature). They show that this problem is NP-complete
and propose a polynomial-time approximation algorithm that
exploits the submodularity of mutual information to provide
placements that are within a constant-factor of the optimal
locations. Similarly, Cameron and Durrant-Whyte [27] use
mutual information in order to determine sensor placement
for localization and recognition tasks. Meanwhile, Fang
and Lin [28] consider localization accuracy when placing
wireless access points and choose locations that maximize
signal-to-noise ratio. In similar fashion to our proposal to
learn sensor placement via backpropagation, Kang et al. [29]
propose using a neural network to determine the placement
of WiFi access points.

In many scenarios, beacon allocation includes both choos-
ing where to place beacon in a given environment as well
as which channel to assign to each beacon. These problems
are typically decoupled—the location of each beacon is first
determined and then their channels are chosen in order to
minimize interference [30] This can result in a sub-optimal
allocation. Ling and Yeung [31] jointly solve access point
placement and channel selection using local search.

Meanwhile, the sensor selection problem [32, 33] con-
siders related scenarios in which there is a cost associated
to querying sensors. The problem is to choose the subset
of sensors to utilize at each point in time so as to balance
inference accuracy with the corresponding query cost. Also
related is the task of choosing where to place cellular towers,
which is driven by multiple objectives including coverage,
signal-to-noise ratio, and cost and often involves extensive
manual site surveys, high-fidelity simulations, and hand-
designed placement strategies [34].

III. APPROACH

We formalize the design problem for a location-awareness
system as that of determining an optimal distribution of bea-
cons D and an inference function f(·), given an environment
E . For a given set of L possible locations for beacons, we
parameterize the distribution D as an assignment Il to each



Fig. 2. Proposed approach. We seek to find the distribution of beacons {Il}
and inference function f(·) that together yield reliable location estimates for
a specific environment E . For a candidate set of locations l, the assignment
vectors Il determine whether a beacon is to be placed at that location, and
if so, in what configuration. The environment mapping E then determines
what the measured signal will be at any given location, taking into account
non-idealities such as noise, interference, etc. We optimize these assignment
vectors jointly with parameters of the inference function f(·), to minimize
error in the estimated locations v̂.

location l ∈ {1, . . . L}, where Il ∈ {0, 1}C+1, |Il| = 1 is a
(C+1)-dimension 0-1 vector with all but one entry equal to
0. This vector denotes whether to place a beacon at location
l (otherwise I1l = 1), and if so, in which one of C possible
configurations (i.e., Ic+1

l = 1 for configuration c).
We parameterize the environment in terms of a function

s = E(v, {Il}), which given a location v ∈ R2 and
a distribution of beacons D = {Il}, produces a vector
s ∈ Rm of measurements that an agent is likely to make
at that location. Note that the environment E need not be a
deterministic function. In case of probabilistic phenomena
such as noise and interference, E will produce a sample
from the distribution of possible measurements. The infer-
ence function f(·) is then tasked with computing a reliable
estimate of the location, given these measurements.

Our goal is to jointly optimize D = {Il} and f(·)
to minimize the average value of the Euclidean distance
between the estimated and true locations, over a distribution
of possible locations where the agent may visit. Additionally,
we add a regularizer to our objective, e.g., to minimize
the total number of individual beacons. Figure 2 provides
a schematic overview of our problem formulation.

A. Optimization with Gradient Descent

Unfortunately, the problem as stated above involves a
combinatorial search, since the space of possible beacon
distributions is discrete with (C + 1)L elements. We make
the optimization tractable by adopting an approach similar to
that of Chakrabarti [13]. We relax the assignment vectors Il
to be real-valued and positive as Ĩl ∈ RC+1

+ , |Ĩl| = 1. Ĩl can
be interpreted as a probability distribution over the possible
assignments at location l.

Instead of optimizing over distribution vectors Ĩl directly,

we learn a weight vector wl ∈ RC+1 with

Ĩl = SoftMax(αwl), Ĩcl =
exp(αwcl )∑
c′ exp(αwc

′
l )
, (1)

where α is a positive scalar parameter. Since our goal is to
arrive at values of Ĩl that correspond to hard assignments,
we begin with a small value of α and increase it during the
course of optimization according to an annealing schedule.
Small values of α in initial iterations allow gradients to be
back-propagated across Eqn. 1 to update {wl}. As optimiza-
tion progresses, increasing α causes the distributions {Il} to
get “peakier”, until they converge to hard assignments.

We also define a distributional version of the environment
mapping Ẽ(v, {Ĩl}) that operates on these distributions in-
stead of hard-assignments. This mapping can be interpreted
as producing the expectation of the signal vector s at location
v, where the expectation is taken over the distributions {Ĩl}.
We require that this mapping be differentiable with respect
to the distribution vectors {Ĩl}. In the next sub-section, we
will describe an example of an environment mapping, and
its distributional version that satisfies this requirement.

Next, we simply choose the inference function f(·) having
some parametric form (e.g., a neural network), and learn
its parameters jointly with the weights {wl} of the beacon
distribution as the minimizers of a loss function:

L({wl},Θ) = R({Ĩl})+
1

‖V‖
∑
v∈V

E
s

∥∥∥v − f (Ẽ (v, Ĩl}l) ; Θ
)∥∥∥2 , (2)

where V is the set of possible agent locations, Θ are the
parameters of the inference function f , Ĩl =SoftMax(αwl),
as α → ∞, and R is a regularizer. Note that the inner
expectation in the second term of Eqn. 2 is with respect
to the distribution of possible signal vectors for a fixed
location and beacon distribution, and captures the variance
in measurements due to noise, interference, etc.

We minimize Eqn. 2 with stochastic gradient descent
(SGD) computing gradients over a small batch of locations
v ∈ V , with a single sample of s per location. We find that
the quadratic schedule for α used by Chakrabarti [13] works
well, i.e., we set α = α0(1 + γt2) at iteration t.

B. Application to RF-based Localization

To give a concrete example of an application of this frame-
work, we consider the following candidate setting of localiza-
tion using RF beacons. We assume that each beacon transmits
a sinusoidal signal at one of C frequencies/channels. The
amplitude of this signal for every beacon is assumed to be
fixed, but we allow different beacons to have arbitrary phase
variations amongst them.

We assume an agent at a location has a receiver with
multiple band-pass filters, and is able to measure the power
in each channel separately (i.e., m = C). We assume that
the power of each beacon’s signal drops as a function of
distance, and of the number of obstructions (e.g., walls)
in the line-of-sight between the agent and the beacon. The
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Fig. 3. This figure shows the beacon placement and RMSE heatmap for the best-performing 8 channel learned and hand-crafted beacon placements on
Map 1 and Map 2. The figures on the far right show other 8 channel hand-crafted placements that performed worse. Every hand-crafted placement was
tried on both maps.

measured power at the receiver in each channel is then
based on the amplitude of the super-position of signals
from all beacons transmitting in that channel. This super-
position is a source of interference, since individual beacons
have arbitrary phase. We also assume that there is some
measurement noise at the receiver.

We assume all beacons transmit at power P0, and model
the power of the attenuated signal received from beacon l at
location v as

Pl(v) = P0 r
−ζ
l:v βol:v , (3)

where ζ and β are scalar parameters, rl:v is the distance
between v and the beacon location l, and ol:v is the number
of walls/obstructions intersecting the line between them. The
measured power s = E(v, {Il}) in each channel at the
receiver is then modeled as:

sc =

[
ε1 +

∑
l

Ic+1
l

√
Pl(v) cosφl

]2
+[

ε2 +
∑
l

Ic+1
l

√
Pl(v) sinφl

]2
, (4)

where φl is the phase of beacon l, and ε1 and ε2 correspond to
sensor noise. We also model sensor saturation by clipping sc

at some threshold τ . At each invocation of the environment
function, we randomly sample the phases {φl} from a
uniform distribution between [0, 2π), and noise terms ε1 and
ε2 from a zero-mean Gaussian distribution with variance σ2

z .
For training, the distributional version of the environment

function Ẽ is constructed simply by replacing Il with Ĩl in
Eqn. 4. For regularization, we use a term that penalizes the

total number of beacons with a weight λ:

R({Ĩl}) = λ
∑
l

Ĩ1l . (5)

This setting simulates an environment that is complex
enough to not admit closed-form solutions for the inference
function or the beacon distribution. Of course, there may
be other phenomena in certain applications, such as leakage
across channels, multi-path interference, etc., that are not
modeled here. However, these too can be incorporated in
our framework as long as they can be modeled with an
appropriate environment function E .

IV. RESULTS

In this section, we evaluate our method through a series of
simulation-based experiments on two different environment
maps, learning a neural network for the inference function.

For each map, we consider several manual beacon distri-
butions, and show that the network architecture we choose
is able to localize effectively given these distributions, by
comparing its results to a simple nearest-neighbors baseline.
Then, we show results from learning the beacon distribution
and inference network jointly, and show that for both en-
vironments, our method learns a more optimal distribution
strategy that leads to better localization accuracy.

We end the section by providing the reader with an
analysis of the effects of different degrees of regularization,
as well as the variation in the learned distributions based on
parameters of the environment function E .

A. Experimental Setup

We conduct our experiments on two manually drawn
environment maps, which correspond to floor plans (of size



1×0.7 distance units) with walls serving as obstructions. For
each map, we arrange L = 625 possible beacon locations in
a 25 × 25 evenly spaced grid. We consider configurations
with values of C = 4, 8, and 16 RF-channels.

Our experiments use the environment model defined in
Eqn. 3 with P0 = 6.25 × 10−4, ζ = 2.0 (where locations
are in map units), and β = e−1.0, with sensor noise variance
σ2
z = 10−4. The sensor measurements are saturated at a

threshold τ = 1.0
While training the beacons, we use parameters α0 = 1

and for the quadratic temperature scheme γ = 1.25× 10−9.
These values were chosen empirically, so that the beacon
selection vectors Ĩl converge at the same pace as it takes the
inference network to learn (as observed while training on a
fixed beacon distribution). After 9×105 iterations, we switch
the softmax to an “arg-max”, effectively setting α to infinity
and fixing the beacon placement, and continue training the
inference network.

As mentioned above, the inference function f(·) is pa-
rameterized as a 13-layer feed-forward neural network. Our
architecture consists of 6 blocks of 2 fully-connected layers.
All hidden layers contain 1024 units, and are followed by
ReLU activation. Each block is followed by a max pooling
operation applied on disjoint sets of four units. After the final
block, there is a final output layer with 2 units that predicts
the x, y location coordinates.

During training, locations are randomly sampled and fed
through our environment model to the inference network in
batches of 1000. All networks were trained by minimizing
the loss defined in Eqn. 2 for 106 iterations using SGD with
a learning rate of 0.01 and momentum 0.9. We also use
batch-normalization in all hidden layers.

B. Experiments

We evaluate the effectiveness of our inference network, as
well as of the joint optimization of beacon placement and
localization. To that end, we compare our method with two
baselines. First, we compare our inference network with a k-
Nearest Neighbor (kNN) baseline using hand-crafted beacon
placements. The training data for the kNN experiments was
compiled by sampling from our environment model on a
dense grid for each map. We ran experiments with k = 1, 5,
10, and 20, comparing our model to the best k for each
beacon placement. We measure the performance of each
model with both root mean squared error (RMSE) and the
mean over max errors at each location, which we refer to as
Max Error. The effect of interference on performance can
vary greatly between different beacon placements. Therefore
it is useful to measure both average-case performance as well
as the worst-case performance, as some placements may be
more susceptible to interference.

We compare these results to jointly learned models on
both maps. Tables I and II present the results for Map
1 and Map 2, respectively, where we include the best-
performing baselines. Figure 3 displays the beacon place-
ment and channel allocation along with the RMSE for both
learned and hand-crafted beacon allocations. Figure 5 shows

TABLE I
PERFORMANCE ON MAP 1

Placement Inference Channels Beacons Mean Error Max Error

Human kNN 8 544 0.0801 0.1756
Human Learned 8 544 0.0731 0.1550
Learned Learned 8 25 0.0510 0.1180

TABLE II
PERFORMANCE ON MAP 2

Placement Inference Channels Beacons Mean Error Max Error

Human kNN 8 180 0.0778 0.1883
Human Learned 8 180 0.0659 0.1568
Learned Learned 8 21 0.0512 0.1118

TABLE III
STABILITY WITH REGULARIZATION

Mean Std. Dev. Min Max

Mean Error 0.0588 0.0021 0.0551 0.0618
Max Error 0.1382 0.0040 0.1312 0.1452
Num. Beacons 93.50 10.60 79 119

the evolution of beacon placement throughout training for
our best performing models. Note that the images depict a
hard assignment, however the network is reasoning over high
entropy placements early in training, which explains the ini-
tial sparsity. With both maps, the network quickly clusters a
large number of beacons by channel, and gradually learns to
reduce the number of beacons and increase channel diversity,
converging to a stable configuration. The results reveal that
our inference network can effectively learn to localize the
agent given a fixed beacon placement. They also demonstrate
that learning this placement yields accuracies that exceed
those of hand-crafted placements while using significantly
fewer beacons. Note that hand-crafted placements with fewer
beacons performed significantly worse.

In practice, placing beacons will often have a monetary
cost. To allow for a trade-off between the number of beacons
placed and accuracy, we consider the regularization scheme
defined in Eqn. 5. In our experiments, we vary λ between
0.0 and 0.2. As Figure 4 shows, we find that increased
regularization leads to solutions with fewer beacons. On
Map 2, we find that decreased regularization always leads
to solutions with lower error. On Map 1, however, we find
that unregularized beacon placements result in increased
localization error. This regularization may also allow our
model to escape bad local minima during training.

Additionally, we also experiment with an annealing
scheme for λ and find that it empirically improves perfor-
mance. We use a simple annealing schedule that decays λ by
a constant factor η every 100,000 iterations. We experiment
with initial λ = 0.2 and η ∈ {0.25, 0.5}. The best results for
each map are shown in Figure 4.

Next, we consider a series of experiments that highlight the
robustness of our method to random initializations, different
environment models, and varying the number of available
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Fig. 4. A plot showing the effects of regularization on mean error and the
number of beacons placed. The dashed lines represent the mean error and
beacons placed for the best performing annealed regularizer on each map.

TABLE IV
ENVIRONMENT MODEL EXPERIMENTS

Map Environment Model Beacons Mean Error Max Error

1 Original 12 0.0640 0.1519
1 Low Attenuation 8 0.0429 0.0977
1 High Noise 27 0.1403 0.2910
2 Original 12 0.0728 0.1595
2 Low Attenuation 8 0.0459 0.0975
2 High Noise 28 0.1211 0.2628

TABLE V
CHANNEL EXPERIMENTS

Placement Inference Channels Beacons Mean Error Max Error

Human Learned 4 92 0.1318 0.2840
Learned Learned 4 11 0.1321 0.2594
Human Learned 8 544 0.0731 0.1550
Learned Learned 8 12 0.0640 0.1519
Human Learned 16 134 0.0489 0.1574
Learned Learned 16 12 0.0401 0.0916

channels. To test the robustness to random initializations,
we repeat an experiment 10 times and report the mean
and variance of the mean error in Table III. We then test
our method on 2 different environment models, one with
decreased attenuation at walls (β = e−0.2) and one with
increased noise (σ2

z = 2.5 × 10−4). Table IV presents the
results. We find that our method adapts to these changes
intuitively. Our method places fewer beacons when the signal
passes largely unattenuated through walls and places more
beacons when combating increased noise. Lastly, we experi-
ment with 4 and 16 channels. Unsurprisingly, increasing the
number of channels increases the performance of both hand-
crafted and learned beacon placements. Results are shown in
Table V.

V. CONCLUSION

We described a novel learning-based method capable of
jointly optimizing beacon allocation (placement and channel

assignment) and inference for localization tasks. Underlying
our method is a neural network formulation of inference
with an additional differentiable neural layer that encodes
the beacon distribution. By jointly training the inference
network and beacon layer, we automatically learn the op-
timal design of a location-awareness system for arbitrary
environments. We evaluated our method for the task of RF-
based localization and demonstrated localization accuracies
that exceed those that can be achieved with hand-crafted
allocation strategies. Additionally, we analyzed the perfor-
mance of our method under different propagation models
and presented a strategy for trading off the number of
beacons and the achievable accuracy. While we describe
our method in the context of range-based localization, the
approach generalizes to problems that involve estimating a
broader class of spatial phenomena using sensor networks.
A reference implementation of our optimization algorithm
is available on the project page at http://www.ttic.
edu/chakrabarti/nbp/.

VI. ACKNOWLEDGEMENTS

We thank the NVIDIA corporation for the donation of
Titan X GPUs used in this research.

REFERENCES

[1] S. Teller, J. Chen, and H. Balakrishnan, “Pervasive pose-aware
applications and infrastructure,” IEEE Computer Graphics and
Applications, vol. 23, no. 4, pp. 14–18, July–August 2003.

[2] D. Kurth, G. Kantor, and S. Singh, “Experimental results in
range-only localization with radio,” in Proc. IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems (IROS), Las Vegas
NV, October 2003, pp. 974–979.

[3] P. Newman and J. Leonard, “Pure range-only sub-sea SLAM,”
in Proc. IEEE Int’l Conf. on Robotics and Automation (ICRA),
Taipei, Taiwan, September 2003, pp. 1921–1926.

[4] E. Olson, J. Leonard, and S. Teller, “Robust range-only beacon
localization,” in Proc. IEEE/OES Autonomous Underwater
Vehicles (AUV) Conf., June 2004.

[5] J. Djugash, S. Singh, G. Kantor, and W. Zhang, “Range-only
SLAM for robots operating cooperatively with sensor net-
works,” in Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA), Orlando, FL, May 2006, pp. 2078–2084.

[6] V. Isler, “Placement and distributed deployment of sensor
teams for triangulation-based localization,” in Proc. IEEE Int’l
Conf. on Robotics and Automation (ICRA), Orlando, FL, May
2006, pp. 3095–3100.

[7] C. Detweiler, J. Leonard, D. Rus, and S. Teller, “Passive
mobile robot localization within a fixed beacon field,” in
Proc. Int’l Workshop on Algorithmic Foundations of Robotics
(WAFR), Guanajuato, Mexico, December 2008, pp. 425–440.

[8] I. Amundson and X. D. Koutsoukos, “A survey on localiza-
tion for mobile wireless sensor networks,” in Moblile Entity
Localization and Tracking in GPS-less Environments, 2009,
pp. 235–254.

[9] J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun,
and A. Aggarwal, “Effiient, generalized indoor WiFi Graph-
SLAM,” in Proc. IEEE Int’l Conf. on Robotics and Automa-
tion (ICRA), Shanghai, China, May 2011, pp. 1038–1043.

[10] R. Kennedy, K. Daniilidis, O. Naroditsky, and C. J. Taylor,
“Identifying maximal rigid components in bearing-based lo-
calization,” in Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots
and Systems (IROS), Vilamoura-Algarve, Portugal, October
2012, pp. 194–201.

http://www.ttic.edu/chakrabarti/nbp/
http://www.ttic.edu/chakrabarti/nbp/


iter 10,000 iter 30,000 iter 50,000 iter 90,000

iter 140,000 iter 210,000 iter 510,000 iter 1,000,000

Map 1

iter 10,000 iter 20,000 iter 40,000 iter 80,000

iter 140,000 iter 170,000 iter 230,000 iter 1,000,000

Map 2

Fig. 5. The evolution of beacon placement throughout training on Map 1 and Map 2. The images depict a hard assignment, but the network is uncertain
early in training, which explains the scarcity of beacons early on. The network quickly groups a large number of beacons and channel assignments along
the edge of the map, but then gradually learns a sparse, diverse allocation, converging to a stable configuration around 200,000 iterations.

[11] J. Derenick, A. Speranzon, and R. Ghrist, “Homological sens-
ing for mobile robot localization,” in Proc. IEEE Int’l Conf. on
Robotics and Automation (ICRA), Karlsruhe, Germany, May
2013, pp. 572–579.
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