
Technical Report
TTI-TR-2008-3

The Price of Truthfulness for
Pay-Per-Click Auctions

Nikhil Devanur
Microsoft Research

Sham M. Kakade
Toyota Technological Institute at Chicago



ABSTRACT

We analyze the problem of designing a truthful pay-per-click auction where the click-through-rates (CTR)
of the bidders are unknown to the auction. Such an auction faces the classic explore/exploit dilemma:
while gathering information about the click through rates of advertisers, the mechanism may loose rev-
enue; however, this gleaned information may prove valuable in the future for a more profitable allocation.
In this sense, such mechanisms are prime candidates to be designed using multi-armed bandit techniques.
However, a naive application of multi-armed bandit algorithms would not take into account the strategic
considerations of the players — players might manipulate their bids (which determine the auction’s rev-
enue) in a way as to maximize their own utility. Hence, we consider the natural restriction that the auction
be truthful.

The revenue that we could hope to achieve is the expected revenue of a Vickerey auction that knows
the true CTRs, and we define the 2nd price regret to be the difference between the expected revenue of
the auction and this Vickerey revenue. This work sharply characterizes what regret is achievable, under
a truthful restriction. We show that this truthful restriction imposes statistical limits on the achievable
regret — the achievable regret is Θ∗(T 2/3), while for traditional bandit algorithms (without the truthful
restriction) the achievable regret is Θ∗(T 1/2) (where T is the number of rounds). We term the extra T 1/6

factor, the ‘price of truthfulness’.

1 Introduction

Pay-per-click auctions are the workhorse auction mechanism for web-advertising. In this paradigm, ad-
vertisers are charged only when their displayed ad is ‘clicked’ on (see Lahaie et al. [2007] for a survey). In
contrast, more traditional ‘pay-per-impression’ schemes charge advertisers each time their ad is displayed.
Such mechanisms are appealing from an advertisers standpoint as the advertiser now only has to gauge
how much they value someone actually viewing their website (after a click) vs. just looking at their ad
(one may expect the former to be easier as it is closer to the outcome that the advertiser desires). From
a mechanism design standpoint, we clearly desire a mechanism which elicits advertisers preferences in a
manner that is profitable.

A central underlying issue in these pay-per-click auctions is estimating which advertisers tend to get
clicked on more often. Naturally, whenever the mechanism displays an ad which is not clicked, the mecha-
nisms receives no profit. However, the mechanism does obtain information which is potentially important
in estimating how often that advertiser gets clicked (the ‘click through rate’ of an advertiser). In this
sense, the mechanism faces the classic explore/exploit tradeoff: while gathering information about the
click through rate of an advertiser, the mechanism may loose revenue; however, this gleaned information
may prove valuable in the future for a more profitable allocation.

The seminal work of Robbins [1952] introduced a formalism for studying this exploration/exploitation
tradeoff, which is now referred to as the multi-armed bandit problem. In this foundational paradigm, at
each time step a decision maker chooses one of n decisions or ‘arms’ (e.g. treatments, job schedules,
manufacturing processes, etc) and receives some feedback loss only for the chosen decision. In the most
unadorned model, it is assumed that the cost for each decision is independently sampled from some fixed
underlying (and unknown) distribution (that is different for each decision). The goal of the decision maker
is to minimize the average loss over some time horizon. This stochastic multi-armed bandit problem and



a long line of successor bandit problems have been extensively studied in the statistics community (see,
e.g., [Auer et al., 2002]), with close attention paid to obtaining sharp convergence rates.

In our setting, we can model this pay-per-click auction as a multi-armed bandit problem as follows: Say
we have n advertisers and say advertiser i is willing to pay up to vi per click (the advertisers value, which,
for now, say is constant), then at each round the mechanism chooses which advertiser to allocate to (i.e. it
decides which arm to pull) and then observes if that ad was clicked on. In this idealization, the mechanism
simply has one ‘slot’ to allocate each round. If each advertiser had some click through ρi (the i.i.d.
probability that i’s ad will be clicked if displayed), then the maximal revenue the mechanism could hope
to achieve on average would be maxi ρivi, if i actually paid out vi per click. Hypothetically, let us assume
that i actually paid out vi per click, but the mechanisms does not know ρi — the exploration/exploitation
tradeoff is in estimating ρi accurately vs. using these estimates to obtain revenue. Hence, if we run one
of the proficient bandit algorithms (say the upper confidence algorithm of Auer et al. [2002]), then the
mechanism can guarantee that the difference between its revenue after T rounds and the maximal possible
revenue of T maxi ρivi would be no more than O∗(

√
nT ) (this difference is known as the ‘regret’). What

this argument does not take into account is the strategic motivations of the advertisers. With strategic
considerations in mind, any mechanism only receives the advertisers purported value, their ‘bid’ bi (and so
the advertiser knows that i is only willing to pay up to bi). Here, it is no longer clear which of our classic
multi-armed bandit algorithms are appropriate, since an advertiser (with knowledge of the mechanism)
might find it to be more profitable to bid a value bi 6= vi.

The focus of this paper is to understand this exploration-exploitation tradeoff in a strategic setting.
The difficulty now is that our bandit mechanism must now be truthful, so as to disallow advertisers from
manipulating the system. We are particularly concerned with what is achievable, under these constraints.
Our results show that for pay-per-click auctions this truthful restriction places fundamental restrictions on
what is statistically achievable.

1.1 Summary

The most immediate question is what is it reasonable to compare to? Certainly, T maxi ρivi is not rea-
sonable, since even in a one shot full information setting (where ρi is known) this revenue not attainable,
without knowledge of the actual values. In a single shot (T = 1) full information setting, what is reason-
able to obtain is the revenue smaxiρivi, where smax is the operator which takes the second largest value.
Hence, in a T round setting, the natural revenue for the mechanism to seek to obtain is T smaxiρivi. If ρi

were known, it straightforward to see that such revenue could always be obtained (without knowledge of
the true values) with a truthful mechanism.

In this paper, we introduce the notion of 2nd-price regret: the difference between the mechanisms
revenue and T smaxiρivi. This quantity is the natural generalization of the notion of regret to a setting
where truthfulness is imposed. Analogous to the usual bandit setting, the goal of the mechanism is obtain
a sublinear (in T ) 2nd-price regret, but the mechanism now has the added constraint of being truthful
(ensuring that advertisers are not manipulating the mechanism, in a rudimentary sense).

This paper sharply characterizes this 2nd price regret. Our first result shows that a rather simple
explore/exploit (truthful) strategy achieves sublinear 2nd price regret. This strawman mechanism simply
explores for a certain number of rounds (charging nothing). After this exploration phase, this mechanism
exploits by allocating the slot to the estimated highest revenue bidder for the remainder of the rounds (the
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estimated highest revenue bidder is determined with the empirical click through rate, which is estimated
from the exploration phase). This bidder is charged a quantity analogous to the second price (the quantity
charged is the second highest expected revenue), and this price is also determined by empirical estimates
of the click through rate. The 2nd price regret achieved by mechanism is O∗(n1/3T 2/3).

The immediate question is can we do better? In the traditional bandit settings, such explicit ex-
plore/exploit schemes perform unfavorably, and more sophisticated schemes achieve regret of O∗(

√
nT )

(see Auer et al. [2002]). These mechanisms typically do not make a distinction between exploiting or ex-
ploring — they implicitly make this tradeoff. Roughly speaking, one of the difficulties in using these more
sophisticated algorithms for pay-per-click auctions is determining how to charge — truthful mechanisms
often determine prices based on properties of the non-winning bidders (thus sampling the highest bidder
too often might lead to not having enough accuracy for charging him appropriately).

The main technical result in this paper is a lower bound which this formalizes intuition, showing that
any mechanism must have regret Ω(T 2/3). Roughly speaking, the proof technique shows that any pay-
per-click auction must have the property that it behaves as an ‘explore/exploit’ algorithm, where when it
explores, it must charge zero, and when it exploits, it cannot use this information for setting future prices.

The proof techniques go through the results on truthful pricing (see Myerson [1981], Hartline and Kar-
lin [2007]), which (generally) characterize how to truthfully price any allocation scheme. The additional
constraint we use on this truthful pricing scheme is an informational one — the auction must only use
information from the observed allocations. We expect our proof technique to be more generally useful for
other mechanisms, since information gathering in a strategic setting is somewhat generic. Our technique
shows how to obtain restrictions on the pricing scheme, based on both truthfulness and bandit feedback.

We characterize this loss in revenue (in comparison to a bandit setting) as ‘the price of truthfulness’.
This (multiplicative) gap between the regret achievable is O∗(T 1/6).

1.2 Related Work

Gonen and Pavlov [2007] consider the same problem but the goal was simply to maximize social welfare.
They work in a related framework, where the advertisers place a single bid at the start of the auction,
which stands for the full T rounds. However, contrary to their claims, their auction is not truthful, even for
a single slot1.

Nazerzadeh et al. [2008] consider a similar problem, where the goal is to design a truthful Pay-per-
acquisition auction — the key difference being that the bidders report whether an acquisition happened
or not. Their auction employs an explore/exploit approach similar to our upper bound. In this work, they
do not consider nor analyze the optimal achievable rate. We expect that our techniques also imply lower
bounds on what is statistically achievable in their setting.

1We have confirmed this through personal communication. For the allocation given by their auction, there is a unique pricing that
would make it truthful, but this price depends on the clicks that are not observed by the auction (which is what our lower bound
techniques imply). In fact, this is one of the insights used in proving our lower bounds.
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2 The Model

Here we define the model for a single-slot Pay-per-click (PPC) auction. We consider a repeated auction,
where a single slot is auctioned in each of T time steps. There are n advertisers, each of whom values a
‘click’, while the auction can only assign ‘impressions’. The auction proceeds as follows. At each round
t, each advertiser bids a value bt

i, which is their purported value of i per click at time t. Then, the auction
assigns an impression to one of the n advertisers, e.g. the auction decides which ad will be displayed. We
let xt be this allocation vector, and say xt

i = 1 iff the allocation is to advertiser i at time t (and xt
j = 0

for all j 6= i, since only one advertiser is allocated). After this allocation, the auction then observes the
event ct

i which is equal to 1 if the item was clicked on and 0 otherwise. Crucially, the auction observes the
click outcome only for allocated advertiser, i.e. ct

i is observed iff xt
i = 1. Also at the end of the round,

the auction charges the advertiser i the amount pt
i only if i was clicked. The revenue of the auction is

A =
∑

i,t pt
i.

Note the allocation xt
i is a function of the bids and the observed clicks for τ < t. Let C = (ct

i :
i = 1..n, t = 1..T ) be all click events, observed and otherwise. For the ease of notation, we only
include those arguments of xt

i that are relevant for the discussion (for example, if we write xt(bt
i), then we

may be explicitly considering the functional dependence on bt
i, but one should keep in mind the implicit

dependence on the other bids and the click history).

We assume advertiser i’s ‘true value’ for a click at time t is vt
i , which is private information. Then i

derives a benefit of
∑

t vt
ic

t
ix

t
i from the auction. Hence, the utility of i is

∑
t(v

t
ic

t
ix

t
i − pt

i). An auction is
truthful for a given sequence C ∈ {0, 1}n×T , if bidding vt

i = bt
i is a dominant strategy for all bidders: if

for all possible bids of other advertisers {bt
−i}, the utility of i is maximized when i bids bt

i = vt
i for all t. As

the auction depends on the advertisers previous bids, an advertiser could potentially try to manipulate their
current bid in order to improve their future utility — this notion of truthfulness prevents such manipulation.
An auction is always truthful if it is truthful for all C ∈ {0, 1}n×T .

We work in a stochastic setting where the event that ct
i = 1 is assumed to be i.i.d, with click proba-

bility ρi. This ρi is commonly referred to as the click-through rate (CTR) and is assumed to be constant
throughout the auction. The auction has no knowledge of the CTRs of the advertisers prior to the auction.

Subject to the constraint of being always truthful, the goal of the auction is to maximize its revenue.
Define smaxi{ui} to be the second largest element of a set of numbers {ui}i. The benchmark we use to
evaluate the revenue of the auction is as follows:

Definition 1. Let

OPT =
T∑

t=1

smaxi{ρib
t
i} .

It is the expected revenue of the Vickerey auction that knows the true ρi’s. Let 2-Regret := OPT − EC [A]
be the expected 2nd price regret of the auction.

We provide sharp upper and lower bounds for this quantity. We actually prove a lower bound for a
stronger model: the static bid model. The key differences in this model are

• the bidders have vt
i = vi for all t, and are only allowed to submit one bid, at the start.

• the auction could decide the payments of the bidders at the end of all the rounds.
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Note that such auctions are more powerful and potentially have a lower regret. We show an identical lower
bound for this case, which is thus a stronger statement. The proof is more technically demanding but
follows a similar line of argument. Clearly, our upper bound holds in this model.

3 Main Results

Our first result is on the existence of an algorithm with sublinear (in T ) 2nd-price regret.

Theorem 2. Let bmax = maxi,t bt
i. There exists an always truthful PPC auction with 2-Regret this is

O(bmaxn
1/3T 2/3

√
log(nT )).

In the next section, we specify this mechanism and proof. The mechanism is essentially the strawman
auction, which first explores for a certain number of rounds and then exploits. Here, we show such an
auction is also always truthful.

For the n-arm multi-armed bandit mechanism, such algorithms typically also achieve a regret of
the same order. However, in the n-arm bandit setting, there are sharper algorithms achieving regret of
O∗(

√
nT ) (see for example Auer et al. [2002]). Our second result (our main technical contribution) shows

that such an improvement is not possible.

Theorem 3. For every always truthful PPC auction (with n = 2), there exists a set of bids bounded in
[0, 1] and ρi such that 2-Regret = Ω(T 1/3).

In comparison to the multi-armed bandit problem, the requirement of truthfulness degrades the achiev-
able statistical rate. In particular, the regret is larger by an additional T 1/6 factor, which we term ‘price of
truthfulness’.

In Section 3.3 we extend this lower bound to the static bid case, where the bidders submit a single
value at the start, and the auction only charges at the end of the T rounds (rather than instantaneously).

3.1 Upper Bound Analysis

The algorithm is quite simple. For the first τ steps, the auction explores. By this we mean that the algorithm
allocates the item to each bidder for bτ/nc steps (and it does so unadaptively in some deterministic order).
All prices are 0 during this exploration phase. After this exploration phase is over, let ρ̂i be the empirical
estimate of the click through rate. With probability greater than 1 − δ, we have that the following upper
bound holds for all i:

ρi ≤ ρ̂i +
√

2
⌊n

τ

⌋
log

n

δ
:= ρ̂+

i

where we have defined ρ̂+
i to be this upper bound. For the remainder of the timesteps, i.e. for t > τ (which

is the exploitation phase), the auction allocates the item to the bidder i∗ at time t which maximizes ρ̂+
i bt

i,
i.e. the allocation is at time t is

xt
i∗ = 1 where i∗ = arg max

i
ρ̂+

i bt
i
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and the price charged to i∗ at time t is:

pt
i =

smaxiρ̂
+
i bt

i

ρ̂+
i∗

where smax is the second maximum operator.

It is straightforward to see that the auction is instantaneously truthful (i.e. an advertiser’s revenue at
any given round cannot be improved by changing the bid at that round). However, the proof also consists
of showing that the auction is truthful over the T steps (in addition to proving the claimed regret bound).

Proof. We first provide the proof of truthfulness. Consider a set of positive weights wi. First, note that we
could construct a truthful auction with this vector wi in the following manner: let the winner at time t be
i∗ = arg maxi wib

t
i and charge i∗ the amount smaxiwib

t
i

wi∗
this time. It is straightforward to verify that this

auction is truthful for any click sequence and for any duration T . Now observe that the weights used by
the auction are wi = ρ+

i which are not a function of the bids. Hence, the auction is truthful since during
the exploitation phase the auction is truthful (for any set of weights).

Now we bound the regret of the auction. Note that for all t after the exploration phase (all t > τ ),

E
[
ct
i∗

]
= ρi∗ . Hence, the expected revenue at time t is just smaxiρ̂

+
i bt

i

ρ̂+
i∗

ρi∗ . First note by construction,

smaxiρ̂
+
i bt

i

ρ̂+
i∗

≤ bt
i∗ ≤ bmax

and also note that with probability greater than 1− δ:

smaxiρib
t
i

smaxiρ̂
+
i bt

i

≤ 1

since ρi ≤ ρ̂+
i (with probability greater than 1− δ). Using these facts, the instantaneous regret is bounded

follows:

smaxiρib
t
i −

smaxiρ̂
+
i bt

i

ρ̂+
i∗

ρi∗ =
smaxiρ̂

+
i bt

i

ρ̂+
i∗

(
smaxiρib

t
i

smaxiρ̂
+
i bt

i

ρ̂+
i∗ − ρi∗

)
≤ bmax

(
smaxiρib

t
i

smaxiρ̂
+
i bt

i

ρ̂+
i∗ − ρi∗

)
≤ bmax

(
ρ̂+

i∗ − ρi∗
)

≤ bmax

√
2
n

τ
log

n

δ
.

Hence, since there are T − τ exploitation phases and τ exploration phases (with no revenue), we have
shown that the expected regret is:

2-Regret ≤ bmax

(
(T − τ)

√
2
n

τ
log

n

δ
+ τ + δT

)
where the δT term comes from the failure probability. Choosing δ = 1/T and τ = n1/3T 2/3

√
log (nT )

completes the proof.
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3.2 Lower bound

We prove the lower bound in the setting where the values are constant for all times t. First, we characterize
the restriction imposed on the allocation function by truthfulness.

3.2.1 Constraints from Truthful Pricing

The following theorem from Myerson [1981] (also see Hartline and Karlin [2007]) for characterizing
truthful auctions will be extensively used. Since the values of the advertisers are assumed to be constant,
one strategy the advertisers could take is to only consider changing their bid at the start of the auction —
hence, the entire auction must be truthful with respect to the cumulative prices. Applying this theorem to
the cumulative prices charged over the auction leads to the following pricing restriction:

Theorem 4. Truthful pricing rule: Fix a click sequence. Let yi =
∑

t xt
ic

t
i and let pi =

∑
t pt

i. If an
auction x (which implies y) is truthful then

1. yi is monotonically increasing in bi

2. the price pi charged to i is exactly

pi(b) = biyi(b)−
∫ bi

z=0
yi(z, b−i)dz.

Also, let yt
i = xt

ic
t
i. Also define

pt
i(b) = biy

t
i(b)−

∫ bi

z=0
yt

i(z, b−i)dz,

and note that pi =
∑

t pt
i. It is also straightforward to see that the truthful pricing rule also implies that

these must be the instantaneous prices, and that instantaneously, the xt
i must be monotonic in bt

i. To see
this, note that it could be the case that the current round is effectively the advertisers last round (say this
advertisers true value drops to 0 for the remainder of the auction). Hence, the current round must also have
an instantaneously truthful price.

Since the mechanism is always truthful, the allocation function has to be such that the prices can always
be calculated exactly (with the observed clicks). Using this one can argue that the allocation function only
depends on the clicks observed during certain ‘non-competitive’ time periods, which we now formalized.

3.2.2 Competitive Pricing

Recall, we only include those arguments of xt
i that are relevant for the discussion (for example, if we write

xt(bi, b−i), then we may be explicitly considering the functional dependence on bi and b−i, but one should
keep in mind the implicit dependence on the click history). From now on, we assume that there are only 2
bidders, 1 and 2. We also now restrict the bids to be constant for the duration of the auction.

A competitive round for bidder 1 is one in which there exists a high enough bid b1 such that 1 can win.
More formally,
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Definition 5. Say that a time τ is competitive (w.r.t bidder 1) if for all b2, there exist b1 so that xτ
1(b1, b2) =

1.

We also consider the functional dependence on clicks:

Definition 6. Say that the allocation xt
1 depends on cτ

2 if there exist b1, b2 such that xt
1(b1, b2, c

τ
2) 6=

xt
1(b1, b2, 1− cτ

2).

Note that in order for xt
1 to have a functional dependence on cτ

2 , the auction must observe cτ
2 , in which

case xτ
2(b1, b2) = 1.

Lemma 7. If τ is competitive w.r.t bidder 1, then xt
1 does not depend on cτ

2 .

Proof. Say τ is competitive and xt
1 depends on cτ

2 , for the bids b1, b2. Hence, the auction must observe cτ
2 ,

so clearly xτ
2(b1, b2) = 1. Since τ is competitive, there exist b′1 > b1 so that xτ

1(b
′
1, b2) = 1.

Since the auction is instantaneously truthful, xt
1 is monotone, and the mechanism has to calculate pt

1.
Now we will argue that pt

1(b
′
1, b2, c

τ
2) 6= pt

1(b
′
1, b2, 1− cτ

2), which is a contradiction, since the mechanism
does not observe cτ

2 at bids b′1, b2, as xτ
2(b

′
1, b2) = 0.

Consider the case xt
1(b1, b2, c

τ
2) = 1 and xt

1(b1, b2, 1 − cτ
2) = 0. Also, by monotonicity, we have that

xt
1(b

′
1, b2, c

τ
2) = 1. We must also have xt

1(b
′
1, b2, c

τ
2) = xt

1(b
′
1, b2, 1 − cτ

2) = 1 since the auction does not
observe cτ

2 at these bids, i.e. xτ
2(b

′
1, b2) = 0. Note that since xt

1 ∈ {0, 1}, by the truthful pricing rule
we have for all bids b, pt

1(b, b2) = min{b′ ≤ b : xt
1(b

′, b2) = 1}. Hence, pt
1(b

′
1, b2, c

τ
2) ≤ b1. Since,

xt
1(b1, b2, 1 − cτ

2) = 0 and xt
1(b

′
1, b2, 1 − cτ

2) = 1, we also have that pt
1(b

′
1, b2, 1 − cτ

2) > b1, which is a
contradiction. The other case is identical (xt

1(b1, b2, c
τ
2) = 0 and xt

1(b1, b2, 1− cτ
2) = 1), and we are done.

Lemma 8. (Scale Invariance) We may assume w.l.o.g that the allocation is scale invariant, i.e., for all
λ > 0, x(b) = x(λb).

Proof. We will show that given any allocation x that is not scale invariant, there is a scale invariant alloca-
tion x′ with smaller regret. For all b, define λ(b) := arg maxλ>0 A(λb)/λ and let x′(b) := x(λb). Note
that λ() is scale invariant, and so is x′. It is easy to see that the revenue A′(b) = A(λb)/λ, and hence by
definition of λ, A′(b) ≥ A(b).

Corollary 9. If τ is not competitive w.r.t. bidder 1, then pτ
1 ≡ pτ

2 ≡ 0.

Proof. Since τ is not competitive, ∃b2 : ∀b1, xτ
1(b1, b2) = 0. By scale invariance, it follows that ∀b′1b′2,

xτ
1(b

′
1, b

′
2) = xτ

1(b
′
1b2/b′2, b2) = 0. Thus pτ

1 ≡ 0.

If xτ
2(b1, b2) = 0, then pτ

2(b1, b2) = 0. If xτ
2(b1, b2) = 1, then since τ is not competitive, for all

b′1 > b1, xτ
2(b

′
1, b2) = 1. Because of scale invariance, it follows that for all 0 < b′2 ≤ b2, xτ

2(b1, b
′
2) =

xτ
2(b1b2/b′2, b2) = 1. Now pτ

2(b1, b2) = 0 by truthful pricing.

Lemma 10. Let P1 and P2 be probability distributions on {0, 1}T generated by i.i.d samples w.p. 1/2 + δ
and 1/2− δ respectively. Then for all functions χ : {0, 1}T → {0, 1} that can be represented as decision
trees of depth n = o(1/δ2), either

∑
c∈{0,1}T P1(c)χ(c) or

∑
c∈{0,1}T P2(c)(1− χ(c)) is Ω(1).
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Proof. Assume that the decision tree is a complete binary tree. Each leaf of the tree is represented by
a string x ∈ {0, 1}n. Let χ(x) be the output of the decision tree at leaf x. Then for any probability
distribution on c ∈ {0, 1}T ∑

c∈{0,1}T

P(c)χ(c) =
∑

x∈{0,1}n

P(x)χ(x)

where P(x) is the probability that decision tree reaches leaf x. P1(x) = (1/2 + δ)|x|(1/2− δ)n−|x| where
|x| is the number of 1’s in x. Similarly P2(x) = (1/2− δ)|x|(1/2 + δ)n−|x|. P1(x) ≥ P2(x) if and only if
|x| ≥ n/2. P1(x)χ(x) + P2(x)(1− χ(x)) ≥ min{P1(x), P2(x)} = P2(x) if |x| ≥ n/2. Therefore∑

x∈{0,1}n

P1(x)χ(x) + P2(x)(1− χ(x)) ≥
∑

x∈{0,1}n:|x|≥n/2

P2(x)

= P2[|x| ≥ n/2] = Ω(1).

Proof of Theorem 11. We consider two instances. In Instance 1, we have (ρ1, b1) = (1, 1/2) and (ρ2, b2) =
(1/2 + δ, 1). In Instance 2, again we have (ρ1, b1) = (1, 1/2) but now have (ρ2, b2) = (1/2 − δ, 1). We
set δ = T−1/3. We will show that the regret of any truthful mechanism is Ω(T 2/3) for either of the two
instances.

Because of Corollary 9, the number of non-competitive rounds is o(T 2/3) with probability 1 − o(1),
else our 2-Regret would be Ω(T 2/3). Hence it is enough to prove that given that the number of non-
competitive rounds, say n, is o(T 2/3), the 2-Regret is Ω(T 2/3).

Recall that 2-Regret = OPT − E [p1 + p2], and pi(b) = biyi(b) −
∫ bi

z=0 yi(z, b−i)dz. We will show
that OPT − E [y1b1 + y2b2] = Ω(T 2/3), which is enough since the integrals are positive2. Note that
Ect

2
[yt

2|c1
2 . . . ct−1

2 ] = ρ2x
t
2. Thus Ec12...ct

2
[yt

2] = ρ2Ec12...ct
2
[xt

2]. Hence it is enough to argue that OPT −
EC [ρ1b1x1 + ρ2b2x2] = Ω(T 2/3). Call this latter quantity for a particular C, the loss for that C.

Claim 11. For all click sequences C, if x1(1/2, 1, C) ≥ T/2 (resp. x1(1/2, 1, C) ≤ T/2) then the loss
for C is at least δT/2 for Instance 1 (resp. Instance 2).

Proof. Consider Instance 1 and suppose x1(1/2, 1, C) ≥ T/2. Then x2 ≤ T/2. Therefore ρ1b1x1 +
ρ2b2x2 = x1/2+(1/2+δ)x2 = 1/2(x1 +x2)+δx2 ≤ T/2+δT/2 = (1/2+δ)T −δT/2 = OPT −δT/2.
Hence loss for C is ≥ δT/2. The case when x1(1/2, 1, C) ≤ T/2 is similar.

Let χ be a function of C that is 1 if the loss for that click sequence is ≥ δT/2 for Instance 1, and
is 0 otherwise (loss is ≥ δT/2 for Instance 2, as guaranteed by Claim 11). Since χ only depends on x1,
which in turn only depends on the clicks in the non-competitive rounds (Lemma 7), χ can be represented
as a boolean decision tree of depth n = o(1/δ2). From Lemma 10, either

∑
c∈{0,1}n P1(c)χ(c) = Ω(1)

or
∑

c∈{0,1}n P2(c)(1 − χ(c)) = Ω(1). If the former holds, this says that the probability that the loss is
Ω(δT )=Ω(T 2/3) for Instance 1 is Ω(1). Thus the expected loss is Ω(T 2/3). The other case implies an
expected loss of Ω(T 2/3) on Instance 2.

2 In fact, we can also show that the integrals themselves are Ω(T 2/3), with a slightly different argument.
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3.3 Lower bound for the stronger model

In this section, we prove a stronger version of the lower bound. The key differences in the setting we
consider here are that

• the auction could charge at the end of all the rounds, and

• the bidders are only allowed to submit one bid, at the start.

Note that such auctions are more powerful and potentially have a lower regret. We show, however, that the
regret is still Ω(T 2/3).

We consider two instances. ρ1 = b2 = 1 in both the instances. Instance I1 is when ρ2 = 1/2 + δ = b1

and Instance I2 is when ρ2 = 1/2− δ = b1, where δ = T−1/3. Also let b+ = 1/2 + δ and b− = 1/2− δ.
We will show that the regret of any truthful mechanism is Ω(T 2/3) for either of the two instances.

The loss: Recall that 2-Regret = OPT − EC [p1 + p2], where pi(b) = biyi(b) −
∫ bi

z=0 yi(z, b−i)dz.
Note that3 Ect

2
[yt

i |c1
2 . . . ct−1

2 ] = ρ2x
t
i. Thus Ec12...ct

2
[yt

i ] = ρiEc12...ct
2
[xt

i]. Hence it is enough to argue

that OPT − EC [ρ1q1 + ρ2q2] = Ω(T 2/3), where qi(b) = bixi(b) −
∫ bi

z=0 xi(z, b−i)dz. Let loss(C) :=
OPT − (ρ1q1 + ρ2q2), keeping in mind that q1 and q2 are functions of C. Also say that C is bad for an
instance if loss(C) is Ω(T 2/3). Note that for both I1 and I2, OPT = ρ1b1T = ρ2b2T . Therefore for any
C, loss(C) is non negative for both I1 and I2 because ρ1q1 + ρ2q2 ≤ ρ1b1x1 + ρ2b2x2 = OPT

T (x1 + x2)
≤ OPT .

Outline of the proof: We construct a boolean function of the click sequence C, χ : {0, 1}T → {0, 1}
such that

• χ can be represented as a decision tree T .

• If the depth of T on input C is Ω(T 2/3) then C is bad for both I1 and I2.

• If χ(C) = 1, then C is bad for I1, and if χ(C) = 0, then C is bad for I2.

Given such a construction, it follows that the regret of any auction is Ω(T 2/3) for either I1 or I2: Let
P1 and P2 be probability distributions on {0, 1}T generated by i.i.d samples w.p. 1/2 + δ and 1/2 − δ
respectively (as in Lemma 10). If the depth of T was o(T 2/3), then we could just apply Lemma 10.∑

C∈{0,1}T P1(C)χ(C) (resp.
∑

C∈{0,1}T P2(C)(1 − χ(C))) is the same as the probability that C is bad
for I1 (and resp. for I2). If either of these probabilities is Ω(1), then so is the regret for that instance.

The problem is that for some inputs, the depth of T could be Ω(T 2/3). Since all these inputs are bad
for both instances, we may assume that both P1 and P2 of such instances is o(1). We can apply Lemma 10
to the tree obtained by “pruning” T so that its depth is o(T 2/3), and the same conclusion would still hold.

Construction of T : We construct T by looking at which clicks the auction observes when b1 = b+(1 + λ)
and b2 = 1, where λ is a small constant > 0. We label the nodes of T by t ∈ [T ]. (The same label may
appear multiple times in T , but occurs only once in any root to leaf path.) Let the root of T be the first
t such that xt

2(b
+(1 + λ), 1) = 1. Note that this has to be independent of C since the auction does not

observe any clicks until it assigns an impression to advertiser 2. For each node t in the tree, the left (resp.
3 We only need to consider ct

2’s, since in our instances, ρ1 = 1.
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right) child is the next time period t′ such that xt′
2 (b+(1 + λ), 1) = 1, given that ct

2 = 0 (resp. ct
2 = 1).

Again, as before, note that this is well defined, since t′ only depends on the those ct
2’s that lie on the path

from the root to t, as these are all the clicks that the auction observes.

For a given C, let S = {t : xt
2(b

+(1 + λ), 1) = 1} be the set of nodes in the path from the root to the
leaf the decision tree ends in, on input C. We now prove that if |S| ≥ Ω(T 2/3) then both instances have
loss(C) ≥ Ω(T 2/3).

We introduce the following notation: A1[l, u](b2) =
∫ u
l x1(z, b2)dz, and similarly A2. Note that

loss(C) ≥ ρ1A1[0, b1](b2) + ρ2A2[0, b2](b1).

Consider I1. If |S| ≥ Ω(T 2/3), then x2(b+(1 + λ), 1) ≥ Ω(T 2/3). By scale invariance, x2(b+, 1/(1 +
λ)) ≥ Ω(T 2/3). Thus, loss(C) ≥ ρ2A2[0, 1](b+) ≥ ρ2x2(b+, 1/(1 + λ))(1 − 1/(1 + λ)) ≥ Ω(T 2/3).
The proof for I2 is similar.

Construction of χ: We now construct the function χ such that it depends only on (ct
2 : t ∈ S), and if

χ(C) = 1, then C is bad for I1, and if χ(C) = 0, then C is bad for I2. We show this by arguing that if
C and C ′ agree on S, then either they are both bad for I1, or they are both bad for I2. The existence of χ
as required follows from this.

Now consider I1. loss(C) ≥ A1[0, b−](1) + A1[b−, b+](1) + b+A2[0, 1](b+). By scale invariance,∫ 1
0 x2(b+, z)dz =

∫ 1
0 x2(b+/z, 1)dz. By change of variables, t = b+/z, it is equal to∫ ∞

b+
b+x2(t, 1)/t2dt ≥

∫ b+(1+λ)

b+
b+x2(t, 1)/t2dt

≥ 1/(b+(1 + λ)2)
∫ b+(1+λ)

b+
x2(t, 1)dt

= 1/(b+(1 + λ)2)Ac
1[b

+, b+(1 + λ)](1),

where Ac
1[l, u](b2) is defined to be =

∫ u
l x2(t, b2)dt. Thus loss ≥ A1[0, b−](1) + A1[b−, b+](1) +1/(1 +

λ)2Ac
1[b

+, b+(1 + λ)](1).

Now consider I2. As before, loss ≥ A1[0, b−](1) + b−A2[0, 1](b−). Again, as before, by scale
invariance and change of variables,∫ 1

0
x2(b−, z)dz = b−/(b+(1 + λ))2Ac

1[b
−, b+(1 + λ)].

The loss is therefore ≥ A1[0, b−](1) + (b−/b+(1 + λ))2 (Ac
1[b

−, b+](1) + Ac
1[b

+, b+(1 + λ)](1)).

Thus, if either A1[0, b−] or Ac
1[b

+, b+(1 + λ)] is Ω(T 2/3) then C is bad for both I1 and I2. Also, we
argue later that (A1 + Ac

1)[b
−, b+](1) ≥ Ω(T 2/3), which implies that every C is bad for either I1 or I2,

The proof is completed by showing that if C and C ′ agree on S, then |A1[b−, b+](C)−A1[b−, b+](C ′)| =
o(T 2/3), which then implies that either they are both bad for I1, or they are both bad for I2.

This is because of the following: C and C ′ agree on S, which is the set of clicks observed when
b1 = b+(1 + λ) and b2 = 1. Hence, x1(b+(1 + λ), 1) and p1(b+(1 + λ), 1) should be the same for both C
and C ′. This implies that A1[0, b+(1+λ)] = b1x1−p1 is the same for both C and C ′. We may also assume
that A1[0, b−] and Ac

1[b
+, b+(1+λ)] are o(T 2/3) which implies |A1[0, b−](C)−A1[0, b−](C ′)| = o(T 2/3),

and |A1[b+, b+(1 + λ)](C) − A1[b+, b+(1 + λ)](C ′)| = o(T 2/3). The conclusion follows from the fact
that if x + y + z = x′ + y′ + z′, then |x− x′| ≤ |y − y′|+ |z − z′|.
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All that remains is to argue that (A1 + Ac
1)[b

−, b+](1) ≥ Ω(T 2/3). It is sufficient to argue that
(x1 + x2)(b−, 1) ≥ Ω(T ). Suppose not, then for both I1 and I2, loss ≥ OPT − ρ1b1x1 − ρ2b2x2

≥ b−T − b+(x1 + x2) ≥ Ω(T )− o(T ) ≥ Ω(T ).

Q.E.D
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