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ABSTRACT

We analyze the multi-view regression problem where we have two views X = (X(1), X(2)) of the input data and a
target variable Y of interest. We provide sufficient conditions under which we can reduce the dimensionality of X
(via a projection) without loosing predictive power of Y . Crucially, this projection can be computed via a Canonical
Correlation Analysis only on the unlabeled data. The algorithmic template is as follows: with unlabeled data, perform
CCA and construct a certain projection; with the labeled data, do least squares regression in this lower dimensional
space. We show how, under certain natural assumptions, the number of labeled samples could be significantly reduced
(in comparison to the single view setting) — in particular, we show how this dimensionality reduction does not loose
predictive power of Y (thus it only introduces little bias but could drastically reduce the variance).

We explore two separate assumptions under which this is possible and show how, under either assumption alone,
dimensionality reduction could reduce the labeled sample complexity. The two assumptions we consider are a con-
ditional independence assumption and a redundancy assumption. The typical conditional independence assumption
is that conditioned on Y the views X(1) and X(2) are independent — we relax this assumption to be conditioned on
some hidden state H the views X(1) and X(2) are independent. Under the redundancy assumption, we have that the
best predictor from each view is roughly as good as the best predictor using both views.



1 Introduction
In recent years, the “multi-view” approach has been receiving increasing attention as a paradigm for semi-supervised
learning. In the two view setting, there are views (sometimes in a rather abstract sense) X(1) and X(2) of the data,
which co-occur, and there is a target variable Y of interest. The setting is one where it is easy to obtain unlabeled
samples (X(1), X(2)) but the labeled samples (X(1), X(2), Y ) are more scarce. The goal is to implicitly learn about
the target Y via the relationship between X(1) and X(2).

We work in a setting where we have a joint distribution over (X(1), X(2), Y ), where all X(1) and X(2) are vectors
(of arbitrarily large dimension) and Y ∈ R.

This work focuses on the underlying assumptions in the multi-view setting and provides an algorithm which
exploits these assumptions. We separately consider two natural assumptions, a conditional independence assumption
and a redundancy assumption. Our work here builds upon the work in Ando and Zhang [2007] and Kakade and
Foster [2007], summarizing the close connections between the two.

Ando and Zhang [2007] provide an analysis under only a conditional independence assumption — where X(1)

and X(2) are conditionally independent of Y (in a multi-class setting, where Y is one of k outcomes). The common
criticism of these conditional independence assumption is that it is far too stringent to assume that X(1) and X(2) are
independent just conditioned on a the rather low dimensional target variable Y . We relax this assumption by only
requiring that X(1), X(2), and Y all be independent conditioned on some hidden state H . Roughly speaking, we think
of H as being the augmented information required to make X(1), X(2), and Y conditionally independent.

The other assumption we consider (and we consider it separately from the previous one) is based on redundancy,
as in Kakade and Foster [2007]. Here, we assume that the best linear predictor from each view is roughly as good as
the best linear predictor based on both views. This assumption is weak in the sense that it only requires, on average,
for the optimal linear predictors from each view to agree.

There are many natural applications for which either of these underlying assumptions are applicable. For example,
consider a setting where it is easy to obtain pictures of objects from different camera angles and say our supervised
task is one of object recognition. Here, the first assumption holds, and, intuitively, we can think of unlabeled data as
providing examples of viewpoint invariance. If there is no occlusion, then we expect our second assumption to hold as
well. One can even consider multi-modal views, with one view being a video stream and the other an audio stream, and
the task might be to identify properties of the speaker (e.g. recognition) — here conditioned on the speaker identity,
the views may be uncorrelated. In NLP, an example would be a paired document corpus, consisting of a document
and its translation into another language, and the supervised task could be understanding some high level property of
the document (here both assumptions may hold). The motivating example in Blum and Mitchell [1998] is a webpage
classification task, where one view was the text in the page and the other was the hyperlink structure.

It turns out that under either assumption, Canonical Correlation Analysis (CCA) provides a dimensionality re-
duction method, appropriate for use in a regression algorithm (see Hardoon et al. [2004] for a review of CCA with
applications to machine learning). In particular, the semi-supervised algorithm is:

1. Using unlabeled data {(X(1), X(2))}, perform a CCA.

2. Construct a projection Π that projects (X(1), X(2)) to the most correlated lower dimensional subspace
(as specified in Theorems 3 and 5).

3. With a labeled dataset {(X(1), X(2), Y )}, do a least squares regression (with MLE estimates) in this
lower dimensional subspace, i.e. regress Y with (ΠX(1),ΠX(2)).

Algorithm 1: Regression in a CCA Subspace

Our main results show that (under either assumption) we lose little predictive information by using this lower
dimensional CCA subspace – the gain is that our regression problem has a lower sample complexity due to the lower
dimension.
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1.1 Related Work
Both of these assumptions have been considered together in the co-training framework of Blum and Mitchell [1998]
(in a rather strong sense).

In Ando and Zhang [2007], the conditional independence assumption was with respect to a multi-class setting,
where Y is discrete, i.e. Y ∈ [k]. In our generalization, we let Y be real valued and we relax the assumption in that
we need only independence with respect to some hidden state. Our proof is similar in spirit to that in Ando and Zhang
[2007].

The redundancy assumption we consider here is from Kakade and Foster [2007], where two algorithms were
proposed: one based on “shrinkage” (a form of regularization) and one based on dimensionality reduction. The results
were stronger for the shrinkage based algorithm. Here, we show that the dimensionality reduction based algorithm
works just as well as the proposed “shrinkage” algorithm.

2 Multi-View Assumptions
All vectors in our setting are column vectors. We slightly abuse notation and write (X(1), X(2)), which really denotes
the column vector of X(1) concatenated with X(2).

Recall the definition of the R2, the coefficient of determination, between Y and X . Let β · X be the best linear
prediction of Y with X . Recall that:

R2
X,Y := correlation(β ·X, Y )2

In the words, R2
Y,X is the proportion of variability in Y that is accounted for by the best linear prediction with X , i.e.

R2
X,Y = 1− loss(β)

var(Y )

where loss is the square loss.

2.1 Independence and Predictability of Hidden States
First, let us present the definition of a hidden state H . Intuitively, we think of hidden states as those which imply
certain independence properties with respect to our observed random variables.

Definition We say that a random vector H is a hidden state for X(1), X(2) and Y if, conditioned on H , we have that
X(1), X(2), and Y are all uncorrelated.

Note there always exits an H which satisfies this uncorrelated property. We say H is a linear hidden state if we
also have that E[X(1)|H], E[X(2)|H], and E[Y |H] are linear in H .

Instead of dealing with independence with respect to Y (which is typically far too stringent), our assumption will
be with respect to H , which always exists. Also note that the above definition only requires uncorrelatedness rather
than independence.

Assumption 1. (Hidden State Predictability) Let H be a linear hidden state such that both X(1) and X(2) are
non-trivially predictive of H . More precisely, assume that for all directions w ∈ Rdim(H):

R2
X(1),w·H > 0, R2

X(2),w·H > 0

Intuitively, this multi-view assumption is that both X(1) and X(2) are informative of the hidden state. However,
they need not be good predictors.
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2.2 Redundancy
The other assumption we consider is one based on redundancy.

Assumption 2. (ε-Redundancy) Assume that the best linear predictor from each view is roughly as good as the best
linear predictor based on both views. More precisely, we have:

R2
X(1),Y ≥ R2

X,Y − ε

R2
X(2),Y ≥ R2

X,Y − ε

Note this equivalent to:

loss(β1)− loss(β) ≤ ε var(Y )
loss(β2)− loss(β) ≤ ε var(Y )

where β1, β2 and β are the best linear predictors with X(1), X(2), and X , respectively. This is the form of the
assumption stated in Kakade and Foster [2007].

3 CCA and Projections
We say that {Ui}i and {Vi}i are canonical coordinate systems for X(1) and X(2) if they are an orthonormal basis for
each view and they satisfy

correlation(Ui ·X(1), Vj ·X(2)) =
{

λi if i = j
0 else

CCA finds such a basis (which always exists). Without loss of generality, assume that:

1 ≥ λ1 ≥ λ2 ≥ λ3 . . . . ≥ 0

We refer to Ui and Vi as the i-th canonical directions and λi as the i-th canonical value.
Let ΠCCA be the projection operator which projects into the CCA subspaces, which are strictly correlated. More

precisely, define the strictly correlated subspaces as

U = span({Ui : λi > 0}i), V = span({Vi : λi > 0}i) . (1)

Define ΠCCAX(1) and ΠCCAX(2) to be the projection (using Euclidean distance) of X(1) and X(2) into U and V ,
respectively. In particular, ΠCCAX(1) =

∑
i:λi>0(X · Ui)Ui. These projection operators take each view into the

subspace that is strictly correlated with the other view.
Now let us define Πλ as the projection which takes vectors into the subspace which has a correlation (to the other

view) no less than λ. More precisely, define:

Uλ = span({Ui : λi ≥ λ}i), Vλ = span({Vi : λi ≥ λ}i) .

Similarly, let ΠλX(1) and ΠλX(2) be the projection (using Euclidean distance) of X(1) and X(2) into Uλ and Vλ,
respectively. This projection Πλ is useful since sometimes we deal with subspaces that are sufficiently correlated (to
the tune of λ).

4 Dimensionality Reduction Under Conditional Independence
We now present our main theorems, under our Hidden State Predictability Assumption. These theorems shows that
after dimensionality reduction (via CCA), we have not lost any predictive power of our target variable.
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Theorem 3. Suppose that Assumption 1 holds and that the dimension of H is k. Then ΠCCA is projection into a
subspace of dimension precisely k and the following three statements hold:

1. This best linear predictor of Y with X(1) is equal to the best linear predictor of Y with ΠCCAX(1).

2. This best linear predictor of Y with X(2) is equal to the best linear predictor of Y with ΠCCAX(2).

3. This best linear predictor of Y with (X(1), X(2)) is equal to the best linear predictor of Y with ΠCCAX =
(ΠCCAX(1),ΠCCAX(2)).

where the best linear predictor is measured with respect to the square loss.

This lemma shows that we need only concern ourselves with a k dimensional regression problem, after the CCA
projection, and we have not lost any predictive power. Note that the prediction error in each of these cases need not be
the same. In particular, with both views, one could potentially obtain significantly lower error.

In addition to direct CCA reduction, one may derive a similar result using bilinear functions of X(1) and X(2). Let
d1 be the dimension of X(1) and d2 be the dimension of X(2). We define the tensor product X(1) ◦X(2) as the vector
[X(1)

i X
(2)
j ]i,j ∈ Rd1d2 .

Theorem 4. Suppose that Assumption 1 holds and that the dimension of H is k. Let Z = X(1) ◦X(2). Then the best
linear predictor of Y with Z is equal to the best linear predictor of Y with the following k2 projected variables

Z>(EZZ>)−1((EX(1)X(1)>Ui) ◦ (EX(2)X(2)>Vj)),

where Ui ∈ U and Vj ∈ V are CCA basis vectors for the two views respectively, as defined in Equation 1 (so
i, j = 1, . . . , k).

Note that EZZ>, EX(1)X(1)>, and EX(2)X(2)> can be computed from unlabeled data. Therefore Theorem 4
says that we can compute a k2 dimensional subspace that contains the best linear predictor using the tensor product of
the two views. If the representation for each view contains a complete basis for functions defined on the corresponding
view, then the tensor product gives a complete basis for functions that depend on both views. In such a case, Theorem 4
implies consistency. That is, the optimal predictor using [X(1), X(2)] is equal to the best linear predictor with the k2

projections given by the theorem. Section 4.1 contains two examples, showing that for some models, Theorem 3 is
sufficient, while for other models, it is necessary to apply Theorem 4.

4.1 Examples: Hidden State Prediction Models
We consider two concrete conditional independence probability models where CCA can be applied. The general
graphical model representation is given in Figure 1, which implies that P (X(1), X(2)|H) = P (X(1)|H)P (X(2)|H).
Let us also assume that Y is a contained in H (e.g. say Y is the first coordinate H1). The first model is a two view
Gaussian model, similar to that of Bach and Jordan [2005], and the second is a discrete model, similar to Ando and
Zhang [2007]. The optimal predictor of Y (using both views) is linear in the first model, and thus the CCA reduction
in Theorem 3 is sufficient. In the second model, the optimal predictor of Y is linear in the tensor product of X(1) and
X(2), and thus Theorem 4 is needed.

4.1.1 Two view Gaussian model

We consider the following model, similar to Bach and Jordan [2005], but with a more general Gaussian prior on H:

P (X(`)|H) =N(W>
` H,Σ`) (` ∈ {1, 2}),

P (H) =N(µ0,Σ0),

where µ0, W`, and Σ` are unknowns.
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Figure 1: Two View Conditional Independence Model

Since E[X(`)|H] = W>
` H (` ∈ {1, 2}), the result of Section 4 can be applied. In this model, we have

P (H|X(1), X(2)) ∝ exp

[
−1

2

2∑
`=1

(X(`) −W>
` H)>Σ−1

` (X(`) −W>
` H)− 1

2
(H − µ0)>Σ−1

0 (H − µ0)

]
,

which is Gaussian in H . Moreover, the optimal prediction of H based on (X(1), X(2)) is the conditional posterior
mean E[H|X(1), X(2)], which is clearly linear in (X(1), X(2)). Therefore Theorem 3 implies that the Bayes optimal
prediction rule is a linear predictor with 2k dimensional CCA projections of X(1) and X(2). Importantly, note that we
do not have to estimate the model parameters W`,Σ`, and µ0, which could rather high dimensional quantities.

4.1.2 Two view discrete probability model

We consider the following model, which is a simplified case of Ando and Zhang [2007]. Each view X(`) represents
a discrete observation in a finite set Ω`, where |Ω`| = d` (where ` ∈ {1, 2}). We may encode each view as a d`

dimensional 0-1 valued indicator vector: X(`) ∈ {0, 1}d` , where only one component has value 1 (which indicates the
index of the value in Ω` being observed), and the others have values 0. Similarly, assume the hidden state variable H
is discrete and takes on one of k values, and we represent this by a length k binary vector (with the a-th entry being 1
iff H = a). Each hidden state induces a probability distribution over Ω` for view `. That is, the conditional probability
model is given by

P ([X(`)]i = 1|H) = [W>
` H]i (` ∈ {1, 2}).

i.e. each row a of W` is the probability vector for X(`) conditioned on the underlying discrete hidden state being
a. Hence, E[X(`)|H] = W>

` H , so H is a linear hidden state. Moreover, since the two views are discrete, the
vector (X(1), X(2)) is uniquely identified with X(1) ◦ X(2) ∈ Rd1×d2 that contains only one nonzero component,
and any arbitrary function of (X(1), X(2)) is trivially a linear function of X(1) ◦ X(2). This means that Theorem 4
can be applied to reduce the overall dimension to k2 and that the Bayes optimal predictor is linear in this reduced
k2 dimensional space. Moreover, in this case, it can be shown that the reduced dimensions are given by the tensor
products of the CCA basis for the two views.

5 Dimensionality Reduction Under Redundancy
In this Section, we assume that Y is a scalar. We also use the projection Πλ, which projects to the subspace which
has correlation at least λ (recall the definition of Πλ from Section 3). The follow theorem shows that using ΠλX(1)

instead of X(1) for linear prediction does not significantly degrade performance.
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Theorem 5. Suppose that Assumption 2 holds (recall, ε is defined in this Assumption) and that Y ∈ R. For all
0 ≤ λ ≤ 1, we have that:

R2
ΠλX(1),Y ≥ R2

X(1),Y − 4ε

1− λ

R2
ΠλX(2),Y ≥ R2

X(2),Y − 4ε

1− λ

Note that this implies that these R2’s are also close to R2
X,Y .

Clearly, if we chose λ = 1
2 , then our loss in error (compared to the best linear prediction) is at most 8ε. However,

we now only have to deal with estimation in the subspace spanned by {Ui : λi ≥ 1
2}i, a potentially much lower

dimensional space. In fact, the following corollary bounds the dimension of this space in terms of the spectrum.

Corollary 6. Assume that we choose λ = 1
2 . Let d be the dimension of the space that Πλ projects to, i.e. d is the

number of i such that λi ≥ 1
2 . For all α > 0, we have:

d ≤ 2α
∑

i

λα
i

In particular, this implies that:
d ≤ 2

∑
i

λi and d ≤ 4
∑

i

λ2
i

Note that unlike the previous setting, this spectrum need not ever have a finite number of nonzero entries, so we
may require a larger power of α to make the sum finite.

Proof. Using that λi ≥ 1
2 , we have:

d =
d∑

i=1

1 =
d∑

i=1

λα
i

λα
i

≤ 2α
d∑

i=1

λα
i ≤ 2α

∞∑
i=1

λα
i

where the second to last step follows from the fact that λi ≤ λ by definition of d.

6 Proofs
Let us denote:

Σ11 = E[X(1)(X(1))>]
Σ22 = E[X(2)(X(2))>]
Σ12 = E[X(1)(X(2))>]

ΣHH = E[HH>]
Σ1H = E[X(1)H>]
Σ2H = E[X(2)H>]
Σ1Y = E[X(1)Y >]
Σ2Y = E[X(2)Y >]

and Σ>12 = Σ21, ΣH1 = Σ>1H , etc.
Without loss of generality, we assume that we have the following isotropic conditions:

Σ11 = Identity, Σ22 = Identity, ΣHH = Identity, var(Y ) = 1
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This is without loss of generality as our algorithm does not make use of any particular coordinate system (the algorithm
is only concerned with the subspaces themselves). This choice of coordinate system eases the notational burden in our
proofs. Furthermore, note that we can still have H1 = Y in this coordinate system.

Under these conditions, CCA corresponds to an SVD of Σ12. Let the SVD decomposition of Σ12 be:

Σ12 = UDV >

where U and V are orthogonal and D is diagonal. Let

D = diag(λ1, λ2, . . .)

Without loss of generality, assume that the SVD is ordered such that:

λ1 ≥ λ2 ≥ λ3 . . . .

Here, the column vectors of U and V form the CCA basis, and note that for a column Ui of U and Vj of V

E[(Ui ·X(1))(Vj ·X(2))] =
{

λi if i = j
0 else (2)

which implies that
0 ≤ λi ≤ 1

since we are working in the coordinate system where X(1) and X(2) are isotropic.

6.1 Proof of Theorem 3
Throughout this subsection, we let β1 · X(1) be the best linear prediction of H with X(1) (that which minimizes the
square loss), let β2 · X(2) be the best linear prediction of H with X(2), and let β · (X(1), X(2)) be the best linear
prediction of H with both (X(1), X(2)).

With the aforementioned isotropic conditions:

β1 = Σ1H , β2 = Σ1H , β = (E[XX>])−1E[XH>] (3)

which follows directly from the least squares solution. Note that E[XX>] is not diagonal.
Our proof consists of showing that the best linear prediction of H with X is equal to the best linear prediction of H

with ΠCCAX . This implies that the best linear prediction of Y with X is equal to the best linear prediction of Y with
ΠCCAX , by the following argument. Since E[Y |H] is linear in H (by assumption), we can do a linear transformation
of H such that E[Y |H] = H1 (where H1 is the first coordinate of H). By Assumption 1, it is follows that for all
β ∈ Rdim(X),

E(Y − β ·X)2 = E(Y −H1)2 + E(H1 − β ·X)2 .

Hence, our proof need only be concerned with the linear prediction of H .
The following lemma shows the imposed structure on the covariance matrix Σ12 for any linear hidden state.

Lemma 7. If H is a linear hidden state, then we have that:

Σ12 = Σ1HΣH2

which implies that the rank of Σ12 is at most k.

Proof. By the linear mean assumption we have that:

E[X(1)|H] = Σ1HH

E[X(2)|H] = Σ2HH
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which follows from the fact that Σ1HH is the least squares prediction of X(1) with H (and this least squares prediction
is the expectation, by assumption).

Recall, we are working with H in an isotropic coordinate system. Hence,

Σ12 = E[X(1)(X(2))>]
= EH [E[X(1)(X(2))>|H]]
= EH [E[X(1)|H]E[(X(2))>|H]]
= EH [Σ1HHH>ΣH2]
= Σ1HΣH2

which completes the proof.

Now we are ready to complete the proof of Theorem 3.

Proof. Now Assumption 1 implies that both Σ1H and Σ2H are rank k. This implies that Σ12 is also rank k by the
previous lemma. Hence, we have the equality

Σ1H = Σ12(ΣH2)−1

(where the inverse is the pseudo-inverse). Now, the optimal linear predictor β1 = Σ1H , so we have

β1 = Σ12(ΣH2)−1 .

Hence,

β1 ·X(1) = (Σ2H)−1Σ21X
(1)

= (Σ2H)−1V DU>X(1)

= (Σ2H)−1V DU>ΠCCAX(1)

= β1ΠCCAX(1) .

The second to last step follows due to that DU>X(1) = DU>ΠCCAX(1) (since λi = 0 for all directions in which
ΠCCA does not project to). This completes the proof of the first claim, and the proof of the second claim is analogous.

Now we prove the third claim. Let β̃ be the weights for the best linear prediction of H with ΠCCAX :=
(ΠCCAX(1),ΠCCAX(2)). The optimality (derivative) conditions on β̃ imply that:

E[(H − β̃>ΠCCA ·X)(ΠCCAX)>] = 0 (4)

If we show that:
E[(H − β̃>ΠCCA ·X)X>] = 0

then this proves the result (as the derivative conditions for β̃> being optimal are satisfied). To prove the above, it is
sufficient to show that, for all vectors α

E[(H − β̃>ΠCCA ·X)(α ·X)] = 0 (5)

Let us decompose α as α = (u+u⊥, v + v⊥), where u is in U = span({Ui : λi > 0}i) and u⊥ is in U⊥ = span({Ui :
λi = 0}i). Clearly u and u⊥ are orthogonal. Similarly, define v and v⊥. Since

α ·X = u ·X(1) + u⊥ ·X(1) + v ·X(2) + v⊥ ·X(2)

To prove Equation 5, it is sufficient to show that:

E[(H − β̃>ΠCCA ·X)(u ·X(1))] = 0 (6)
E[(H − β̃>ΠCCA ·X)(v ·X(2))] = 0 (7)
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and

E[(H − β̃>ΠCCA ·X)(u⊥ ·X(1))] = 0 (8)
E[(H − β̃>ΠCCA ·X)(v ⊥ ·X(2))] = 0 (9)

To prove Equation 6, simply note that u · X(1) = u · ΠCCAX(1) by construction of u, so the result follows from
Equation 4. Equation 7 is proven identically.

Now we prove Equation 8. First note that:

E[ΠCCAX(1)(u⊥ ·X(1))] = 0

by our isotropic assumption and since u⊥ is orthogonal to U . Also,

E[ΠCCAX(2)(u⊥ ·X(1))] = 0

from Equation 2 and by construction of u⊥. These two imply that:

E[ΠCCAX(u⊥ ·X(1))] = 0

We also have that:

E[H(u⊥ ·X(1))] = E[H(X(1))>]u⊥
= ΣH1u⊥

= (Σ2H)−1Σ21u⊥

= 0

where we have used the full rank condition on Σ12 in the second to last step. An identical arguments proves Equation 9.
This completes the proof.

6.2 Proof of Theorem 4
The best linear predictor of Y with Z = X(1) ◦X(2) is given by βT

∗ Z, where

β∗ = arg min
β

EZ,Y (β>∗ Z − Y )2.

That is,
βT
∗ Z = ZT (EZZZT )−1EZ,Y (ZY ). (10)

Now, for each index i, j and Zi,j = X
(1)
i X

(2)
j , there exists α

(1)
i = [α(1)

i,1 , . . . , α
(1)
i,k ] and α

(2)
j = [α(2)

j,1 , . . . , α
(2)
j,k ]

such that
E[X(1)

i |H] = H>α
(1)
i , E[X(2)

j |H] = H>α
(2)
j

by assumption. Therefore, taking expectations over Z and Y ,

E[Y Zi,j ] =EH E[Y X
(1)
i X

(2)
j |H]

=EH [E[Y |H] E[X(1)
i |H] E[X(2)

j |H]]

=EH [E[Y |H] (H>α
(1)
i )(H>α

(2)
j )]

=α
(1)
i

>
Qα

(2)
j =

k∑
a=1

k∑
b=1

Qa,bα
(1)
i,aα

(2)
j,b ,
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where Q = EH [Y HH>]. Let α
(1)
·,a = [α(1)

i,a ]i and α
(2)
·,b = [α(2)

j,b ]j , then

EZ,Y [ZY ] =
k∑

a=1

k∑
b=1

Qa,bα
(1)
·,a ◦ α

(2)
·,b .

Since we are working with certain isotropic coordinates (see the beginning of Section 6), each α
(1)
·,a is a linear

combination of the CCA basis Ui (i = 1, . . . , k) and each α
(2)
·,b is a linear combination of the CCA basis Vj (j =

1, . . . , k). Therefore we can find Q′
i,j such that

EZ,Y [ZY ] =
k∑

i=1

k∑
j=1

Q′
i,jUi ◦ Vj .

From (10), we obtain that

βT
∗ Z =

k∑
i=1

k∑
j=1

Q′
i,jZ

T (EZZZT )−1Ui ◦ Vj .

By changing to an arbitrary basis in X(1) and in X(2), we obtain the desired formula.

6.3 Proof of Theorem 5
Here, β1, β2 and β are the best linear predictors of Y with X(1), X(2), and X , respectively. Also, in our isotropic
coordinates, var(Y ) = 1, so we will prove the claim in terms of the loss, which implies that statements about R2.

The following lemma is useful to prove Theorem 5.

Lemma 8. Assumption 2 implies that ∑
i

(1− λi)(βν · Ui)2 ≤ 4ε

for ν ∈ {1, 2}.

With this lemma, the proof of our Theorem follows.

Proof of Theorem 5. Let βCCA be the weights of the best linear predictor using only ΠλX(1). Since X(1) is isotropic,
it follows that βCCA ·Ui = β1 ·Ui for λi ≥ λ, as these directions are included in Πλ. First, note that since the norm of
a vector is unaltered by a rotation, we have:

loss(βCCA)− loss(β1) = ||βCCA − β1||22 =
∑

i

((βCCA − β1) · Ui)2

since U is rotation matrix. Hence, we have that:

loss(βCCA)− loss(β1) =
∑

i

((βCCA − β1) · Ui)2

=
∑

i:λi<λ

((βCCA − β1) · Ui)2

=
∑

i:λi<λ

1− λi

1− λi
((βCCA − β1) · Ui)2

≤ 1
1− λ

∑
i:λi<λ

(1− λi)((βCCA − β1) · Ui)2

≤ 4ε

1− λ

where the first line follows from algebraic manipulations for the square loss.
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The following lemma is useful for proving Lemma 8:

Lemma 9. Assumption 2 implies that

E[(β1 ·X(1) − β2 ·X(2))2] ≤ 4ε .

Proof. Let β be the best linear weights using X = (X(1), X(2)). By Assumption 2

ε ≥ E(β1 ·X(1) − Y )2 − E(β ·X − Y )2

= E(β1 ·X(1) − β ·X + β ·X − Y )2 − E(β ·X − Y )2

= E(β1 ·X(1) − β ·X)2 − 2E[(β1 ·X(1) − β ·X)(β ·X − Y )]

Now the first derivative conditions for the optimal linear predictor β implies that:

E[X(β ·X − Y )] = 0

which implies that:

E[β ·X(β ·X − Y )] = 0
E[β1 ·X(1)(β ·X − Y )] = 0

Hence,
E[(β1 ·X(1) − β ·X)(β ·X − Y )] = 0

A similar argument proves the identical statement for β2.
We have shown that:

E(β1 ·X(1) − β ·X)2 ≤ ε

E(β2 ·X(2) − β ·X)2 ≤ ε

The triangle inequality states that:

E(β1 ·X(1) − β2 ·X(2))2

≤
(√

E(β1 ·X(1) − β ·X)2 +
√

E(β2 ·X(2) − β ·X)2
)2

≤ (2
√

ε)2

which completes the proof.

Now we prove Lemma 8.

Proof of Lemma 8. Let us write [β1]i = β1 · Ui and [β2]i = β2 · Vi. From Lemma 9, we have:

4ε ≥ E
[
(β1 ·X(1) − β2 ·X(2))2

]
=

∑
i

(
([β1]i)2 + ([β2]i)2 − 2λi[β1]i[β2]i

)
=

∑
i

(
(1− λi)([β1]i)2 + (1− λi)([β2]i)2 + λi(([β1]i)2 + ([β2]i)2 − 2[β1]i[β2]i)

)
=

∑
i

(
(1− λi)([β1]i)2 + (1− λi)([β2]i)2 + λi([β1]i − [β2]i)2

)
≥

∑
i

(
(1− λi)([β1]i)2 + (1− λi)([β2]i)2

)
≥

∑
i

(1− λi)([βν ]i)2

where the last step holds for either ν = 1 or ν = 2.
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