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ABSTRACT

Domain adaptation algorithms attempt to address situations where our training (source) data distribution and
test (target) data distribution differ, potentially by a substantial amount. For example, in a natural language
processing task there may be many important phrases in our target genre which are required for low target error
but do not occur in our source training set or even have support under the source domain’s distribution.

This work provides a domain adaptation algorithm, which (provably) permits zero-shot learning — by this, we
mean learning an accurate classifier on our target domain with only labeled data from our source domains (and
no labeled data on the target domain). Furthermore, we give finite sample error bounds, showing how this
zero-shot learning is possible even in the aforementioned NLP example. The key intuition we formalize is how
to use these novel target-specific features via their correlation with those features that are present in both the
source and target domains (this learning may be done with unlabeled data). Our experiments demonstrate the
robust success of our algorithm for a variety of domain adaptation tasks on product review rating prediction
across multiple product types.



1. Introduction

The supervised learning paradigm of training and test-
ing on identical distributions has provided a powerful
abstraction for developing and analyzing learning al-
gorithms. In many natural applications, though, we
train our algorithm on a source distribution, but we
desire high performance on target distributions which
differ from that source [Ben-David et al., 2007, Huang
et al., 2007, Bickel et al., 2007, Dai et al., 2007, Blitzer
et al., 2008, Mansour et al., 2009].

For example: in speech recognition, we seek to adapt
models trained for one (or a few) speakers to speakers
with a variety of different accents [Legetter and Wood-
land, 1995]; computational biologists desire to apply
statistical gene annotation tools to newly-sequenced
genomes that differ significantly from the training data
for these tools [Liu et al., 2008]; natural language pro-
cessing models are typically transferred across gen-
res [McClosky et al., 2006, Daume, 2007]; and in web
search ranking, we seek to adapt English ranking mod-
els for use in other languages [Chen et al., 2008].

This is essentially the problem of domain adaptation
— we seek an algorithm which is trained on one (or
more) source domains but yet gracefully adapts when
it is deployed on new target domains. One of the chal-
lenges here is that there may be predictive features in
these target domains which do not even have support
under the source domain’s distribution, and it may
not be possible to have low error in the target domain
without using such features.

In this work, we design and analyze algorithms for do-
main adaptation, which (provably) permit zero-shot
learning — by zero-shot learning, we mean transfer-
ring an accurate classifier from (one or more) source
domains to a high accuracy classifier on the target do-
main (without any labeled data on the target domain,
though we are permitted to use unlabeled data from
the target domain). In particular, we show how this
is possible even in the setting where the source and
target distributions differ substantially, such as in the
aforementioned case where crucial predictive features
have no support under the source distribution.

Let us provide an intuitive example as to why such
learning may be possible. Suppose that we desire to
build a predictor of sentiment for consumer product
reviews (as in our Experiments section) — say our
two domains are reviews of consumer electronics and
DVDs. There are many predictive words/bi-grams
(features) like excellent and horrible that are shared
between the two domains, but there are also many
predictive phrases like broke quickly or plot twist that

are specific to a particular domain. By using unla-
beled data, we can discover how these domain specific
features correlate with a set of common features that
are shared between the domains. Based on this corre-
lational structure, we may hope that our adaptation
algorithm can exploit target specific features (e.g. use
the phrase plot twist for target prediction on the DVD
domain when trained with only labeled data on the
consumer electronics domain).

This intuition forms the basis for the structural cor-
respondence learning (SCL) algorithm of Blitzer et al.
[2007], which we view as an special case of this work.
SCL uses unlabeled data from both the source and
target domains to construct new “cross-domain” fea-
tures that have functional dependence on domain spe-
cific features from both domains. By putting weight on
such cross-domain features using only source domain
data, we are effectively building predictors which use
target specific features.

While this intuition is appealing, there is no apriori
reason why exploiting such correlations should be pos-
sible in general. In this work, we formalize an assump-
tion under which this intuition is applicable. The as-
sumption is that we have we have a dimensionality
reduction method for each domain such that after we
have projected the input X, we have not lost predic-
tive power of the output variable Y . Intuitively, it is
this projection which ends up intertwining features on
the target domain, so that novel target features are
potentially coupled with those target features which
are shared with the source domain. Learning such a
dimensionality reduction scheme is plausible based on
recent work on multi-view learning [Ando and Zhang,
2007, Kakade and Foster, 2007, Foster et al., 2008].

Under this assumption, we provide a simple domain
adaptation algorithm, which is able to exploit novel
target specific features due to how these features re-
late to certain shared features (those present in both
domains). We provide finite sample error bounds (on
the target domain) when trained only with source do-
main data. These bounds depend on a certain effective
dimension characterizing how the source and target
domains are related. Here, fast rates of convergence
are possible, even if novel target features are required
for low target error, so long as such features are related
to the shared features in a manner we make precise.

Finally, we provide experimental results on the pub-
licly available product review rating data set described
in Blitzer et al. [2007]. We show that across the board
our method performs significantly better than base-
lines which do not exploit correlations derived from
unlabeled data.



1.1. Related Work

While there is a body of work that has theoretically
considered this problem where training and test dis-
tributions differ [Huang et al., 2007, Ben-David et al.,
2007, Cortes et al., 2008], this work says little when
the target and source distributions may significantly
differ in the manner we described. Our point is not
to minimize this body of work but to point out that
our stronger results for zero-shot learning stem from
our stronger structural assumptions (based on domain
based dimensionality reduction), which we believe to
be applicable in many settings. It should be clear that
the transfer we describe is not possible without certain
structural assumptions.

We briefly mention that our algorithms and general-
ization results extend naturally to the setting where
we have multiple source domains. They thus apply to
another setting from the domain adaptation literature
where we have small amounts of labeled target do-
main data [Daume, 2007, Blitzer et al., 2008]. Finally,
we note the connection to the closely-related setting
of multi-task learning [Baxter, 2000, Crammer et al.,
2007, Arygriou et al., 2007]. This setting differs from
ours in that it typically assumes the same underlying
domain together with many different but related pre-
diction tasks. Their goal is to do well on all tasks
simultaneously.

2. The Setting

We assume our input X ∈ X , where X is vector space,
and our output Y ∈ R. We have a set of domains and
for each domain D = d, we have a joint distribution
Pr[X, Y |D = d].

Assumption 1. (Identical Tasks) Assume there exists
a linear map on X , denoted by the vector β>, such that
for all domains d:

E[Y |X, D = d] = β>X

We do not view this assumption as especially restric-
tive, since we are envisioning a setting where X is a
rich feature space.

Using samples from domain d, we can estimate β in
those directions in which X varies (on domain d). To
make this precise, define the principal subspace for a
domain d as follows:

Definition We say Xd is the principal subspace, if it
is lowest dimensional subspace of X such that X ∈ Xd

with probability 1.

Equivalently, this subspace is the subspace spanned by

the principal components of the covariance matrix of
X on domain d, E[XX>|D = d] (where the princi-
pal components are those eigenvectors with non-zero
eigenvalues).

Recall, that M is a projection operator if M is a linear
and if M is idempotent, i.e. M2x = Mx (for all x in
the vector space). If Pd is a projection operator onto
Xd, then it follows that:

E[Y |X, D = d] = β>(PdX)

To see this, note that PdX = X with probability one
on domain d. Hence, trivially, the projection PdX
looses no predictive power of Y .

With the previous assumption alone, using samples
from domain d, we can only estimate β on this sub-
space (i.e. we can only estimate β>Pd). The following
assumption is that for each domain d we have knowl-
edge of a projection operator Πd such that ΠdX does
not lose any predictive power of Y .
Assumption 2. (Dimensionality Reduction) For each
domain d, there exists both a projection operator Πd

which maps X onto a subspace Dd ⊂ Xd and a linear
map, β>d , on Dd, such that

E[Y |X, D = d] = β>d (ΠdX) .

Note that both ΠdX and βd can be specified by dimd

numbers, where dimd is the dimension of Dd.

Implicitly, we are assuming these projections can be
learned with unlabeled data on domain d, which we
discuss in the next section. It is these projections that
allow us to relate novel features on a new target do-
main to those features which may be present in both
the source and target domains.

Although β>d Πd is optimal for domain d, it will not
in general equal β>. However, since both β>d Πd and
β> are optimal predictors on D = d, they must agree
on Xd. Specifically, for all X ∈ Xd, we must have
β>d ΠdX = β>X, which implies:

β>d ΠdPd = β>Pd . (1)

(since PdX ∈ Xd for all X ∈ X , these two mappings
must be equal). This relationship is useful later.

We should also note that the while our analysis as-
sumes our assumptions hold exactly, under a pertur-
bation analysis one can show that our algorithms are
robust and that our results decay gracefully.

2.1. Multi-View Dimensionality Reduction

Our setting is agnostic as to how to obtain the projec-
tions Πd which satisfy Assumption 2, but we take the



time here to briefly address the multi-view dimension-
ality reduction framework we use in practice to find
Πd. Here (with two views), we write X = (X(1), X(2)),
where X(1) and X(2) are two “views” of the data
(sometimes in a rather abstract sense). The goal is
to implicitly learn about the output Y via the rela-
tionship between X(1) and X(2).

The work in Foster et al. [2008] (see also Ando and
Zhang [2007], Kakade and Foster [2007]) provides con-
ditions under which we can reduce the dimensionality
of X (via a learned projection) without losing pre-
dictive power of Y — this is possible under either a
conditional independence assumption or a redundancy
assumption between the two views. Here, the projec-
tions are learned via Canonical Correlation Analysis
(CCA) between X(1) and X(2) using only unlabeled
data. In particular, this work shows that (under either
assumption) the best linear predictor of Y using only
ΠX is equivalent to the best linear predictor with X
(which implies our Assumption 2 since the best linear
predictor is the conditional mean).

3. Transfer Learning

We now present algorithms (and analysis) for learn-
ing predictors on one or more target domains using
training data from one or more source domains (these
source domains may actually include a subset of the
target domains themselves).

We begin in the simplest case where we have full
knowledge of β>s for source domain s (so β>s ΠsX is
the conditional mean of Y ), and we specify how to
transfer this exact β>s to an estimate β̂>t for target
domain t. We characterize under what conditions this
estimator transfers exactly to β>t — these conditions
are rather mild in many natural settings. In the next
subsection, we provide an algorithm (and generaliza-
tion bound) for learning an estimate β̂>t of β>t using
training data on a single source domain s. In the final
subsection, we present a more general algorithm (and
analysis) for estimating β>t (on one or more targets t)
using training data on multiple source domains.

3.1. Perfect Transfer

Suppose we have (perfect) knowledge of β>s . What
knowledge does this impart on β>t ? Intuitively, the re-
lation between β>s and β>t must be linked through the
subspace of X which is “shared” between the domains.
Let us define this notion precisely.

Definition For two domains s and t, define Xs,t =
Xs ∩ Xt (the intersection of the principal subspaces)

which is itself a subspace. We say that a subspace
Xshared is a shared subspace between domains s and t
if Xshared ⊂ Xs,t. Clearly, Xs,t is the largest shared
subspace.

Example 1. (Shared Words) Let coordinate Xi ∈
{0, 1} indicate the presence or absence of word i and
let ei be the unit vector in the i-th direction. Let Is be
a subset of coordinates (words) in domain s such that
for each i ∈ Is, Xi is not perfectly correlated with any
other direction in X on domain s (i.e. Xi is not not
perfectly correlated with any linear transformation of
the other coordinates, X−i). Let It be such a set for
domain t. Then the index set Is,t := Is ∩ It corre-
sponds to a set of “shared words”. Since the span of
{ei : i ∈ Is} is a subspace of Xs (similarly for It), we
have that the span of {ei : i ∈ Is,t} is a shared subspace
between domains s and t.

With this notion in hand, we are able to precisely char-
acterize how β>s and β>t are related.
Lemma 3. (Agreement on Shared Subspace) If Ps,t is
a projection onto any shared subspace Xshared, then:

β>s ΠsPs,t = β>t ΠtPs,t

Proof. By properties of projections, for all X ∈ Xs,
PsX = X and for all X ∈ Xt, PtX = X. Since Ps,tX
is in both Xs and Xt, we have that PsPs,t = Ps,t and
PtPs,t = Ps,t. By Equation 1, we have β>s ΠsPs =
β>Ps, and, by left multiplication by Ps,t, we have
β>s ΠsPs,t = β>Ps,t. Also, by Equation 1, β>t ΠtPt =
β>Pt, and, analogously, β>t ΠtPs,t = β>Ps,t, which
completes the proof.

This implies that an estimator β̂>t of β>t (using β>s )
should satisfy the following Transfer Constraint :

β̂>t ΠtPs,t = β>s ΠsPs,t (2)

As we point out later, in Remark 1, if Ps,t is a pro-
jection onto the largest shared subspace, Xs,t (rather
than any shared subspace), then the Transfer Con-
straint fully characterizes our knowledge of β>t .

Let us now characterize how accurate a solution, β̂>t ,
to the Transfer Constraint is. In particular, we spec-
ify when perfect transfer occurs. Note that β̂>t Πt is
what is relevant for prediction on domain t and re-
quires only dimt = rank(Πt) numbers to specify (see
Assumption 2).
Theorem 4. Let Ps,t be a projection onto any shared
subspace. We have:

• (Transferred Knowledge) If β̂>t is a solution to the
Transfer Constraint (Equation 2), then residual



error β̂>t − β>t satisfies the following constraint:

(β̂>t − β>t )ΠtPs,t = 0 (3)

Hence, β̂>t Πt is correctly specified on a subspace
of dimensionality rank(ΠtPs,t).

• (Perfect Transfer) If rank(ΠtPs,t) = dimt, then
any solution β̂>t satisfies β̂>t Πt = β>t Πt, so we
have that β̂>t is optimal.

We view this perfect transfer condition as being a
rather mild non-degeneracy condition in many set-
tings. The requirement is that every direction (row) in
Πt must be related (i.e. have non-zero inner product)
with some shared direction (in Xshared). Clearly, this
condition depends on our (learned) projection opera-
tors Πt, but in many natural settings, learning such Πt,
which couple new target specific features with shared
features in this manner, may be relatively easy to do
with unlabeled data (such as in our experiments).

Proof. Equation 3 follows since both β̂>t and β>t satisfy
the Transfer Constraint (by Lemma 3). The remaining
claims follow by noting that, by properties of projec-
tion operators, we have (β̂>t Πt − β>t Πt)ΠtPs,t = 0 so
that β̂>t Πt (which has dimt free parameters) is con-
strained in rank(ΠtPs,t) of them.

Our final remark (without proof) points out that the
Transfer Constraint captures all knowledge of β>t .

Remark 1. (Completeness) Let Ps,t be the projec-
tion onto the largest shared subspace, Xs,t. Let β̂t

be any solution to the Transfer Constraint. It is
possible to construct a β̃ and a joint distribution
P̃r[X, Y |D = t] (with the same marginal distribution
on X as Pr[X|D = t]) such that for d ∈ {s, t}:

E[Y |X, D = d] = β̃>X

E[Y |X, D = s] = β>s (ΠsX)

E[Y |X, D = t] = β̂>t (ΠtX)

where the expectations are with respect to Pr[X, Y |D =
s] or P̃r[X, Y |D = t]. Now note that Assumptions 1
and 2 are satisfied with respect to the above parameters
and distributions, and the Transfer Constraint (under
these modifications) is unaltered (as Xs,t is identical).
Hence, without additional assumptions, we cannot fur-
ther restrict the solution space of the Transfer Con-
straint (else Lemma 3 will be violated).

3.2. Training with a Single Source

Say we have labeled training data T = {(x, y)} on the
source domain s of size |T | = n. Here, for each (x, y),
we have that that y is sampled from Pr[Y |X = x,D =
s], but we do not consider the inputs x as random (i.e.
our results hold for this particular fixed set of inputs).

We are interested in obtaining an estimator β̂t with
low `2 error on some domain t, defined as:

Riskt(β̂t) = E[(β̂>t ΠtX − β>t ΠtX)2|D = t]

Let us also denote the covariance functions as:

Σ̂s =
1
n

∑
x∈T

(Πsx)(Πsx)>, Σt =E[(ΠtX)(ΠtX)>|D= t]

Throughout this section we represent the linear maps
β>s and β>t as dims and dimt vectors (which live in
their appropriate spaces) and the covariance functions
as dims × dims and dimt × dimt matrices. Our results
do not depend on the choice of coordinates used in this
representation.

We now specify an algorithm for estimating βt. First,
note that empirical risk minimizer of βs (with respect
to the square loss on the training set T ) is:

β̂s = Σ̂−1
s

 1
n

∑
(x,y)∈T

y(Πsx)

 (4)

where we have implicitly assumed that Σ̂s is invertible.

Now let us specify an estimate of β̂t motivated by the
Transfer Constraint (Equation 2). With respect to a
projection Ps,t onto a shared subspace, define

Ms = ΠsPs,t, Mt = ΠtPs,t, Ms→t = Ms(Mt)+ .

where A+ is the Moore-Penrose pseudoinverse 1. Note
that in most practical cases (such as those in our ex-
periments) we do not expect Mt to be invertible as the
number of rows, dimt, will typically be much smaller
than the number of columns (effectively determined by
the common subspace dimensionality), so the pseudo-
inverse must be used. By Theorem 4, we know that
β>s Ms→t is an optimal estimator of β>t if Mt has full
row rank (i.e. the rank of Mt equals the number of
rows). This suggests the following estimator of βt:

β̂>t = β̂>s Ms→t (5)

Now we provide a bound on the generalization error
when using this estimator. In this theorem, we also

1Recall that if A = UDV > is the “thin” singular value
decomposition of A (so D is rank(A)× rank(A) invertible
matrix), then A+ = V D−1U>.



assume that prefect transfer is possible, i.e. that Mt

has full row rank.

Corollary 5. (Generalization) Suppose Assump-
tions 1 and 2 hold. Also assume that: Mt has full
row rank; Σ̂s is invertible; and the conditional vari-
ance of Y is bounded by 1, i.e. with probability one,
Var(Y |X, D = s) ≤ 1.

For the estimator β̂s (specified in Equation 5), we have

E
[
Riskt(β̂t)

]
≤ trace(M>

s→tΣ̂
−1
s Ms→tΣt)

n

where n is the training set size, and the expectation is
only with respect to the labels Y on the training set.
Furthermore, if Var(Y |X, D = s) = 1 with probability
one, then the above holds with equality.

Let us interpret this result. The transfer operator
Ms→t essentially relates the covariance form on train-
ing data, Σ̂s, to the relevant covariance form on the
target, Σt (it is this latter form for which we desire
β̂t to be accurately estimated under). Note that in
the special case where s = t (and if Σ̂s = Σt, say
with a sufficiently large sample), then Ms→t would
be the identity and the trace would reduce to dimt

— resulting in the usual rate of dimt
n for regression

in a dimt dimensional space. Hence, we can view
trace(M>

s→tΣ̂
−1
s Ms→tΣt) as the “effective dimension-

ality” for learning with samples from source s. This
number could be large if there are directions required
to fit for βt which are not effectively observed in the
training data (as determined by Σ̂s and Ms→t).

The proof is (essentially) a corollary of our multi-
source generalization Theorem 6, provided in the next
subsection.

Proof. (sketch) This result follows from Theorem 6 if
we make the further requirement that Ms→t has full
row rank (which is a condition stipulated in Theo-
rem 6). To see this, using properties of the pseudo-
inverse (with this extra condition), one can show that
the estimator in Equation 9, is equivalent to the es-
timator used here (Equation 5) and that the bound
in Theorem 6 reduces to this bound. Technically, this
Corollary also holds without this additional row rank
condition on Ms→t, but the proof is not provided here
(the proof is analogous to that of Theorem 6).

3.3. Training with Multiple Sources

Now say our training data is from a set S of source do-
mains, and, again, we desire to transfer to one or more
target domains. Let Ts be our training set for source
domain s ∈ S and let n =

∑
s |Ts| (the cumulative

training set size). The set of source domains could
potentially include the target domain (so, as a spe-
cial case, this setting includes the case where we have
labeled data on both our source domains and target
domain). We now specify an algorithm for estimating
βt. Computing an estimator for a different target do-
main t′ is efficient, since, as we shall see, we need only
store certain sufficient statistics for each set Ts.

Let us motivate how we construct such an estimator by
considering a certain risk minimization problem. First,
note that the sum cumulative error of the estimators
{β̂s}s∈S over all training sets is:∑

s∈S

∑
(x,y)∈Ts

(y − β̂>s Πsx)2 (6)

Naively, we could minimize this to find the empirical
risk minimizing estimates of {βs}. However, we are
interested in an estimator of βt.

By the Theorem 4, we know that β>s Ms→t is an opti-
mal estimate of β>t if Mt has full row rank. Define:

Mt→s = M+
s→t

so we can view β>t Mt→s as an estimator of β>s (with
equality if Ms→t has full row rank). This observation
leads us to consider the following cumulative loss:∑

s∈S

∑
(x,y)∈Ts

(y − β̂>t Mt→sΠsx)2 (7)

where have just substituted β̂>t Mt→s in place of β̂>s in
the previous cumulative loss (Equation 6).

We can write the empirical minimizer as follows: let

As =
∑
x∈Ts

(Πsx)(Πsx)>, Bs =
∑

(x,y)∈Ts

y(Πsx)

and define:

Σ̂S =
1
n

∑
s∈S

Mt→sAsM
>
t→s . (8)

It is straightforward to show that the minimizer is:

β̂t = Σ̂+
S

(
1
n

∑
s∈S

Mt→sBs

)
(9)

In the special case of having a single source, i.e. S =
{s}, if Ms→t has full row rank, then this estimator
reduces to the previous estimator β̂t in Equation 5
(shown using properties of the pseudo-inverse).

Furthermore, note that As and Bs are sufficient statis-
tics for the training datasets Ts, so that for any new
target domain t′ we only need to have knowledge of
these sufficient statistics to compute β̂t′ . Hence, the
algorithm efficiently transfers to any new domain.



Theorem 6. (Multi-Source Generalization) Suppose
Assumptions 1 and 2 hold. Also assume that: Mt

has full row rank; Ms→t has full row rank for all
s ∈ S, Σ̂S is invertible; and that with probability one,
Var(Y |X, D = s) ≤ 1 (for all s ∈ S).

For the estimator β̂t (specified in Equation 9), we have

E
[
Riskt(β̂t)

]
≤

trace(Σ̂−1
S Σt)

n

where n is the cumulative training set size and the ex-
pectation is with respect to the labels Y on the all train-
ing sets. Furthermore, if Var(Y |X, D = s) = 1 (with
probability one), then the above holds with equality.

As discussed earlier, we can view trace(Σ̂−1
S Σt) as the

effective dimensionality of this multi-source transfer.
Here, Σ̂S determines how the observed covariance form
from the multiple sources (after they have been pushed
through the transfer, as specified by Equation 8) relate
to the desired covariance form Σt.

Proof. First, we prove that β̂t is an unbiased esti-
mate of βt. By assumption on Mt and Theorem 4,
β>t = β>s Ms→t, which implies β>s = β>t Mt→s (where
the latter equation follows from the full row rank
assumption on Ms→t). Hence, E[Y |X, D = s] =
β>s ΠsX = β>t Mt→sΠsX, so for (x, y) ∈ Ts, we have

E[yΠsx] = E(Πsx)(Πsx)>]M>
t→sβt

This implies that E[Mt→sBs] = Mt→sAsM
>
t→sβt and

so 1
n

∑
s E[Mt→sBs] = Σ̂Sβt. Hence, we have that

E[β̂t] = Σ̂−1
S Σ̂Sβt = βt (by assumption on Σ̂S).

Using this and Assumption 2, one can show:

E[(β̂t − βt)(β̂t − βt)>] ≤ Σ̂−1
S /n (10)

(where the inequality is on positive definite matrices).
This holds with equality if Var(Y |X, D = s) = 1.

Using that trace(AB) = trace(BA), we can write the
risk as follows:

E[Riskt(β̂t)]

= E[(β̂t − βt)>Σt(β̂t − βt)]

= trace(E[(β̂t − βt)>Σt(β̂t − βt)])

= trace(Σ1/2
t E[(β̂t − βt)(β̂t − βt)>]Σ1/2

t )

≤ trace(Σ1/2
t Σ̂−1

S Σ1/2
t )/n

and the first claim follows. Furthermore, if the condi-
tional variance is unity with probability one, then all
the previous inequalities become equalities.

4. Experiments

We now evaluate the algorithms described in Section 3.
Our first set of experiments illustrate how zero-shot
learning is possible, when we transfer from one source
to one target (using the estimator specified in Equa-
tion 5). Our second set of experiments is in the multi-
source setting, where we demonstrate the performance
of our multi-source estimator (Equation 9).

4.1. Data and Setup

We use the publicly available sentiment dataset
from [Blitzer et al., 2007] 2, which consist of reviews
for four different categories of products from Ama-
zon: books, DVDs, electronics, and kitchen appliances.
There are roughly 5000 reviews from each domain, and
each review is labeled with a 1,2,4, or 5 star rating
(there are no 3-star reviews in this dataset). Our goal
is to predict the rating using the text of the review.

Following Blitzer et al. [2007], we use unigrams and
bigrams as features. We have approximately 105 fea-
tures across all domains (after discarding those fea-
tures which occur in only one document). Of these,
approximately 28,000 are shared. The others are spe-
cific to particular domains and will be of no use in
the original space for at least one adaptation setting,
although the algorithms from Section 3 can exploit
them.

The first step to applying our algorithms in this setting
is to construct Πd for each domain such that it (ap-
proximately) satisfies Assumption 2. As we mentioned
in Section 2.1, our procedure is based on Canonical
Correlation Analysis. While we would like to run CCA
individually for each domain, our unlabeled data set is
too small for this procedure to be stable. Because of
this, we take an intermediate approach similar to that
of Ando and Zhang [2007] and Blitzer et al. [2007].
Since CCA is essentially predicting one view with the
other view, we first compute a single matrix W which
is a prediction weight vector for 500 words which are
shared (using all other words). This gives us a 500-
dimensional representation for each X, namely WX.
We now construct Πd using a CCA on a random split
of this lower dimensional WX on each domain.

The next step is to specify the shared space Xshared.
In our procedure, this is quite simple: Xshared is just
the range of W , so Ps,t is onto this space. With Πd

and Xshared in hand, we can now directly find β̂t using
Equations 5 and 9.

2http://www.cis.upenn.edu/∼mdredze/datasets/
sentiment/



(A) Zero-shot transfer (B) Multi-source transfer
Targ Books DVD Electronics Kitchen

Src Base Tran Base Tran Base Tran Base Tran
Books 1.50 1.47 1.70 1.57 2.15 1.60 2.0 1.52
DVD 1.69 1.51 1.61 1.55 2.13 1.55 1.97 1.49

Electronics 1.99 1.66 1.97 1.66 1.42 1.40 1.50 1.39
Kitchen 2.05 1.63 1.90 1.66 1.53 1.43 1.36 1.35

Targ Books Electronics
Src Base Tran Base Tran

B+D 1.52 1.51 2.03 1.46
B+K 1.56 1.53 1.63 1.42
D+E 1.72 1.51 1.52 1.43
E+K 1.96 1.53 1.45 1.42

Table 1. (A) Results on zero-shot transfer across all 16 pairs of domains. Each row corresponds to a source domain
and each group of two columns corresponds to a target domain. Base is the word and bigram baseline (trained as a
(regularized) linear predictor in the high dimensional space). Tran runs the algorithm in Equation 5. The red numbers
on the diagonal are gold standard results which involve training on 2000 points of in-domain data, so we cannot expect
to perform significantly better than this (the Tran number for this column is slightly better as it was trained using the
projection of X rather than using regularization in the high dimensional space). Finally, we note that the 0 vector has
averaged squared error of 2.5 in every domain. (B) Results on multi-source transfer for several source combinations
and the target domains of books and electronics. B+D indicates combining training data from books and DVDs. We
always use 1000 training samples from each source. Base trains a combined linear predictor using both sources in the
high-dimensional representation. Tran uses our multi-source method (Equation 9).
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Figure 1. Left 3 plots: Source vs Target Data. All plots show test error rate (with DVD target domain) vs. training
data size. Every curve we show here uses the canonical representation Πd for each domain. The dotted (blue) curve
trained with source data; the dashed (red) curve is trained with the target data; and the solid (green) curve is trained
data which is half from the source domain and half from target domain. Right plot: We fix the number of source (books
or electronics) instances to 2000 and show curves for increasing number of target (kitchen) instances.

4.2. Zero-shot Domain Adaptation

Table 1A illustrates our zero shot learning experiments
when trained on a single source, with 2000 sample
points, and tested on a single target (see Table 1 cap-
tion for details). We note that our four domains fall
into roughly two groups. Books and DVD reviews
share similar positive and negative vocabulary such as
riveting and boring. Similarly electronics and kitchen
appliances share many similar terms like broken or re-
liable. Transfer within these groups tends to be signif-
icantly easier than between groups. Our adaptation
algorithm always outperforms the high-dimensional
baseline. For example, from books to electronics, we
achieve a 26% relative reduction in error. Even for
domains which are significantly closer, we can achieve
a huge reduction in error relative to the gold stan-
dard. For example, when transferring from kitchen
appliances to electronics, the transfer predictor is as
good as the gold standard.

4.3. Multi-source transfer

Multi-source transfer encompasses a much broader and
challenging set of problems than single-source, and our
experiments only explore a subset of these aspects.

Multiple large labeled source domains. Table 1B
provides results when training on two sources, with
1000 points on each source (see Table 1 caption for
details). Due to space constraints we only give results
for two targets, but the results are similar for other
combinations. Again, our results are consistently and
significantly better. For some of these cases our tar-
get domain is one of our source domains and here, as
expected, our improvement is not as substantial. We
also find that even when both sources are quite dif-
ferent from the target, we perform significantly better
than 2000 instances from either of the sources alone
(For example, books and DVDs to electronics).

Learning Curves for Source vs Target Data.
Here we empirically explore the question, “How much
faster does having target data reduce the error vs hav-
ing source data?” We illustrate this for the target



domain of DVDs in Figure 1 (left three plots. See
caption for details.). As expected, the source curve is
typically worse (but not by much). However, the solid
(green) shows that when half the training data is from
the source and half is from the target, we can perform
as well as (and sometimes better than) an equivalent
amount of target data alone.

Learning from small amounts of target data.
Of particular interest to natural language processing
and information retrieval is the setting in which we
have much less labeled target data when compared to
source data [Daume, 2007, Chen et al., 2008]. Figure 1
(right) shows that we can make significant improve-
ments to our model using as few as 50 target domain
instances. As we might expect, this technique only
makes sense for distant source domains (like books to
kitchen), since transferring from closer domains is al-
ready nearly optimal.
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