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Abstract 

Proteins play fundamental roles in all biological processes. Akin to the complete 
sequencing of genomes, complete descriptions of protein structures is a fundamental 
step towards understanding biological life, and is also highly relevant in the 
development of therapeutics and drugs. Computational prediction methods, especially 
template-based modeling, can quickly generate crude but useful structure models at a 
large scale. The challenge of template-based modeling lies in the recognition of correct 
templates and the generation of accurate sequence-template alignments. Evolutionary 
information (i.e., sequence profiles) has proved to be very powerful in detecting remote 
homologs, as demonstrated by the state-of-the-art profile-profile alignment method 
HHpred. However, there are still a lot of proteins without good sequence profiles. Here, 
we present a new protein threading method for proteins without good sequence profiles 
by nonlinearly combining evolutionary and non-evolutionary information. In particular, 
we model protein threading using a probabilistic graphical model Conditional (Markov) 
Random Fields (CRF) and training the model using a gradient tree boosting algorithm. 
The resultant threading model guides sequence-template alignment using a nonlinear 
scoring function consisting of a collection of regression trees. Each regression tree 
models a type of nonlinear relationship among different protein information. 
Experimental results indicate that when evolutionary information is not good enough, 
this new threading method greatly outperforms HHpred in terms of both alignment 
accuracy and fold recognition rate. The paradigm presented here for the design of a 
nonlinear scoring function is very general. It can also be applied to protein sequence 
alignment and RNA alignment. 
 
Keywords: protein threading, conditional random fields, gradient tree boosting, 
regression tree, nonlinear scoring function 

Introduction 

Various genome sequencing projects have been producing DNA sequences that encode 
millions of proteins. These proteins play fundamental roles in all biological processes 
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including the maintenance of cellular integrity, metabolism, transcription/translation, 
and cell-cell communication. Akin to the complete sequencing of genomes, complete 
descriptions of protein structures is a fundamental step towards understanding 
biological life, and is also highly relevant medically in the development of therapeutics 
and drugs. However, there is still little knowledge of most protein structures because the 
experimental determination methods are costly, time-consuming and sometimes 
technically difficult. 

Computational prediction methods, especially template-based modeling, can 
quickly generate crude but useful structure models at a large scale. Template-based 
modeling is becoming more powerful and important for structure prediction along with 
the increase of available experimental structures. Current PDB may contain all templates 
for single-domain proteins according to the seminal studies in [1]. Among 128 CASP8 
targets (The 8th Critical Assessment of Structure Prediction), only 12 domains are 
officially considered as free modeling targets. These observations imply that the 
structures of many new proteins can be predicted using template-based methods. Recent 
CASP8 results also demonstrate that template-based modeling is the major technique for 
automated structure prediction. Zhang-Server [2, 3] achieves the best accuracy by 
integrating the predictions of nine template-based programs and refining models using 
contact and distance constraints extracted from multiple templates. Second to Zhang-
Server, the mainly threading-based program RAPTOR [4-6] performs slightly better than 
Skolnick’s TASSER [7, 8] and Baker’s Robetta [9], although RAPTOR has no refinement 
module while the latter two programs extensively refined template-based models.  

The error of a template-based model comes from fold recognition and sequence-
template alignment, in addition to the structure difference between the sequence and the 
template. At higher sequence identity (>50%), template-based models can be accurate 
enough to be useful in virtual ligand screening [10, 11], designing site-directed 
mutagenesis experiments [12, 13], small ligand docking prediction [14, 15], and function 
prediction [16, 17]. When the sequence identity is below 30%, it is difficult to recognize 
the best template and generate accurate sequence-template alignments, so the resultant 
models have a wide range of accuracies [18, 19]. In their automated comparative 
modeling of all known protein sequences, Pieper et al have shown that 76% of all the 
models in MODBASE are from alignments in which the sequence and template share 
less than 30% sequence identity [20]. Therefore, to greatly enlarge the pool of useful 
structure models, it is essential to improve fold recognition and alignment method for 
the sequence and template with less than 30% sequence identity. Considering that 
currently there are millions of proteins without experimental structures, even a slight 
improvement of prediction accuracy can have a significant impact on large-scale 
automated structure prediction and its applications. As reported in [21], even 1% 
improvement in the accuracy of fold assessment for the ~4.2 million models in 
MODBASE can result in ~42,000 more models being correctly identified.  

Given a template, the quality of a template-based model mainly depends on the 
alignment from which the model is built. The alignment accuracy depends on a scoring 
function, which is used to guide sequence-template alignment. A scoring function can 



include both evolutionary and non-evolutionary information. Simple methods, such as 
BLAST [22] and FASTA [23], align two proteins using only primary sequence. These 
methods work for proteins with close homologs in the PDB and can only assign the fold 
for ~30% genes in microbial genomes [24]. The utilization of evolutionary information 
(i.e., sequence profiles) has clearly made a significant impact on the field of protein 
structure prediction. Almost all state-of-the-art homology modeling methods use 
sequence profiles [25-33]. HHpred [34], a method mainly using HMM-based sequence 
profiles and secondary structure, outperformed many protein threading methods in 
recent CASP events. Sequence profiles have also been combined with non-
evolutionary/structure information to further improve alignment accuracy. For example, 
several leading methods such as SPARKS [35-38] and RAPTOR [5, 6] use a linear 
combination of structure information (e.g., secondary structure and solvent accessibility) 
and sequence profiles as their scoring functions. Zhang et al have shown that by using 
five structure features plus sequence profile, their threading program MUSTER [39] 
outperforms their profile-profile alignment program PPA [40]. However, MUSTER is 
slightly worse than HHpred in the CASP8 event. 

The CASP8 result 2 also shows that HHpred did not perform as well as RAPTOR 
and MUSTER on the FR (Fold Recognition) targets. This indicates that in some cases, 
evolutionary information is not sufficient to align two proteins, especially when they are 
remote homologs. A close examination of these FR targets shows that their sequence 
profiles are not diverse enough, i.e., there are not many non-redundant homologs in the 
NCBI NR sequence database for these targets. We hypothesize that evolutionary 
information alone is sufficient to align the sequence and template if their sequence 
profiles are diverse enough. Otherwise, non-evolutionary information is necessary to 
achieve better alignment accuracy.  

We test this hypothesis by developing a nonlinear scoring function for protein 
threading. This scoring function nonlinearly combines both evolutionary and non-
evolutionary information to guide sequence-template alignment. A nonlinear scoring 
function is much more flexible than a linear function. When evolutionary information is 
strong enough, our nonlinear function will rely more on sequence profiles. Otherwise, 
we will count more on non-evolutionary information. A nonlinear scoring function is 
also good for the sequence and template with both much conserved and less conserved 
regions. In the highly conserved regions, we will use only primary sequence since it may 
worsen their alignment by using other information. In the less conserved regions, 
sequence signal is weak and we will use structure information to help with alignment. A 
nonlinear function can also effectively model correlation among protein features. Many 
protein features used in threading are highly correlated, e.g., predicted secondary 
structure vs. sequence profiles since the former is usually predicted from the latter. 

We develop this nonlinear scoring function by modeling protein threading using 
a probabilistic graphical model Conditional (Markov) Random Fields (CRFs) [41] and 
training the model using a gradient tree boosting algorithm [42]. The resultant scoring 
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function consists of only dozens of regression trees 3 , which are automatically 
constructed during model training process to capture the nonlinear relationship among 
sequence and structure features. Each regression tree models a type of nonlinear 
relationship among various protein features. Although our nonlinear scoring function is 
much more flexible and powerful in guiding protein alignment, it can still be optimized 
quickly using a dynamic programming algorithm. 

Experimental results indicate that by using a regression-tree-based nonlinear 
scoring function, we can effectively combine evolutionary and non-evolutionary 
information and greatly improve alignment accuracy and fold recognition rate for 
proteins without good sequence profiles. This paper analyzes the relationship between 
alignment accuracy and the diversity of sequence profiles. Our conclusion is that when 
sequence profiles are diverse enough, our method has the same performance as the best 
profile-profile alignment method HHpred. However, the less diverse the sequence 
profiles, the more advantage our method has than HHpred.  

Results 

Testing alignment accuracy by ProSup and SALIGN benchmarks 

We tested the alignment accuracy of our new threading method using the Prosup [43] 
and SALIGN benchmarks [30]. The Prosup benchmark has 127 protein pairs with 
structural alignment generated by Prosup. The SALIGN benchmark contains 200 protein 
pairs with alignments generated by TM-align [44]. On average, two proteins in a pair 
share 20% sequence identity and 65% of structurally equivalent Cα atoms can be 
superposed with RMSD 3.5Å. The SALIGN benchmark is more difficult since it includes 
many pairs of proteins with very different sizes.  
 
Table 1. Alignment accuracy (%) of BoostThreader and other methods on two datasets.  

Prosup SALIGN 
Methods Exact 4-offset Methods Exact 4-offset 
SPARKS 57.20  SPARKS 53.10  
SSALGN 58.30  SALIGN 56.40  
RAPTOR 61.30 79.32 RAPTOR 40.20 59.80 
SP3 65.30 82.20 SP3 56.30 56.60 
SP5 68.70  SP5 59.70  
HHpred 69.04 79.18 HHpred 62.98 75.93 
BoostThreader 76.08 90.20 BoostThreader 64.40 78.93 

 
To evaluate the alignment quality, we use the exact match accuracy which is computed 
as the percentage of one-to-one match positions in the benchmark pairs. We also 
evaluate the 4-offset match accuracy, which is defined as the percentage of the matches 

                                                 
3
 Please refer to http://en.wikipedia.org/wiki/Decision_tree or http://www.stat.cmu.edu/~cshalizi/350-

2006/lecture-10.pdf for a brief introduction to regression trees. 



within 4 positions shift away from one-to-one match. Table 1 compares the performance 
of various alignment methods on the two benchmarks. Our new method, denoted as 
BoostThreader, shows a significant improvement over the others. If only exact match 
accuracy is considered, the absolute improvement over RAPTOR is at least 15%. 
BoostThreader is also better than three leading threading programs SPARKS/SP3/SP5. 
SP5 uses a linear combination of sequence and structure features and a position-specific 
gap penalty. The relative improvements of BootThreader over SP3 and SP5 are 
approximately 16% and 10%, respectively. The relative improvements of BootThreader 
over HHpred, the best profile-profile alignment method, are approximately 10% and 
2.2% on the Prosup and SALIGN benchmarks, respectively. The improvement of 
BoostThreader over HHpred on the SALIGN benchmark is not so significant because 1) 
many proteins in the SALIGN set have very good sequence profiles; and 2) the big size 
difference between a protein pair in SALIGN also makes it challenging to achieve much 
better alignment accuracy. Note that the results of SPARKS/SP3/SP5 are taken from [36] 
and the results of RAPTOR, HHpred and BoostThreader are generated by us using the 
same NCBI NR sequence database. 

Alignment quality with respect to the diversity of sequence profiles 

We compared the alignment quality of BoostThreader with HHpred [34] with respect to 
the diversity of sequence profiles. HHpred is a leading protein alignment method, which 
aligns two proteins using sequence profiles and secondary structure. HHpred uses an 
NEFF value to measure the diversity of the multiple sequence alignment from which the 
sequence profile is derived. Roughly speaking, the NEFF value of a protein can be 
interpreted as the number of non-redundant homologs in the NCBI NR sequence 
database. NEFF is calculated as the exponential of negative entropy averaged over all 
columns of the alignment, so NEFF is a real value ranging from 1 to 20 (i.e., the number 
of amino acid types in nature). The bigger NEFF is, the more diverse the sequence 
profiles and the more effective number of homologs in the database. We evaluate the 
quality of an alignment by first generating a 3D model from this alignment using 
MODELLER [45] and then calculating the TM score [44] of this 3D model. TM score 
measures the quality of a 3D model, ranging from 0 to 1. The higher the TM score, the 
better quality the 3D model.  

Tested on the Prosup and SALIGN benchmarks, BoostThreader is much better 
than HHpred when either the target or the template does not have a very good NEFF 
value. As shown in Figures 1 and 2, when either the sequence or template have a small 
NEFF value (≤7), BoostThreader can generate much better alignment than HHpred in 
terms of the TM score of the 3D model derived from the alignment. When the NEFF 
values are between 7 and 9, BoostThreader is slightly better than HHpred on the Prosup 
benchmark. When both the sequence and template have an NEFF value at least 9, 
BoostThreader has similar performance as HHpred. The SALIGN benchmark contains 
some pairs of proteins with very different sizes. This makes it very challenging to 
achieve very good alignment accuracy. When NEFF≥4, the advantage of BoostThreader 
over HHpred on the SALIGN benchmark is not as significant as on the Prosup 



benchmark. Figure 3 shows the distribution of the NEFF values of all the ~18,000 
templates in the HHpred template database. Among ~18,000 HHpred templates, ~48% 
have NEFF no bigger than 7. This indicates that non-evolutionary information will be 
useful for about half of the templates.  

 

TM score of models with respect to NEFF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9) [9,10) [10,20]

NEFF

T
M

s
c
o

re

BoostThreader

HHpred

 
Figure 1. The average TM score of the 3D models with respect to the NEFF value. The models are 

generated by BoostThreader and HHpred for the protein pairs in the Prosup benchmark. The NEFF 

value of a protein pair is the minimum NEFF of the sequence and template.   
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Figure 2. The average TM score of the 3D models with respect to the NEFF value. The models are 

generated by BoostThreader and HHpred for the protein pairs in the SALIGN benchmark. The 

NEFF value of a protein pair is the minimum NEFF of the sequence and template.   



Distribution of NEFF values of the templates
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Figure 3. The NEFF distribution of the templates in the HHpred template database. 

Testing model quality by CASP8 targets 

To further demonstrate the advantage of BoostThreader when good sequence profiles 
are unavailable, we compared BoostThreader with HHpred2 on 17 CASP8 targets. Most 
of these targets have a small NEFF value. The models of HHpred2 are downloaded from 
the CASP8 website4.  BoostThreader builds a 3D model for a target by first generating all 
sequence-template alignments and then choosing the best alignment using a model 
quality assessment method, which is used by RAPTOR in CASP8 (see RAPTOR abstract 
in the CASP8 abstract book). To do a fair comparison, BoostThreader used an NR 
database and a template database generated before CASP8 started (i.e., May 2008). As 
shown in Table 2, we examined the performance of HHpred2 and BoostThreader on 17 
CM medium and hard CASP8 targets. BoostThreader performs better than HHpred2 on 
10 out of 17 targets while HHpred2 is better on only 2 targets. BoostThreader has an 
average TM score of 0.541, which is 0.044 (i.e., 8.85%) better than HHpred2. In terms of 
the average GDT-TS score, BoostThreader is better than HHpred2 by 0.046 (i.e., 10.36%). 
The improvement of BoostThreader over HHpred2 comes from the improvement of 
both sequence-template alignment and template selection. The result in this table 
indicates that by using non-evolutionary information, BoostThreader can generate better 
models for those targets without good evolutionary information. 
 

Table 2. Performance of BoostThreader and HHpred2 on 17 CASP8 targets. 
Target NEFF HHpred2 BoostThreader 
  TMscore GDT-TS TMscore GDT-TS 
T0414 4.8 0.501 0.437 0.520 0.470 
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T0417 7.7 0.724 0.648 0.733 0.641 
T0420 4.3 0.711 0.552 0.772 0.629 

T0421 4.6 0.416 0.284 0.490 0.354 

T0434 4.9 0.587 0.535 0.588 0.539 
T0436 8.0 0.832 0.585 0.822 0.594 
T0460 1.2 0.223 0.207 0.284 0.277 

T0464 4.2 0.438 0.455 0.407 0.429 
T0466 3.5 0.193 0.162 0.238 0.220 

T0467 5.5 0.228 0.240 0.414 0.405 

T0468 4.2 0.181 0.177 0.369 0.349 

T0471 3.3 0.569 0.481 0.664 0.587 

T0473 5.5 0.622 0.673 0.635 0.680 
T0474 4.3 0.477 0.494 0.465 0.472 
T0495 3.3 0.475 0.418 0.427 0.366 
T0502 6.5 0.719 0.712 0.733 0.735 

T0507 8.7 0.561 0.491 0.643 0.574 

Average 4.97 0.497 0.444 0.541 0.490 

Testing fold recognition with Lindahl benchmark 

We also evaluated the fold recognition rate of our method BoostThreader on the Lindahl 
benchmark [46], which contains 976 proteins. Any two proteins in this set share less than 
40% sequence identity. All-against-all threading of these proteins can generate 976× 975 
pairs. After generating the alignments of all the pairs using BoostThreader, we rank all 
the templates for each sequence using a method similar to [47] and then evaluate the 
fold recognition rate of our method. When evaluating the performance in the 
superfamily level, all the templates similar in the family level are ignored. Similarly, 
when evaluating the performance in the fold level, all the templates similar in the 
superfamily or family level are ignored. As shown in Table 3, BoosThreader is much 
better than SP3/SP5, HHpred and RAPTOR, especially in the superfamily and fold levels. 
These three programs performed well in recent CASP events. 
 
Table 3. Fold recognition rate (%) of BoostThreader and others. The PSI-BLAST, SPARKS, 
SP3, SP5 and HHpred results are from [36]. The FOLDpro results are from [48]. The 
RAPTOR and PROSPECT-II results are from [47]. 

 Family Superfamily Fold 
  Top1 Top5 Top1 Top5 Top1 Top5 
PSIBLAST 71.2 72.3 27.4 27.9 4.0 4.7 
PROSPECT-II 84.1 88.2 52.6 64.8 27.7 50.3 
SPARKS 81.6 88.1 52.5 69.1 24.3 47.7 
SP3 81.6 86.8 55.3 67.7 28.7 47.4 
FOLDpro 85.0 89.9 55.5 70.0 26.5 48.3 
SP5 81.6 87.0 59.9 70.2 37.4 58.6 



HHpred 82.9 87.1 58.8 70.0 25.2 39.4 
RAPTOR 86.6 89.3 56.3 69.0 38.2 58.7 
BoostThreader 86.5 90.5 66.1 76.4 42.6 57.4 

 
Note that we used the NCBI NR database before May 2008 to generate sequence profiles 
while the results of HHpred and SP3/SP5 were published in June 2008 by Zhang et al 
[36]. Therefore, BoostThreader’s superior performance over HHpred and SP3/SP5 
cannot be simply explained by the different versions of the NR database. 

Discussion 

Evolutionary information is much more powerful than primary sequence in detecting 
remote homologs, as evidenced by the HHpred method, which performed better than or 
as well as several top threading methods in recent CASP events. Although previous 
studies indicate that alignment accuracy can be improved by combining evolutionary 
information and structure information, it is unclear when non-evolutionary/structure 
information will help improve protein alignment accuracy. This paper studies the 
relationship between alignment accuracy and the diversity of sequence profiles and has 
shown that when good evolutionary information is unavailable from current sequence 
databases, we can improve alignment accuracy by using non-evolutionary information. 
When both the sequence and template have very good sequence profiles, it will not help 
much by using non-evolutionary information.    

It is challenging to effectively combine evolutionary and non-evolutionary 
information to achieve the maximum alignment accuracy. This paper resolves this issue 
by formulating protein threading using a probabilistic graphical model Conditional 
(Markov) Random Fields (CRF) and regression trees. By using regression trees to 
represent the threading scoring function, our CRF-based threading method can make 
use of as many sequence and structure features as possible and accurately model their 
nonlinear interactions. Although nonlinear, such a scoring function can still be 
efficiently optimized by a dynamic programming algorithm. It takes less than half a 
second to generate the optimal alignment between a typical protein pair. Experimental 
results also demonstrate that by nonlinearly combining evolutionary and non-
evolutionary information, we can greatly improve alignment accuracy over the leading 
profile-based alignment method HHpred [34]. The improved alignment accuracy also 
leads to the improvement of fold recognition rate and final model quality.  

Currently, our threading model only considers state transition between two 
adjacent positions. A straight-forward generalization is to model state dependency 
among three adjacent positions. We can also model pairwise interaction between two 
non-adjacent positions. The challenge of modeling non-local interactions is that it is 
computationally hard to train and test such a model. Some approximation algorithms 
may be resorted.  

In summary, the paradigm of nonlinearly combining various protein features 
offers greatly improved alignment quality and fold recognition rate, especially when 
good evolutionary information is unavailable. We believe that the result in this paper is 



sufficient to warrant utilization of non-evolutionary information in protein modeling 
until all proteins can have a very good sequence profile. The paradigm presented here 
should be easily transferable to protein sequence alignment or even RNA alignment. 

Materials and Methods 

Regression-tree-based CRF threading model 

We formulate the protein threading problem using a probabilistic graphical model 
Conditional (Markov) Random Fields (CRF) [41] and measure the sequence-template 
similarity using a set of regression trees, which take as input protein features and output 
the log-likelihood of an alignment state (i.e., match or gap). A regression tree consists of 
many paths, each specifying a rule to calculate the probability of an alignment state. One 
path can be as simple as “if (mutation score < -50), then the log-likelihood of a match 
state is 9.0ln ” or as complex as “if (-50 < mutation score < -10) and (secondary structure 
score > 0.9) and (solvent accessibility score > 0.6), then the log-likelihood of a match state 
is 7.0ln ”. Regression trees can use different criteria to align different regions of the 
sequence and template. This is analogous to the position specific scoring matrix, which 
has different mutation potentials for the same amino acid at different positions. In 
addition, regression trees can also model the nonlinear relationship between an 
alignment state and protein features. By contrast, a simple linear scoring function used 
in existing threading methods is lack of these good characteristics.  

Let s  denote the target protein and its associated features, e.g., sequence profile, 
predicted secondary structure and solvent accessibility. Let t  denote the template and 
its associated information, e.g., position-specific scoring matrix, solvent accessibility and 
secondary structure. Let },,{ ts IIMX =  be a set of three possible alignment states. 

Meanwhile, M  indicates that two positions are matched and sI  and tI  indicate insertion 

at sequence and template, respectively. Let },...,,{ 21 Laaaa =  ( Xai ∈ ) denote an 

alignment between s  and t  where ia  represents the state at position i . Our CRF-based 

threading model defines the conditional probability of a  given s  and t  as follows. 
),(/)),|(exp(),|( 1 tsZtsaaFtsap

i ii∑ →= −  

Where ),( tsZ is a normalizing factor. ),|( 1 tsaaF ii →−  is a function that calculates the 

log-likelihood of the state transition from 1−ia  to ia  given target and template 

information at position i . To model the nonlinear relationship between an alignment 
state and protein features, we represent ),|( 1 tsaaF ii →−  as a linear combination of 

regression trees. Each regression tree is a nonlinear function of protein features, so the 
scoring function of this new threading model is nonlinear. This model is much more 
powerful than existing threading methods because a state transition in this model 
depends on a complex function of protein features while existing methods use only a 
linear function. Since this CRF model considers only state transition between two 
adjacent positions, the optimal alignment can still be efficiently calculated using 
dynamic programming. 



Building regression trees 

We train this CRF threading model by maximizing the occurring probability of a set of 
training alignments. To build the regression trees, we need to calculate the functional 
gradient of ),|( tsap with respect to ),|( 1 tsaaF ii →− . Let u  and v  denote two 

alignment states. Using a  similar technique as in [42], we can prove that the functional 
gradient of ),|(ln tsap  with respect to ),|( tsvuF → is given by  

),|,(),(
),|(

),|(ln
11 tsvauaPvauaI

tsvuF

tsap
iiii ==−===

→∂

∂
−−  

where ),( 1 vauaI ii ==−  is a 0-1 function. Its value equals to 1 if and only if in the 

training alignment the state transition from 1−i  and i  is vu → . ),|,( 1 tsvauaP ii ==−  is 

the predicted probability of the state transition vu →  under current threading model. 
),|,( 1 tsvauaP ii ==− can be calculated using a forward-backward method (see section 

Implementation details). The functional gradient is easy to interpret. Given a training 
alignment, if the transition vu →  is observed at position i , ideally the predicted 

probability ),|,( 1 tsvauaP ii ==−  should be 1 in order to make 
),|(

),|(ln

tsvuF

tsap

→∂

∂
be 0 and 

thus, to maximize ),|( tsap . Similarly, if the transition is not observed, the predicted 
probability should be 0 to maximize ),|( tsap .  

Given an initial ),|( tsvuF → , to maximize ),|( tsap , we need to move 
),|( tsvuF →  along the gradient direction defined by the difference between 

),( 1 vauaI ii ==−  and ),|,( 1 tsvauaP ii ==− . Since ),|( tsvuF →  is a function taking as 

input protein features at each alignment position, the gradient direction is also a 
function with the same input variables. We can use a function ),|( tsvuT → to fit 

),( 1 vauaI ii ==−  − ),|,( 1 tsvauaP ii ==− with the corresponding input values being the 

protein features at position i . Then ),|( tsvuF →  is updated by ),|( tsvuF → + 
),|( tsvuT → where ),|( tsvuT → is the gradient direction. We can fit a given set of 

data using mathematical tools as simple as linear regression or as complex as neural 
networks. We use regression trees because they not only can capture nonlinear 
correlation among variables, but also are easy to interpret and computationally efficient.  



 

Figure 4. Training process of the CRF-based threading model. 

We choose 66 protein pairs from the PDB as the training set and 50 pairs as the 
validation set. The NEFF (i.e., the diversity of sequence profiles) values of these 66 pairs 
of proteins are distributed uniformly between 1 and 11. In the training set, 46 pairs are in 
the same fold but different superfamily level by the SCOP classification [49]. The other 
20 pairs are in the same superfamily but different family level. Any two proteins in the 
training and validation set have sequence identity less than 30%. The proteins used for 
model training and validation have no high sequence identity (30%) with the proteins in 
the Prosup [43] and SALIGN [30] benchmarks and the CASP8 targets. We use the 
structure alignment program TM-align [44] to build reference alignments for the 
training and validation protein pairs. The maximum training accuracy can be achieved 
by iteratively updating ),|( tsvuF →   around 20 times, as shown in Figure 4. The 
training process is very efficient. It takes approximately two minutes to run a single 
training iteration. More training iterations will lead to more running time for aligning a 
protein pair. As a result, we choose the model trained after 21 iterations as our final 
threading model. For each state transition, the model has twenty-one regression trees 
with an average depth four. 

It is challenging to build the regression trees due to the extremely unbalanced 
number of positive and negative examples. A training example is positive if its response 
value is positive, otherwise negative. Given a training pair with 200 residues in each 
protein and 150 aligned positions, the ratio between the number of positive examples 

and that of negative ones is approximately
3200200

150

××
. This will result in serious bias 

in regression tree training. We employed two strategies to resolve this issue. One is to 
add more weight to the positive examples and the other is that we randomly sample a 
small subset of negative examples for training [50]. To avoid overfitting the training 
alignments, we control the depth of a regression tree. We use an internal 5-fold cross-
validation procedure to determine the best tree depth. The average tree depth is 4.  



Sequence and structure features 

We use both evolutionary information and non-evolutionary information to build 
regression trees for our CRF threading model. We generate position specific score matrix 
(PSSM) for a template and position specific frequency matrix (PSFM) for a target using 
PSI-BLAST with five iterations and E-value 0.001 [51]. Let ),( aiPSSM  denote the 
mutation potential for amino acid a  at template position i  and ),( bjPSFM  the 
occurring frequency of amino acid b  at target position j . The secondary structure and 
solvent accessibility of a template is calculated by the DSSP program [52]. For a target 
protein, we use PSIPRED [53] and SSpro [54] to predict its secondary structure and 
solvent accessibility, respectively. We use NEFF to measure the diversity of sequence 
profiles, which can be calculated by the HHpred package. 
 
Building regression trees for a match state. In addition to its left state, we use the 
following features to estimate the probability of template position  i  being aligned to 
target position j . 
1. Sequence profile similarity. The profile similarity score between two aligned 

positions is calculated as∑ ×
a

ajPSFMaiPSSM ),(),( . 

2. In order for the regression trees to tell the relative importance of evolutionary and 
non-evolutionary information, the diversity values (i.e., NEFF) of the sequence 
profiles are fed into the regression trees. When NEFF is large, regression trees will 
count more on sequence profile similarity. Otherwise, regression trees will also make 
use of non-evolutionary information to estimate the probability of an alignment state. 

3. Structure-based score matrices. These score matrices have been studied by the 
Kihara group for protein alignment [55]. The first matrix is the correlation matrix of 
contact potential values. Each entry of the matrix is computed as the correlation 
coefficient of the pairwise contact potentials of two amino acids. The second matrix 
is the structure-derived substitution matrix [56, 55]. This matrix is calculated by the 
same procedure as the BLOSUM matrices [57, 58], based upon the structure 
alignments of structurally similar protein pairs. When the sequence or template does 
not have very good sequence profiles, the non-homology information in these two 
matrices can help improve alignment.  

4. Contact capacity score. The contact capacity potential measures the capability of a 
residue making a certain number of contacts with other residues in a protein. The 
two residues are in physical contact if the spatial distance between their Cβ atoms is 
smaller than 8Å. Let ),( kaCC  denote the contact potential of amino acid a  having 
k  contacts (see Section 3 in [47]). The contact capacity score is calculated by 

∑ ×
a

ajPSFMcaCC ),(),(  where c  is the number of contacts at template position i . 

5. Environmental fitness score. This score measures how well it is to align one target 
residue to a template local environment, which is defined by a combination of three 
secondary structure types and three solvent accessibility states. Let ),( aenvF  denote 
the environment fitness potential for amino acid a  being in a local environment env  



(see Section 3 in [47]). The environment fitness score is given 
by∑ ×

a
ajPSFMaenvF ),(),( . 

6. Secondary structure consistency score. Supposing the secondary structure type at 
template position i  is ss , the predicted likelihood of ss  at target position j  is used 
as the secondary structure consistency score. 

7. Solvent accessibility consistency score. This is a binary feature used to indicate if the 
template position and the target position are in the same solvent accessibility state. 

 
Building regression trees for a gap state. The simplest gap penalty model is an affine 
function, which specifies that gap open and extension at any position has equal 
probability. Some studies indicate that the probability of a gap is related to its local 
sequence and structure context. For example, SSALIGN [59] uses a context-specific gap 
penalty model, in which the probability of a gap depends on secondary structure and 
solvent accessibility. Some methods use a gap penalty model derived from evolutionary 
information. For example, HHpred [34], SP5 [36] and Ellrott et al [60] use a position-
specific gap penalty model, which is derived from statistical analysis of gaps in a 
multiple sequence alignment. These studies have shown that the probability of a gap is 
related to multiple factors. In this article, we use the following features to estimate the 
probability of a gap state. 

In addition to its left state, the occurring probability of an insertion state at the 
template depends on the following features: secondary structure type, solvent 
accessibility, amino acid identity and hydropathy count [61]. Similarly, the occurring 
probability of an insertion state at the target depends on the following features: 
predicted secondary structure likelihood scores, predicted solvent accessibility, amino 
acid identity and hydropathy count. We also use position-specific gap frequency as one 
feature, which is extracted from multiple sequence alignment. The probability of a gap 
event is calculated as the ratio between the number of the gap events and the number of 
sequences in the multiple sequence alignment. 

Implementation details 

Once a CRF model has been trained, we can find the best alignment a  by 
maximizing ),|( tsaP using a dynamic programming algorithm. This step is similar to 
all the HMM-based sequence alignment procedure. The best sequence-template 
alignment can be computed by the well-known Viterbi algorithm [62], which has the 
advantage that it does not need to compute the normalizer ),( tsZ . 

We can calculate ),|,( 1 tsvauaP ii ==− using a forward-backward method. Let 

),( ivα  and ),( ivβ denote the probabilities of reaching state v  at position i , starting from 

the N-terminal and C-terminal of the alignment, respectively. Both ),( ivα and ),( ivβ  can 

be recursively calculated as follows. 

)),|(exp()1,( tsvFv →= φα  , ),( ivα =∑ −→
u

iutsvuF )1,()),|(exp( α  

Where φ  represents a dummy state. 



),( ivβ  = 1, ),( ivβ  =∑ +→
u

iutsuvF )1,()),|(exp( β  

Then ),|,( 1 tsvauaP ii ==− can be calculated as
),(

),(),|(exp()1,(

tsZ

ivtsvuFiu βα →−
and 

),( tsZ can be calculated as∑u
uu )0,()0,( βα . 

Appendix: Availability of Datasets. All benchmark datasets and training datasets can 
be downloaded from http://ttic.uchicago.edu/~jinbo/BoostThreader/ 
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