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ABSTRACT

We study the regret of an online learner playing a multi-round game in a Banach space B against an adversary
that plays a convex function at each round. We characterize the minimax regret when the adversary plays
linear functions in terms of the Rademacher type of the dual of B. The cases when the adversary plays
bounded and uniformly convex functions respectively are also considered. Our results connect online convex
learning to the study of the geometry of Banach spaces. We also show that appropriate modifications of
the Mirror Descent algorithm from convex optimization can be used to achieve our regret upper bounds.
Finally, we provide a version of Mirror Descent that adapts to the changing exponent of uniform convexity
of the adversary’s functions.



1 Introduction

Online convex optimization [1, 2, 3] has emerged as an abstraction that allows a unified treatment of a variety
of online learning problems where the underlying loss function is convex. In this abstraction, a T -round game
is played between the learner (or the player) and an adversary. At each round t ∈ {1, . . . , T}, the player
makes a move wt in some set W. In the learning context, the set W will represent some hypothesis space.
Once the player has made his choice, the adversary then picks a convex function `t from some set F and the
player suffers “loss” `t(wt). In the learning context, the adversary’s move `t encodes the data seen at time t
and the loss function used to measure the performance of wt on that data. As with any abstraction, on one
hand, we lose contact with the concrete details of the problem at hand, but on the other hand, we gain the
ability to study related problems from a unified point of view. An added benefit of this abstraction is that
it connects online learning with geometry of convex sets, theory of optimization and game theory.

An important notion in the online setting is that of the cumulative regret incurred by the player which
is the difference between the cumulative loss of the player and the cumulative loss for the best fixed move in
hindsight. The goal of regret minimizing algorithms is to control the growth rate of the regret as a function
of T . There has been a huge amount of work characterizing the best regret rates possible under a variety of
assumptions on the player’s and adversary’s sets W and F . With a few exceptions that we mention later,
most of the work has been in the setting where these sets live in some Euclidean space Rd. Whenever the
results do not explicitly involve the dimensionality d, they are also usually applicable in any Hilbert space
H. Our contribution in this paper is to extend the study of optimal regret rates when the set W lives in a
general Banach space B.

In the Hilbert space setting, it is known that the “degree of convexity” or “curvature” of the functions
`t played by the adversary has a significant impact on the achievable regret rates. For example, if the
adversary can play arbitrary convex and Lipschitz functions, the best regret possible is O(

√
T ). However,

if the adversary is constrained to play strongly convex and Lipschitz functions, the regret can be brought
down to O(log T ). Further, it is also known, via minimax lower bounds [4], that these are the best possible
rates in these situations. In a general Banach space, strongly convex functions might not even exist. We
will, therefore, need a generalization of strong convexity called q-uniform convexity (strong convexity is 2-
uniform convexity). There will, in general, be a number q? ∈ [2,∞) such that q?-uniformly convex functions
are the “most curved” functions available on B. There are, again, two extremes: the adversary can play
either arbitrary convex-Lipschitz functions or q?-uniformly convex functions. We show that the minimax
optimal rates in these two situations are of the order Θ?(T 1/p?) and Θ?(T 2−q?) respectively1 where p? is the
(Rademacher) type of the dual B? of B. A Hilbert space has p? = q? = 2. We also give upper and lower
bounds for the intermediate case when the adversary playes q-uniformly convex functions for q > q?. This
case, as far as we know, has not been analyzed even in the Hilbert space setting.

Another natural game that we have not seen analyzed before is the convex-bounded game: here the
adversary plays convex and bounded functions. Of course, being Lipschitz on a bounded domain implies
boundedness but the reverse implication is false: a bounded function can have arbitrarily bad Lipschitz
constant. For the convex-bounded game, we do not have a tight characterization but we can give non-trivial
upper bounds. However, these upper bounds suffice to prove, for example, that the following three properties
of B are equivalent: (1) the convex-bounded game when the player plays in the unit ball of B has non-trivial
(i.e. o(T )) minimax regret; (2) the corresponding convex-Lipschitz game has non-trivial minimax regret; and
(3) the strong law of large numbers holds for bounded i.i.d. random variables in B.

For most “reasonable” Banach spaces, our results are also constructive. That is, we describe player
strategies that achieve the upper bounds we give. These are all based on the Mirror Descent algorithm
that originated in the convex optimization literature [5]. Usually Mirror Descent is run with a strongly
convex function but it turns out that it can also be analyzed in our Banach space setting if it is run with
a q-uniformly convex function Ψ. Moreover, with the correct choice of Ψ, it achieves all the upper bounds
presented in this paper. Thus, part of our contribution is also to show the remarkable properties of the
Mirror Descent algorithm.

1Our informal Θ?(·) notation hides factors that are o(T ε) for every ε > 0.
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The idea of exploiting minimax-maximin duality to analyze optimal regret rates also appears in the recent
work of Abernethy et al. [6]. The earliest papers we know of that explore the connection of the type of a
Banach space to learning theory are those of Donahue et al. [7] and Gurvits [8]. More recently, Mendelson
and Schechtman [9] gave estimates of the fat-shattering dimension of linear functionals on a Banach space in
terms of its type. In the context of online regression with squared loss, Vovk [10] also gives rates worse than
O(
√
T ) when the class of functions one is competing against is not in a Hilbert space, but in some Banach

space.
The rest of the paper is organized as follows. In Section 2, we formally define the minimax and maximin

values of the game between a player and an adversary. We also introduce the notions of type, M-type and
uniform convexity from functional analysis. Section 3 considers convex-Lipschitz and linear games. A key
result in that section is Theorem 3 which gives a characterization of the minimax regret of these games in
terms of the type. Convex-bounded games are treated in Section 4 and the equivalence of the strong law
of large numbers to the existence of player strategies achieving non-trivial regret guarantees is established
(Corollary 5). In Section 5, we describe player strategies based on the Mirror Descent algorithm that achieve
the upper bounds presented in the previous two sections. Section 6 consider the case when the adversary
plays “curved” functions. Here the regret depends on the exponent of uniform convexity of the functions
played by the adversary (Theorem 11). In Section 7, using the techniques of Bartlett et al. [11], we give
a player strategy that adapts to the exponent of uniform convexity of the functions being played by the
adversary. We conclude in Section 8 by exploring directions for future work including a discussion on how
the ideas in this paper might lead to practical algorithms. All proofs omitted from the main body of the
paper can be found in the appendix.

2 Preliminaries

2.1 Regret and Minimax Value

Our primary objects of study are certain T -round games where the player P makes moves in compact convex
setW contained in some (real) separable Banach space B. The adverary A plays bounded continuous convex
functions on W chosen from a fixed function class F . We will assume that F is compact in the topology
induced by the norm ‖`‖ := supw∈W |`(w)|. The game proceeds as follows.

For t = 1 to T
• P plays wt ∈ W,
• A plays `t ∈ F ,
• P suffers `t(wt).

For given sequences w1:T , `1:T , we define the regret of P as,

Reg(w1:T , `1:T ) :=
T∑
t=1

`t(wt)− inf
w∈W

T∑
t=1

`t(w) .

Given the tuple (T,B,W,F), we can define the minimax value of the above game as follows.

Definition 1. Given T ≥ 1 and B,W,F satisfying the conditions above, define the minimax value,

VT,B (W,F) := inf
w1∈W

sup
`1∈F

· · · inf
wT∈W

sup
`T∈F

Reg(w1:T , `1:T ) .

When T and B are clear from context, we will simply denote the minimax value by V (W,F). A player
strategy (or P-strategy) W is a sequence (W1, . . . ,WT ) of functions such that Wt : F t−1 →W. For a strategy
W , we define the regret as,

Reg(W, `1:T ) :=
T∑
t=1

`t(Wt(`1:t−1))− inf
w∈W

T∑
t=1

`t(w) .
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In terms of player strategies, the minimax value takes a simpler form,

VT,B (W,F) = inf
W

sup
`1:T

Reg(W, `1:T ) ,

where the supremum is over all sequences `1:T ∈ FT . Compactness of F allows us to define probability
measures on FT . Let Q denote distributions over FT . We can define the maximin value,

UT,B (W,F) := sup
Q

inf
W

E`1:T∼Q [Reg(W, `1:T )] .

By a general minimax theorem [12, Thm. 7.1], under the conditions we have imposed on W and F , the
minimax and maximin values are equal, i.e.

VT,B (W,F) = UT,B (W,F) . (1)

This equality will be the starting point for our subsequent analysis. The equivalence of the minimax and
maximin values is not new and can be found in, for instance, [12, p. 31].

2.2 Type, M-type and Uniform Convexity

One of the goals of this paper is to characterize the minimax value in terms of the geometric properties of the
space B and “degree of convexity” inherent in the functions in F . Among the geometric characteristics of
a Banach space B, the two most useful for us are the Rademacher type (or simply type) and the Martingale
type (or M-type) of B. A Banach space B has type p if there is some constant C such that for any T ≥ 1
and any v1, . . . ,vT ∈ B,

E

[∥∥∥∥∥
T∑
t=1

εtvt

∥∥∥∥∥
]
≤ C

(
T∑
t=1

‖vt‖p
)1/p

, (2)

where εt’s are i.i.d. Rademacher (symmetric ±1-valued) random variables. Clearly, any Banach space has
type 1. Having type p′ for p′ > p implies having type p. Therefore, we define

p?(B) := sup {p : B has type p} . (3)

Note that B may not have type p?(B), i.e. the supremum above may not be achieved. Also, we always have
1 ≤ p?(B) ≤ 2. A notion related to that of type is that of cotype. A Banach space B has cotype q if there
is some constant C such that for any T ≥ 1 and any v1, . . . ,vT ∈ B,(

T∑
t=1

‖vt‖q
)1/q

≤ C E

[∥∥∥∥∥
T∑
t=1

εtvt

∥∥∥∥∥
]
, (4)

where εt’s are i.i.d. Rademacher (symmetric ±1-valued) random variables.
Beck [13] defined B-convexity to study strong law of large numbers in Banach spaces. A Banach space

B is B-convex if there exists T > 0 and an ε > 0 such that for any v1, . . . ,vT ∈ B with ‖vt‖ ≤ 1, we have∥∥∥∥∥
T∑
t=1

εtvt

∥∥∥∥∥ ≤ (1− ε)T (5)

for some choices of signs ε1, . . . , εT ∈ {±1}. As it turns out, B is B-convex iff B has non-trivial type
p > 1 [14].

A Banach space B has M-type p if there is some constant C such that for any T ≥ 1 and martingale
difference sequence d1, . . . ,dT with values in B,

E

[∥∥∥∥∥
T∑
t=1

dt

∥∥∥∥∥
]
≤ C

(
T∑
t=1

‖dt‖p
)1/p

. (6)
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We also define the best M-type possible for a Banach space,

p?M (B) := sup {p : B has M-type p} . (7)

Similar to the definition of cotype is the definition of M-cotype. A Banach space B has M-cotype q if there
is some constant C such that for any T ≥ 1 and martingale difference sequence d1, . . . ,dT with values in B,(

T∑
t=1

‖dt‖q
)1/q

≤ C E

[∥∥∥∥∥
T∑
t=1

dt

∥∥∥∥∥
]
. (8)

To measure the “degree of convexity” of the functions played by the adversary, we need the notion of
uniform convexity. Let ‖ · ‖ be the norm associated with a Banach space B. A function ` : B → R is said
to be (C, q)-uniformly convex on B if there is some constant C > 0 such that, for any v1,v2 ∈ B and any
θ ∈ [0, 1],

`(θv1 + (1− θ)v2) ≤ θ`(v1) + (1− θ)`(v2)− Cθ(1− θ)
q

‖v1 − v2‖q .

If C ≥ 1 we simply say that the function ` is q-uniformly convex.
For a convex function ` : B→ R, its subdifferential at a point v is defined as,

∂`(v) = {λ ∈ B? : ∀v′, `(v′) ≥ `(v) + λ(v′ − v)} ,

where B? denotes the dual space of B. This consists of all continuous linear functions on B with norm
defined as ‖`‖? := supw:‖w‖≤1 `(w). If ∂`(v) is a singleton then we say ` is differentiable at v and denote
the unique member of ∂`(v) by ∇`(v). If ` is differentiable at v1, define the Bregman divergence associated
with ` as,

∆` (v1,v2) = `(v1)− `(v2)−∇`(v1)(v1 − v2) .

Recall that a function ` : B → R is L-Lipschitz on some set W ∈ B if for any v1,v2 ∈ W, we have
`(v1) − `(v2) ≤ L ‖v1 − v2‖. Given a set W in a Banach space B, we define the following natural sets of
convex functions on W,

lin(W) := {` : ` is linear and 1-Lipschitz on W} ,
cvx(W) := {` : ` is convex and 1-Lipschitz on W} ,
bdd(W) := {` : ` is convex and bounded by 1 on W} ,

cvxq,L(W) = {` : ` is q-uniformly convex and L-Lipschitz on W} .

In the following sections, we will analyze the minimax value V (W,F) when the adversary’s set of moves is
one these 4 sets defined above. For readability, we will drop the dependence of these sets on W when it is
clear from context. For example, we will refer to V (W, cvx(W)) simply as V (W, cvx).

3 Convex-Lipschitz and Linear Games

Given a Banach space B with a norm ‖ · ‖, denote its unit ball by U (B) := {v ∈ B : ‖v‖ ≤ 1}. Consider
the case when the P’s set W is the unit ball U (B) for some B. This setting is not as restrictive as it sounds
since any bounded symmetric convex set K in a vector space V gives a Banach space B = (V, ‖ · ‖K), where
we equip V with the norm,

‖v‖K := inf {α > 0 : v ∈ αK} . (9)

Moreover, (the closure of) K is the unit ball of this Banach space.
So, fix B and consider the caseW = U (B), F = cvx(W). Theorem 14 given in [4] gives us V (W, cvx) =

V (W, lin). We are therefore led to consider the caseW = U (B), F = lin(W). Note that lin(W) is simply the
unit ball U (B?). The theorem below relates the minimax value V (U (B), lin) to the behaviour of random
walks in B∗ generated by Rademacher random variables.
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Theorem 2. Let ε1, . . . , εT be i.i.d. Rademacher random variables. Define

R(B) := sup
`1:T

E

[∥∥∥∥∥
T∑
t=1

εt`t

∥∥∥∥∥
?

]
,

where the supremum is over all sequences `1:T such that `t ∈ U (B?). Then, the minimax value V (U (B), lin)
is bounded as,

R(B) ≤ V (U (B), lin) ≤ 2R(B) .

Proof. Note that when W = U (B) and F = lin(W), all `t’s are linear functions. Therefore,

sup
w∈W

T∑
t=1

εt`t(w) =

∥∥∥∥∥
T∑
t=1

εt`t

∥∥∥∥∥
?

.

The theorem then follows by combining Lemmas 14 and 15.

Given the above result, we can now characterize the minimax value V (U (B), lin) in terms of the p?(B?)
where B? is the dual space of B.

Theorem 3. For all p ∈ [1, p?(B?)), there exists a constant C such that,

T 1/p?(B?) ≤ V (U (B), lin) = V (U (B), cvx) ≤ CT 1/p . (10)

If the supremum in (3) is achieved, the upper bound also holds for p = p?(B?).

Proof. The upper bound follows from Theorem 2 and the definition of type (2). For the lower bound, note
that any finite dimensional Banach space has p?(B?) = 2 with a possibly dimension dependent constant. In
this case, the lower bound of

√
T for the linear game game is easy: the adversary picks some non-zero vector,

say ` ∈ U (B?), and plays ` or −` at random. Therefore, assume B is infinite dimensional. By Theorem 3.5
of [15] (see also Remark 3.4), we see that there exists `1, ..., `T ∈ U (B?) such that for any choice of ε1, ..., εT ,∥∥∥∥∥

T∑
t=1

εt`t

∥∥∥∥∥
?

≥

(
T∑
t=1

|εt|p
?(B?)

) 1
p?(B?)

= T 1/p?(B?) .

Hence, by Theorem 2, we get the lower bound.

Although we have stated the above theorem for the special case when W = U (B) and F = lin(U (B)),
it actually gives us regret rates when P plays in r U (B) and A plays L-Lipschitz linear functions via the
following equality which is easy to prove from first principles,

V (r U (B), L lin(U (B))) = r · L · V (U (B), lin(U (B))) . (11)

4 Convex-Bounded Games

Another natural game we consider is one in which P plays from some convex setW and A plays some convex
function bounded by 1. In the following theorem, we bound the value of such a game.

Theorem 4. For all p ∈ [1, p?(B?)), there is a constant C such that,

T 1/p?(B?) ≤ V (U (B),bdd) ≤ CT 1/p+1/2q . (12)

where q = p
p−1 . If the supremum in (3) is achieved, the upper bound also holds for p = p?(B?).
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Proof of Theorem 4. Let us actually consider the case W = r U (B) and F = bdd(r U (B)). The bounds
will turn out to be independent of r. Note that we have the inclusion,

bdd(r U (B)) ⊇ 1
r

lin(U (B))

which implies

V (r U (B),bdd(r U (B))) ≥ V
(
r U (B),

1
r

lin(U (B))
)
.

The lower bound is now immediate due to lower bound on linear game on unit ball (Theorem 3) and property
(11).

For the upper bound, note that any convex function bounded by 1 on the scaled ball r U (B) is 2
εr

Lipschitz on the ball of radius (1− ε)r [21]. Hence, by upper bound in Theorem 3 and property (11), we see
that there exists a strategy say W whose regret on the ball of radius r(1 − ε) is bounded by C

ε T
1
p for any

p ∈ [1, p?(B?). That is
T∑
t=1

`t(Wt)− argmin
w∈r(1−ε)U(B)

T∑
t=1

`t(w) ≤ C

ε
T 1/p, ∀p ∈ [1, p?(B?)) (13)

Let w? = argmin
w∈r U(B)

∑T
t=1 `t(w). Now we consider two cases, first when w? ∈ (1− ε)r U (B) In this case the

regret of the strategy on the unit ball is bounded by C
ε T

1/p for all p ∈ [1, p?(B?)). On the other hand if
w? /∈ (1 − ε)r U (B), then define w?

ε = r(1−ε)w?

‖w?‖ . Note that w?
ε ∈ r(1 − ε)U (B). In this case by convexity

of
∑T
t=1 `t(w), we have that

T∑
t=1

`t(w?
ε ) ≤

r(1− ε)
‖w?‖

T∑
t=1

`t(w?) +
(

1− r(1− ε)
‖w?‖

) T∑
t=1

`t(0)

≤ r(1− ε)
‖w?‖

T∑
t=1

`t(w?) +
(

1− r(1− ε)
‖w?‖

)
T

Hence, we have that
T∑
t=1

`t(w?
ε )−

T∑
t=1

`t(w?) ≤
(
r(1− ε)
‖w?‖

− 1
) T∑
t=1

`t(w?) +
(

1− r(1− ε)
‖w?‖

)
T

≤ 2
(

1− r(1− ε)
‖w?‖

)
T

However, since ‖w?‖ ≤ r we see that
T∑
t=1

`t(w?
ε )−

T∑
t=1

`t(w?) ≤ 2εT

Combining with (13) we see that for any p ∈ [1, p?(B?)),
T∑
t=1

`t(wt)−
T∑
t=1

`t(w?) ≤ C

ε
T 1/p + 2εT

Choosing ε =
√

C
2T 1/q we get that in either of the cases (ie. ‖w?‖ ≤ r(1 − ε) and otherwise), we have that

for any p ∈ [1, p?(B?))
T∑
t=1

`t(Wt)− argmin
w∈U(B)

T∑
t=1

`t(w) ≤
√

2CT
1
p+ 1

2q
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Although we have stated the above result for the unit ball, the proof given above shows that the bounds
are independent of the radius of the ball in which the player is playing.

Theorems 3 and 4 imply the following interesting corollary.

Corollary 5. The following statements are equivalent :

1. V (U (B),bdd) = o(T ). 3. B? has non-trivial type
2. V (U (B), cvx) = o(T ). 4. Both B and B? are B-convex.
5. Law of large numbers for i.i.d. bounded random variables holds in both B and B?.

Proof of Corollary 5. The implications 3 ⇒ 1 and 3 ⇒ 2 follow from the upper bounds in Theorems 3
and 4. The reverse implications 1⇒ 3 and 2⇒ 3, in turn, follow from the lower bounds in those theorems.
The equivalence of 3 and 4 is due to deep results of Pisier [14]. The equivalence of 4 and 5 is due to Beck
[13].

The convex-Lipschitz games (and q-uniformly convex-Lipschitz games considered below) depend, by
definition, not only on the player’s set W but also on the norm ‖ · ‖ of the underlying Banach space B. This
is because A’s functions are required to be Lipschitz w.r.t. ‖ · ‖. However, note that the convex-bounded
game can be defined only in terms of the player set W. Hence, one would expect the value of the game to
be characterized solely by properties of set W. This is what the following corollary confirms.

Corollary 6. Let W be any symmetric bounded convex subset of a vector space V. The value of the bounded
convex game on W is non-trivial (i.e. o(T )) iff the Banach space (V, ‖ · ‖W) (where ‖ · ‖W is defined as in
(9)) is B-convex.

5 Strategy for the Player

The upper bound on the regret given in Theorem 3 relies on Theorem 2 which, in turn, uses minimax-
maximin equality. The proof, therefore, is not constructive and does not yield a strategy for P achieving
the upper bound. In this section, we provide a strategy whose regret achieves the minimax value for a wide
class of Banach spaces. The strategy we consider is known as Mirror Descent and is given as Algorithm 1
below. The following proposition gives a regret bound for Mirror Descent.

Algorithm 1 Mirror Descent (Parameters : η > 0, Ψ : B→ R which is uniformly convex)
for t = 1 to T do

Play wt and receive `t
w′t+1 ← ∇Ψ? (∇Ψ(wt)− ηλt) where λt ∈ ∂`t(wt)
Update wt+1 ← argmin

w∈W
∆Ψ

(
w,w′t+1

)
end for

Proposition 7. Suppose W ⊆ B is such that ‖w‖ ≤ B. Let MD denote the P-strategy obtained by running
Mirror Descent with a function Ψ that is q-uniformly convex on B and C-Lipschitz on W, and the learning
rate η = (BC/T )1/p · (1/L). Here, p = q/(q− 1) is the dual exponent of q. Then, for all sequences `1:T such
that `t is L-Lipschitz on W, we have,

Reg(MD, `1:T ) = O
(

(BC)1/q · L · T 1/p
)

Proof. For λ ∈ B?,w ∈ B we denote the pairing λ(w) by 〈λ,w〉 where 〈·, ·〉 : B? ×B→ R. This pairing is
bilinear but not symmetric. We will first show that, for any w ∈ W,

η 〈λt,wt −w〉 ≤ ∆Ψ (w,wt)−∆Ψ (w,wt+1) +
ηp

p
‖λt‖2? , (14)
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where p = q/(q − 1). We have,

η 〈λt,wt −w〉 = 〈ηλt,wt −wt+1 + wt+1 −w〉
= 〈ηλt,wt −wt+1〉+ 〈ηλt,wt+1 −w〉
= 〈ηλt,wt −wt+1〉︸ ︷︷ ︸

s1

+ 〈ηλt +∇Ψ(wt+1)−∇Ψ(wt),wt+1 −w〉︸ ︷︷ ︸
s2

+ 〈∇Ψ(wt)−∇Ψ(wt+1),wt+1 −w〉︸ ︷︷ ︸
s3

(15)

Now, by definition of the dual norm and the fact that ab ≤ ap

p + bq

q for any a, b ≥ 0, we get

s1 ≤ ‖(wt −wt+1)‖ · ‖ηλ‖? ≤
1
q
‖wt −wt+1‖q +

1
p
‖ηλt‖p∗ .

By the definition of the update, wt+1 minimizes

〈ηλt −∇Ψ(wt),w〉+ Ψ(w)

over w ∈ W. Therefore, s2 ≤ 0. Using simple algebraic manipulations, we get

s3 = ∆Ψ (w,wt)−∆Ψ (w,wt+1)−∆Ψ (wt+1,wt) .

Plugging this into (15), we get

η 〈λt,wt −w〉 ≤ ∆Ψ (w,wt)−∆Ψ (w,wt+1) +
ηp

p
‖λt‖2?

+
1
q
‖wt −wt+1‖q −∆Ψ (wt+1,wt)︸ ︷︷ ︸

s4

Using that Ψ is q-uniformly convex on B implies that s4 ≤ 0. So, we get (14).
We can now bound the regret as follows. For any w ∈ W, since λt ∈ ∂`t(wt), we have,

`t(wt)− `t(w) ≤ 〈λt,wt −w〉 .

Combining this with (14) and summing over t gives,

T∑
t=1

(`t(wt)− `t(w)) ≤ ∆Ψ (w,w1)−∆Ψ (w,wT+1)
η

+
ηp−1

p

T∑
t=1

‖λt‖p? .

Now, ∆Ψ (w,wT+1) ≥ 0 and ∆Ψ (w,w1) ≤ 2BC. Further ‖λt‖? ≤ L since `t is L-Lipschitz. Plugging these
above and optimizing over η gives,

T∑
t=1

(`t(wt)− `t(w)) ≤ O
(

(BC)1/q · L · T 1/p
)
.

This gives us hope that we can achieve the upper bound in (10) if we can find a p
p−1 -uniformly convex

function on a given Banach space for any p ∈ [1, p?(B?)). Unfortunately, such functions might not exist for
all p in this range. However, the following remarkable theorem of Pisier [16] guarantees that such functions
do exist for p ∈ [1, p?M (B?)).
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Theorem (Pisier). A Banach space B has M-cotype q iff there exists a q-uniformly convex function on B.

Now consider some p ∈ [1, p?M (B?)). Then, by definition, B? has M-type p. It is a fact that B? has
M-type p iff B has M-cotype p

p−1 [15, Chapter 6]. Thus, B has M-cotype p
p−1 . Now, Pisier’s theorem gives

us a p
p−1 -uniformly convex function on B.

Pisier’s theorem addresses the issue of the non-constructive nature of the upper bound in (10) to a large
extent. In fact, if p?(B?) = p?M (B?) then the upper bound is actually achieved by using Mirror Descent with
an appropriate Ψ. If p?(B?) > p?M (B?) then we do not know how to achieve the upper bound for p’s in the
range (p?M (B?), p?(B?)). However, this only happens quite rarely. In particular, if B has local unconditional
structure and B? has type p for some p > 1 then it also has M-type p [16]. Most “reasonable” spaces have
local unconditional structure2. Thus, for the remainder of this paper, we make the following assumption.

Assumption 8. The Banach space B has local unconditional structure [18, p. 59].

Under this mild assumption, we can show that Mirror Descent achieves the upper bound in (10).

Theorem 9. For each p ∈ [1, p?(B?)), there exists a Ψ such that the upper bound (10) is achieved by Mirror
Descent using this Ψ. If the supremum in (3) is achieved, then p can also be p?(B?).

Proof. First, if p?(B?) = 1 then the upper bound is trivial. On the other hand, when type is non-trivial,
then type p implies cotype q = p

p−1 . Under Assumption 8, we have that cotype q implies M-cotype q.
Therefore, for each p ∈ (1, p?(B?)), B is of M-cotype q. By Theorem (Pisier), there exists a q-uniformly
convex function on B. Using this function in the Mirror Descent algorithm, Proposition 7 yields the required
upper bound.

The below corollary shows that the Mirror Descent can also be used to play the convex-bounded game
and that the upper bound in Theorem 4 can be achieved.

Corollary 10. For each p ∈ [1, p?(B?)), there exists a Ψ and a choice of ε > 0 such that if we use Mirror
Descent with this Ψ, restricting the player’s set to the ball of radius (1− ε), then the upper bound in (12) is
achieved by this strategy.

Proof. The Corollary follows immediately from proof of Theorem 4 where we can replace the strategy we
used on the 1− ε ball to the MD algorithm on that ball.

6 Uniformly Convex-Lipschitz Games

For any Hilbert space H, it is known that V (U (H), cvx2,L) is much smaller than V (U (H), lin), i.e. the game
is much easier for P if A plays 2-uniformly convex (also called strongly convex) functions. In fact, it is known
that V (U (H), cvx2,L) = Θ(L2 log T ) while V (U (H), lin) = Θ(

√
T ). This suggests that we should get a rate

between log(T ) and
√
T if A plays q-uniformly convex functions in a Hilbert space H for some q > 2. As

far as we know, there is no characterization of the achievable rates for these intermediate situations even for
Hilbert spaces. Our next result provides upper and lower bounds for V (U (B), cvxq,L) in a Banach space,
when the exponent of A’s uniform convexity lies in an intermediate range between its minimum possible
value q? and its maximum value ∞. It is easy to see that under Assumption 8, the minimum possible value
q? is p?(B?)/(p?(B?)− 1).

Theorem 11. Let q? = p?(B?)
p?(B?)−1 and q ∈ (q?,∞). Let p = q/(q − 1) be the dual exponent of q. Then, as

long as cvxq,L is non-empty, there exists K that depends on L such that,(
1− 1

L

)
1
p
T 1−p+ p

p?(B?) ≤ V (U (B), cvxq,L) ≤ KTmin{2−p,1/p?(B?)} . (16)

2In fact, constructing a Banach space without local unconditional structure took some effort [17].
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Proof. We start by proving the lower bound. To this end note that if cvxq,L is non-empty, then the adversary
plays L-Lipschitz, q-uniformly convex loss functions. Note that given such a function, there exists a norm
|·| such that |·| ≤ ‖·‖ ≤ L |·| (ie. an equivalent norm) and 1

q |·|
q is a q-uniformly convex function [22]. Given

this we can consider a game where adversary plays only functions from the set

lincvxq,L(W) := {`(w) = 〈w,x〉+
1
q
|w|q : |x|? ≤ L− 1}

Now first of all note that since the above is L-Lipschitz w.r.t. |·|, it is automatically L-Lipchitz w.r.t. ‖·‖.
Hence lincvxq,L ⊆ cvxq,L, and so we have that V (U (B), lincvxq,L) ≤ V (U (B), cvxq,L) However note that

V (U (B), lincvxq,L) = inf
W

sup
P

E`1:T∼P Reg(W, `1:T ) (17)

Note that

Reg(W, `1:T ) =
T∑
t=1

(
〈xt,wt〉+

|wt|q

q

)
− inf

w∈U(B)

T∑
t=1

(
〈xt,w〉+

|w|q

q

)

=
T∑
t=1

(
〈xt,wt〉+

|wt|q

q

)
+ T sup

w∈U(B)

(〈
− 1
T

T∑
t=1

xt,w

〉
− |w|

q

q

)

≥
T∑
t=1

(
〈xt,wt〉+

‖wt‖q

Lq

)
+ T sup

w∈U(B)

(〈
− 1
T

T∑
t=1

xt,w

〉
− ‖w‖

q

q

)

=
T∑
t=1

(
〈xt,wt〉+

|wt|q

Lq

)
+
T
∥∥∥− 1

T

∑T
t=1 xt

∥∥∥p
?

p

Where the last step is by definition of convex dual of ‖·‖
q

q . Now note that since we have a supremum over
distribution in (17), and so we can lower bound the value by picking the particular distribution where each
xt is got by randomly sampling rademacher variable εt and setting xt = εtyt where y1, ...,yT ∈ B? are fixed
(to be set later). Thus we see that for any sequence y1, ...,yT , we have that

V (U (B), lincvxq,L) ≥ inf
W

E

 T∑
t=1

(
〈εtyt,wt〉+

‖wt‖q

Lq

)
+
T 1−p

∥∥∥−∑T
t=1 εtyt

∥∥∥p
?

p


= inf

W
E

[
T∑
t=1

‖wt‖q

Lq

]
+
T 1−pE

[∥∥∥−∑T
t=1 εtyt

∥∥∥p
?

]
p

=
T 1−pE

[∥∥∥−∑T
t=1 εtyt

∥∥∥p
?

]
p

≥
T 1−p

(
E
[∥∥∥−∑T

t=1 εtyt
∥∥∥
?

])p
p

(18)

where the first equality is because wt is only dependent on the history and so the expectation over each εtyt
is 0 and the last step is due to Jensen’s inequality. However since `p?(B?) is uniformly isomorphic to B? [15],
we see that there exists y1, ...,yT ∈ L−1

L U (B?) such that for any ε1, ..., εT ∈ {−1, 1}, we have that∥∥∥∥∥−
T∑
t=1

εtyt

∥∥∥∥∥
?

≥ L− 1
L

T
1

p?(B?)

However since 1
L |·|? ≤ ‖·‖? ≤ |·|?, we see that if ‖yt‖? ≤

L−1
L then, |yt|? ≤ L−1 and so using these y1, ...,yT

in (18) we conclude that

V (U (B), lincvxq,L) ≥
(

1− 1
L

)
T 1−p+ p

p?(B?)

p
(19)
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Note that the above lower bound becomes 0 when L = 1 but however in that case it means that the
adversary is forced to play 1-Lipschitz, q-uniformly convex function. However since from each q-uniformly
convex L-Lipschitz convex function we can build an equivalent norm with distortion 1/L, this means that
the function the adversary plays can be used to construct the original norm itself. From the construction in
[22] it becomes clear that the functions the adversary can play can be merely the norm plus some constant
and so the lower bound of 0 is real.

Now we turn to proving the upper bound, for this we simply appeal to Theorem 12 to give a constructive
proof for the theorem. Consider the regret of the mirror descent algorithm when we run it using a q?-
uniformly convex function Ψ that is C-Lipschitz on the unit ball. Here, for simplicity, we assume that the
supremum is achieved in (3) (otherwise we can pick a Ψ that is q′-uniformly convex for q′ = p′/(p′ − 1)
where p′ = p?(B?) − 1/ log T and pay a constant factor in the upper bound). Note that in the case when
q > q? + 1, we have that each σ?t = 0 and so by Theorem 12 we have that,

Reg(w1:T , `1:T ) ≤ 2 min
λ1,...,λT

T∑
t=1

(L+ C)p
∗(∑

j≤t λj

)p∗−1 + 2
T∑
t=1

λtC ≤ 2 min
λ

(L+ C)p
∗
T 2−p∗

λp∗−1
+ 2TλC

Using λ = L+C
T 1/q? (2C)1/p?

we see that

Reg(w1:T , `1:T ) ≤ 8(2C)1/q?(L+ C)T 1/p?

On the other hand when q ≤ q? + 1, using the upper bound in the theorem with λt = 0 for all t we see that
since all qt = q and all σ?t = 1 and Lt = L we find that the regret of the adaptive algorithm is bounded as

Reg(w1:T , `1:T ) ≤
T∑
t=1

(
2(L+ C)p

tp−1
+

2(L+ C)p
?

tp?−1

)
Hence we in fact get the bound,

Reg(w1:T , `1:T ) ≤
T∑
t=1

(
2(L+ C)p

tp−1
+

2(L+ C)p
?

tp?−1

)
≤

T∑
t=1

4(L+ C)p

tp−1
≤ 4(L+ C)p

∫ T

1

1
tp−1

dt

Hence we see that for p < p?(B?) ≤ 2, Reg(w1:T , `1:T ) ≤ 4(L+C)p

2−p T 2−p. Since the regret of the adaptive

algorithm bounds the value of the game, we see that by picking constant K = max{ 4(L+C)p

2−p , 8(2C)1/q?(L+
C)} we get that :

V (U (B), cvxq,L) ≤ KTmin{2−p,1/p?(B?)} (20)

Now combining Equations 19 and 20, we get the theorem statement.

The upper and lower bounds do not match in general and it is an interesting open problem to remove
this gap. Note that the upper and lower bounds do match for the two extreme cases q → q? and q → ∞.
When q → q?, then both lower and upper bound exponents tend to 2 − p?(B?). On the other hand, when
q →∞, both exponents tend to 1/p?(B?).

7 Adaptive Player Strategy

In the previous section, we analyzed the game where A plays q-uniformly convex Lipschitz functions. A
natural extension is a game where at round t, A plays qt uniformly convex functions. In this section, we
give an adaptive player strategy for such games that achieves the upper bound in Theorem 11 whenever the
adversary plays only q-uniformly convex functions on all rounds and in general gets intermediate rates when
the modulus of convexity on each round is different.
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Algorithm 2 Adaptive Mirror Descent (Parameters : Ψ : B→ R which is q?-uniformly convex)
C ← Lipschitz constant of Ψ on U (B), w1 ← 0, Φ1 ← 0
for t = 1 to T do

Play wt and receive `t which is Lt-Lipschitz and (σt, qt)-uniformly convex
Pick λt that satisfies (21)
Φt+1 ← Φt + `t + λtΨ
w′t+1 ← ∇Φ?t+1 (∇Φt(wt))
Update wt+1 ← argmin

w∈W
∆Φt+1

(
w,w′t+1

)
end for

Now for the sake of readability, we assume that the supremum in (3) is achieved. The following theorem
states that the same adaptive algorithm achieves the upper bound suggested in Theorem 11 for various
q-uniformly convex games. Further the algorithm adjusts itself to the scenario when A plays a different
(σt, qt)-uniformly convex function at each round t. To see this let, σ?j = σj 11{qj<q∗+1}. In the above
algorithm we set at each round λt that satisfies,

2Cλt =

∑
i≤t

σ?i

M
qi
t(∑

j≤t

[
σ?
j

M
qj
t

+
λj

M
q?

t

])pi
+ 1(∑

j≤t

[
σ?
j

M
qj
t

+
λj

M
q?

t

])p∗−1 , (21)

where Mt = Lt + C.
We have the following theorem which upper bounds the regret of the Adaptive Mirror Descent algorithm.

Theorem 12. Let W = U (B). Let AMD denote the P-strategy obtained by running Adaptive Mirror
Descent with a Ψ which is q? = p?(B?)

p?(B?)−1 uniformly convex. Then, for all sequences `1:T such that `t is
Lt-Lipschitz and (σt, qt)-uniformly convex, we have,

Reg(AMD, `1:T ) ≤ min
λ1:T

T∑
t=1


∑
i≤t

2σ?i
M
qi
t(∑

j≤t

[
σ?
j

M
qj
t

+
λj

M
q?

t

])pi
+ 2(∑

j≤t

[
σ?
j

M
qj
t

+
λj

M
q?

t

])p∗−1 + 2λtC


Proof. First note that ft = `t + λtΨ and further Ψ is a q?-uniformly convex and `t is (σt, qt)-uniformly
convex. Hence we see that

∆ft

(
w′t+1,wt

)
≥ σt
qt
‖w′t+1 −wt‖qt +

λt
q?
‖w′t+1 −wt‖q

?

≥ σ∗t
qt
‖w′t+1 −wt‖qt +

λt
q?
‖w′t+1 −wt‖q

?

Where

σ∗t =
{
σt if qt ≤ q? + 1
0 otherwise

Now since Φt+1 =
∑
i≤t ft, we see that

∆Φt+1

(
wt,w′t+1

)
=
〈
∇Φt+1(wt)−∇Φt+1(w′t+1),wt −w′t+1

〉
−∆Φt+1

(
w′t+1,wt

)
=
〈
∇ft(wt),wt −w′t+1

〉
−∆Φt+1

(
w′t+1,wt

)
≤
〈
∇ft(wt),wt −w′t+1

〉
−

t∑
i=1

σ∗i
qi
‖w′i+1 −wi‖qi −

t∑
i=1

λi
q?
‖w′i+1 −wi‖q

?

12



Now consider any arbitrary sequence β1, ..., β2t of non-negative numbers such that
∑2t
i=1 βi = 1. In this case

note that by Fenchel-Young inequality,

∆Φt+1

(
wt,w′t+1

)
≤

2t∑
i=1

〈
βi∇ft(wt),wt −w′t+1

〉
−

t∑
i=1

σ∗i
qi
‖w′i+1 −wi‖qi −

t∑
i=1

λi
q?
‖w′i+1 −wi‖q

?

≤
t∑
i=1

(
βpii ‖∇ft(wt)‖pi?
pi(σ∗i )pi/qi

+
βp

?

i+t ‖∇ft(wt)‖p
?

?

p?λ
p?/q?

i

)

≤
t∑
i=1

(
βpii (Lt + λtC)pi

pi(σ∗i )pi/qi
+
βp

?

i+t(Lt + λtC)p
?

p?λ
p?/q?

i

)

≤
t∑
i=1

(
βpii (Lt + C)pi

pi(σ∗i )pi/qi
+
βp

?

i+t(Lt + C)p
?

p?λ
p?/q?

i

)

In the above we used the fact that since `t is Lt-Lipschitz and Ψ is C-Lipschitz, ‖∇ft(wt)‖? ≤ (Lt+C). We
also further assume that λt ≤ 1 for any λ. Now choosing

∀i ≤ t, βi ∝
σ∗i

(Lt + C)qi
and ∀t < i ≤ 2t, βi ∝

λi
(Lt + C)q?

we see that

∆Φt+1

(
wt,w′t+1

)
≤

t∑
i=1

 σ∗i
(Lt+C)qi

pi

(∑t
j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))pi +
λi

(Lt+C)q?

p?
(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))p?


≤
t∑
i=1

 σ∗i
(Lt+C)qi(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))pi +
λi

(Lt+C)q?(∑t
j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))p?


≤
t∑
i=1

 σ∗i
(Lt+C)qi(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))pi +
λi

(Lt+C)q?
+ σ∗i

(Lt+C)qi(∑t
j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))p?


=

 t∑
i=1

σ∗i
(Lt+C)qi(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))pi
+

1(∑t
j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))p?−1

where the first step is because p?, pi ≥ 1. Thus using Lemma 16 we conclude that

Reg(w1:T , `1:T ) ≤
T∑
t=1

 t∑
i=1

σ∗i
(Lt+C)qi(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))pi


+
1(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))p?−1 + 2Cλt
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Now since we choose λt’s that satisfy Equation 21, using Lemma 17 we conclude that

Reg(w1:T , `1:T ) ≤ 2 argmin
λ1,...,λT≥0


T∑
t=1

 t∑
i=1

σ∗i
(Lt+C)qi(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))pi


+
1(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))p?−1 + 2Cλt




Using the above regret bound we get the following corollary showing that the Adaptive Mirror Descent
algorithm can be used to achieve all upper bounds on the regret presented in the paper.

Corollary 13. There exists a Ψ which is q?-uniformly convex function, and using this function with the
Adaptive Mirror Descent (AMD) algorithm, we have the following.
1. Regret of AMD for convex-Lipschitz game matches upper bound in (10).
2 . Regret of AMD for q-uniformly convex game matches upper bound in (16).
3 . For the bounded convex game, there exists a C > 0 such that using AMD on 1 − CT−

1
2q? ball achieves

the upper bound in (12) for the game played on the unit ball.

Proof. Claim 2 is shown in the constructive proof of the upper bound of Theorem 11, specifically Equation
20. As for claim 1, note that this is the case of linear functions and so it is the same as adversary picking
each σt = 0 (and pick any qt as it is immaterial then). Regret in this case again can be found in the proof
of the upper bound of Theorem 11 ( Equation 20). and so claim 1 also holds. As for the last claim, given
claim 1, it is evident from proof of Theorem 4.

We also note that when q? = 2 then for any sequence of σ1, .., σT , AMD enjoys the same guarantee as
Algorithm 4 in [11] (see Theorem 4.2 for regret gaurantee).

8 Discussion

In this paper, we considered general Banach spaces. Let us consider a particular case: finite d-dimensional
spaces `qd for q > 2. Since the corresponding q-norms are equivalent to the 2-norm up to a factor of

√
d, we can

get a regret bound of O(
√
dT ) for the convex-Lipschitz game in these spaces. However, using our results, we

can also get O(T 1/p) rates since the dual space `pd with p = q/(q−1) has type p with a dimension independent
constant. So, we have the interesting consequence that we can trade-off dimensionality dependence with a
worse rate in T .

In future work, we also plan to convert the player strategies given here into implementable algorithms.
Online learning algorithms can be implemented in infinite dimensional reproducing kernel Hilbert spaces [19]
by exploiting the representer theorem and duality. We can, therefore, hope to implement online learning
algorithms in infinite dimensional Banach spaces where some analogue of the representer theorem is available.
Der and Lee [20] have made progress in this direction using the notion of semi-inner products. For Lq(Ω, µ)
spaces with q even, they showed how the problem of finding a maximum margin linear classifier can be
reduced to a finite dimensional convex program using “moment functions”. The types (and their associated
constants) of Lq spaces are well known from classical Banach space theory. So, we can use their ideas to get
online algorithms in these spaces with provable regret guarantees. Vovk [10] also defines “Banach kernels” for
certain Banach spaces of real valued functions and gives an implementable algorithm assuming the Banach
kernel is efficiently computable. His interest is in prediction with the squared loss. It will be interesting to
explore the connection of his ideas with the setting of this paper.

Using online-to-batch conversions, our results also imply error bounds for the estimation error in the
batch setting. If p?(B?) < 2 then we get a rate worse than O(T−1/2). However, we get the ability to work

14



with richer function classes. This can decrease the approximation error. The study of this trade-off can be
helpful.

We would also like to improve our lower and/or upper bounds where they do not match. In this regard,
we should mention that the upper bound for the convex-bounded game given in Theorem 4 is not tight for
a Hilbert space. Our upper bound is O(T 3/4) but it can be shown that using the self-concordant barrier
log(1− ‖w‖2) for the unit ball, we get an upper bound of O(T 2/3).
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Appendix

The proof of Theorem 2 required a couple of lemmas which we prove now. The first lemma uses minimax-
maximin equality and the idea of tangent sequences to prove a general upper bound on the minimax value of
a general (not necessarily linear) game. The second lemma gives a simple lower bound argument for linear
games.

Lemma 14. Fix a Banach space B and T ≥ 1. Let ε1, . . . , εT be i.i.d. Rademacher random variables. If F
is closed under negation then the minimax value satisfies the upper bound,

V (W,F) ≤ 2 · sup
`1:T∈FT

E

[
sup
w∈W

(
T∑
t=1

εt`t(w)

)]
.

Proof. Recall that we denote a general distribution overA’s sequences by Q and P-strategies by W . Equation
(1) gives us,

V (W,F) = sup
Q

inf
W

E`1:T∼Q [Reg(W, `1:T )] .

If we define
VQ := inf

W
E`1:T∼Q [Reg(W, `1:T )] ,

this can be written succinctly as,
V (W,F) = sup

Q
VQ . (22)

Now, let us fix a distribution Q and denote the conditional expectation w.r.t. `1:t by Et [·] and the full
expectation w.r.t. `1:T by E [·]. Substituting the definition of regret and noting that the infimum in its
definition does not depend on the strategy W , we get

VQ = inf
W

(
E

[
T∑
t=1

`t(Wt(`1:t−1))

])
− E

[
inf

w∈W

T∑
t=1

`t(w)

]
. (23)

Let us simplify the infimum over P-strategies as follows,

inf
W

E

[
T∑
t=1

`t(Wt(`1:t−1))

]
= inf

W

T∑
t=1

E [Et−1 [`t(Wt(`1:t−1))]]

=
T∑
t=1

inf
Wt

E [Et−1 [`t(Wt(`1:t−1))]]

=
T∑
t=1

E
[

inf
wt∈W

Et−1 [`t(wt)]
]
.

Substituting this into (23), we get,

VQ =
T∑
t=1

E
[

inf
wt∈W

Et−1 [`t(wt)]
]
− E

[
inf

w∈W

T∑
t=1

`t(w)

]

= E

[
sup
w∈W

T∑
t=1

−`t(w)

]
−

T∑
t=1

E
[

sup
wt∈W

Et−1 [−`t(wt)]
]
. (24)
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Up to this point we have equality. Now, we use subadditivity of “sup” to get,

VQ ≤ E

[
sup
w∈W

T∑
t=1

(−`t(w)− Et−1 [−`t(w)])

]

+ E

[
sup
w∈W

T∑
t=1

Et−1 [−`t(w)]

]
−

T∑
t=1

E
[

sup
wt∈W

Et−1 [−`t(wt)]
]

(25)

≤ E

[
sup
w∈W

T∑
t=1

(−`t(w)− Et−1 [−`t(w)])

]
. (26)

Note that −`t(w)− Et−1 [−`(w)] is a martingale difference sequence. Now, we want to use an analogue
of the symmetrization technique used in empirical process theory. There, symmetrization is achieved by
introducing a “ghost sample”, i.e. another i.i.d. sequence independent of the first one and having the same
distribution as the first. Here, instead, we will need a tangent sequence ˜̀

1:T that is constructed as follows.
Let ˜̀

1 be an independent copy of `1. For t ≥ 2, let ˜̀
t have the same conditional distribution as `t given

`1:t−1 also be independent of `t given `1:t−1. Let G denote the sigma field generated by `1:T . Then, we have,

Et−1 [`t] = Et−1

[
˜̀
t

]
= EG

[
˜̀
t

]
. (27)

The first equality is true by construction. The second holds because ˜̀
t is conditionally independent of `t:T

given `1:t−1. We also have,
`t = EG [`t] (28)

because `t is G-measurable. Plugging in (27) and (28) into (26), we get,

VQ ≤ E

[
sup
w∈W

T∑
t=1

(
EG [−`t(w)]− EG

[
−˜̀

t(w)
])]

= E

[
sup
w∈W

EG

[
T∑
t=1

˜̀
t(w)− `t(w)

]]

≤ E

[
sup
w∈W

T∑
t=1

˜̀
t(w)− `t(w)

]
, (29)

where the last inequality follows by Jensen’s. At this stage, the expectation is over `1:T and ˜̀
1:T .

Now introduce i.i.d. Rademacher random variables ε1, . . . , εT that are also independent of all the random
variables defined so far. For any t > 1, conditioned on `1:t−1, we have (where “ d=” denotes equality in
distribution),

• (`t, ˜̀
t)

d= (˜̀
t, `t), and

• (`t, ˜̀
t) is independent of ˜̀

1:t−1.

Thus, conditioned on `1:t−1,
(˜̀

1:t−1, `t, ˜̀
t)

d= (˜̀
1:t−1, ˜̀

t, `t) .

Therefore,
(`1:t−1, ˜̀

1:t−1, `t, ˜̀
t)

d= (`1:t−1, ˜̀
1:t−1, ˜̀

t, `t) . (30)

This is a crucial distributional equality and we will use it repeatedly to introduce the Rademacher variables
into (29) one by one. Using (30) with t = T , we can rewrite (29) as,

VQ ≤ E

[
sup
w∈W

T−1∑
t=1

(˜̀
t(w)− `t(w)) + εT (˜̀

T (w)− `T (w))

]
.
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Here, the expectation is over `1:T , ˜̀
1:T and εT . We now get rid of the expectation over `T , ˜̀

T by upper
bounding it by the supremum over `′T , `

′′
T in F . Thus,

VQ ≤ sup
`′T ,`

′′
T∈F

E

[
sup
w∈W

T−1∑
t=1

(˜̀
t(w)− `t(w)) + εT (`′′T (w)− `′T (w))

]
.

In the above expression, the expectation is over `1:T−1, ˜̀
1:T−1 and εT .

Now repeating this argument by using (30) for t = T − 1, . . . , 1 (in that order), we finally get,

VQ ≤ sup
`′1:T ,`

′′
1:T∈FT

E

[
sup
w∈W

T∑
t=1

εt(`′′t (w)− `′t(w))

]
.

At this stage, the expectation is only over the Rademacher random variables. Finally, using subdditivity of
“sup” and the fact that F is closed under negation, we get

VQ ≤ sup
`′′1:T∈FT

E

[
sup
w∈W

T∑
t=1

εt`
′′
t (w)

]
+ sup
`′1:T∈FT

E

[
sup
w∈W

T∑
t=1

εt`
′
t(w)

]

= 2 sup
`′1:T∈FT

E

[
sup
w∈W

T∑
t=1

εt`t(w)

]
.

Plugging this into (22) finishes the proof.

Lemma 15. Fix a Banach space B and T ≥ 1. If F consists only of linear functions on W and is closed
under negation, then

sup
`1:T∈FT

E

[
sup
w∈W

(
T∑
t=1

εt`t(w)

)]
≤ V (W,F) .

Proof. Conider the following distribution Q for A. Fix `′1, . . . , `
′
T ∈ F and choose i.i.d. Rademacher

random variables ε1, . . . , εT . Set `t = εt`
′
t. Under this distribution, for any wt ∈ W, Et−1 [−`t(wt)] =

−`′t(wt)Et−1 [εt] = 0. Thus, by (24), we have,

VQ = E

[
sup
w∈W

T∑
t=1

−εt`′t(w)

]
.

Thus, we have,

V (W,F) = sup
Q
VQ

≥ sup
`′1:T∈FT

E

[
sup
w∈W

T∑
t=1

−εt`′t(w)

]

= sup
`′1:T∈FT

E

[
sup
w∈W

T∑
t=1

εt`
′
t(w)

]
,

where the last step used the fact that F is closed under negation.

Lemma 16. For the Adaptive Mirror Descent Algorithm we have that

Reg(w1:T , `1:T ) ≤
T∑
t=1

(
∆Φt+1

(
wt,w′t+1

)
+ 2λtC

)
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Proof. Let ft = `t + λtΨ, then by definition of Bregman divergence we see that for any w? ∈ W we have
that,

ft(wt)− ft(w?) = 〈∇ft(wt),wt −w?〉 −∆ft (w?,wt)

However note that since ∇Φ?t+1 = (∇Φt+1)−1 the update step in the algorithm implies that

∇Φt+1(w′t+1) = ∇Φt(wt) = ∇Φt+1(wt)−∇ft(wt)

Where the last inequality is because Φt+1 = Φt + ft and hence,

ft(wt)− ft(w?) =
〈
∇Φt+1(wt)−∇Φt+1(w′t+1),w? −wt

〉
−∆ft (w?,wt)

= ∆Φt+1 (w?,wt)−∆Φt+1

(
w?,w′t+1

)
+ ∆Φt+1

(
wt,w′t+1

)
−∆ft (w?,wt)

≤ ∆Φt+1 (w?,wt)−∆Φt+1 (w?,wt+1) + ∆Φt+1

(
wt,w′t+1

)
−∆ft (w?,wt)

where the last step is by Pythagoras theorem for Bregman divergences. Hence adding up we find that

T∑
t=1

(ft(wt)− ft(w?)) ≤
T∑
t=2

(
∆Φt+1 (w?,wt)−∆Φt (w?,wt)−∆ft (w?,wt)

)
+ ∆Φ2 (w?,w1)−∆f1 (w?,w1) +

T∑
t=1

∆Φt+1

(
wt,w′t+1

)
=

T∑
t=1

∆Φt+1

(
wt,w′t+1

)
The last inequality is due to linearity of Bregman divergence and the fact that Φt+1 = Φt+ft. Also Φ2 = f2.
Thus we have that for any w? ∈ W,

T∑
t=1

(`t(wt)− `t(w?)) ≤
T∑
t=1

(
∆Φt+1

(
wt,w′t+1

)
+ λtΨ(w?)− λtΨ(wt)

)
≤

T∑
t=1

(
∆Φt+1

(
wt,w′t+1

)
+ λtC‖w? −wt‖

)
≤

T∑
t=1

(
∆Φt+1

(
wt,w′t+1

)
+ 2λtC

)
where the last two inequalities are becauseW = U (B) and the function Ψ is C-Lipschitz on the unit ball.

Lemma 17. Define for any sequence λ1, ..., λS of any size S,

OS(λ1, ..., λS) =
S∑
t=1

 t∑
i=1

 σ∗i
(Lt+C)qi(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))pi
+

1(∑t
j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))p?−1 + 2Cλt


Then as long as we pick λt that satisfies Equation 21, we have that for any T

OT (λ1, ..., λT ) ≤ 2 min
λ1,...,λT

O{λ1, ..., λT }

Proof. We prove this by induction on S. First consider the case when S = 1 and any λ? ≥ 0. Now there are
two cases, first if λ1 ≤ λ?1, then note that

O1(λ1) = 4Cλ1 ≤ 4Cλ?1 ≤ 2O{λ?1}
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On the other hand if λ1 > λ?1, then

O1(λ1) =
2 σ∗1

(L1+C)q1(
σ∗1

(L1+C)q1 + λ1
(L1+C)q?

)p1 +
2(

σ∗1
(L1+C)q1 + λ1

(L1+C)q?

)p?−1

≤
2 σ∗1

(L1+C)q1(
σ∗1

(L1+C)q1 + λ?1
(L1+C)q?

)p1 +
2(

σ∗1
(L1+C)q1 + λ?1

(Lt+C)q?

)p?−1 ≤ 2O1(λ?1)

Thus for S = 1 we have the required statement. Now assume the inductive hypothesis hold for S = T−1, that
is we have that OT−1(λ1, ..., λT−1) ≤ 2 minλ?1 ,...,λ?T−1

OT−1(λ?1, ..., λ
?
T=1). Now consider any λ?1, ..., λ

?
T ≥ 0.

We have two possibilities, first
∑T
t=1 λt ≤

∑T
t=1 λ

?
t . In this case,

OT (λ1, ..., λT ) = 4C
T∑
t=1

λt ≤ 4C
T∑
t=1

λ?t ≤ 2OT (λ?1, ..., λ
?
T )

Next case is when
∑T
t=1 λt >

∑T
t=1 λ

?
t . In this case from Equation 21 see that

2CλT +
T∑
i=1

 σ∗i
(LT+C)qi(∑T

j=1

(
σ∗j

(LT+C)qj
+ λj

(LT+C)q?

))pi
+

1(∑T
j=1

(
σ∗j

(LT+C)qj
+ λj

(LT+C)q?

))p?−1

= 2
T∑
i=1

 σ∗i
(LT+C)qi(∑T

j=1

σ∗j
(LT+C)qj

+
∑T
j=1 λj

(LT+C)q?

)pi
+

2(∑T
j=1

σ∗j
(LT+C)qj

+
∑T
j=1 λj

(LT+C)q?

)p?−1

< 2
T∑
i=1

 σ∗i
(LT+C)qi(∑T

j=1

σ∗j
(LT+C)qj

+
∑T
j=1 λ

?
j

(LT+C)q?

)pi
+

2(∑T
j=1

σ∗j
(LT+C)qj

+
∑T
j=1 λ

?
j

(LT+C)q?

)p?−1

≤ 2
T∑
i=1

 σ∗i
(LT+C)qi(∑T

j=1

σ∗j
(LT+C)qj

+
∑T
j=1

λ?j
(LT+C)q?

)pi
+

2(∑T
j=1

σ∗j
(LT+C)qj

+
∑T
j=1

λ?j
(LT+C)q?

)p?−1 + 4Cλ?T

(31)

However note that for any sequence λ′1, ..., λ
′
T , by definition

OT (λ′1, ..., λT ) =OT−1(λ′1, ..., λ
′
T−1) + 2Cλ′T

+
T∑
i=1

 σ∗i
(LT+C)qi(∑T

j=1

σ∗
j

(LT+C)
qj

+
∑T
j=1

λ′j
(LT+C)q?

)pi
+ 1(∑T

j=1

σ∗
j

(LT+C)
qj

+
∑T
j=1

λ′j
(LT+C)q?

)p?−1 (32)

Hence applying the above on λ1, ..., λT used by the algorithm and using inductive hypothesis and Equation
31 we see that

OT (λ1, ..., λT ) ≤2 min
λ?1 ,...,λ

?
T−1

OT−1(λ?1, ..., λ
?
T−1)

+ 2


T∑
i=1

 σ∗i
(LT+C)qi(∑T

j=1

σ∗j
(LT+C)qj

+
∑T
j=1 λ

?
j

(LT+C)q?

)pi
+

1(∑T
j=1

σ∗j
(LT+C)qj

+
∑T
j=1 λ

?
j

(LT+C)q?

)p?−1 + 2Cλ?T
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Since the second term holds for any λ?1, ..., λ
?
T and from Equation 32 we can conclude that

OT (λ1, ..., λT ) ≤ 2 min
λ?1 ,...,λ

?
T≥0

OT (λ?1, ..., λ
?
T )

Thus we see that by induction the statement of the lemma is true.
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