
CMSC 35900 (Spring 2008) Learning Theory Lecture: 12

VC Dimension of Multilayer Neural Networks, Range Queries

Instructors: Sham Kakade and Ambuj Tewari

1 Properties of Growth Function
We had defined the growth function for function class containing {±1}-valued functions. The definition easily gener-
alizes to the case when the functions take value in some finite set Y . Let F ⊆ YX be a class of Y-valued functions.
Define

ΠF (m) := max
xm
1 ∈Xm

|F|xm
1
| .

Note that ΠF (m) ≤ |Y|m. We now establish two elementary lemmas that will prove useful while bounding the VC
dimension of multilayer neural networks.

Lemma 1.1. Let F (1) ⊆ YX1 and F (2) ⊆ YX2 be two function classes. Let F = F (1) × F (2) be their cartesian
product. Then we have,

ΠF (m) ≤ ΠF(1)(m) ·ΠF(2)(m) .

Proof. Fix xm1 . By definition of cartesian product,

|F|xm
1
| = |F (1)

|um
1
| · |F (2)

|vm
1
|

≤ ΠF(1)(m) ·ΠF(2)(m) .

Since xm1 was arbitrary, this proves the lemma.

Lemma 1.2. Let F (1) ⊆ YX1 and F (2) ⊆ YY1
2 be two function classes. Let F = F (2) ◦ F (1) be their composition.

The we have,
ΠF (m) ≤ ΠF(2)(m) ·ΠF(1)(m) .

Proof. Fix xm1 ∈ Xm. By definition of F , we have

F|xm
1

=
{

(f2(f1(x1)), . . . , f2(f1(xm)))
∣∣∣ f1 ∈ F (1), f2 ∈ F (2)

}
=

⋃
u∈F(1)

|xm
1

{
(f2(u1), . . . , f2(um))

∣∣∣ f2 ∈ F (2)
}
.

Therefore,

|F|xm
1
| ≤

∑
u∈F(1)

|xm
1

∣∣∣{(f2(u1), . . . , f2(um))
∣∣∣ f2 ∈ F (2)

}∣∣∣
≤

∑
u∈F(1)

|xm
1

ΠF(2)(m)

= |F (1)
|xm

1
| ·ΠF(2)(m)

≤ ΠF(2)(m) ·ΠF(1)(m) .

Since xm1 was arbitrary, this proves the lemma.

1

2 VC Dimension of Multilayer Neural Networks
In general, a node ν in a neural network computes a function

σ(w(ν) · x− θ(ν))

of its input x. The function σ is called the activation function. Some examples are:

σ(t) = sgn(t) Binary

σ(t) =
1

1 + e−t
Sigmoidal

σ(t) = arctan(t) Sigmoidal

We will consider multilayer neural networks with binary activation function. Somewhat different techniques are
needed to get VC dimension bound for networks with sigmoidal activation functions.

Suppose the input space X = Rd0 . A multilayer net with l layers is simply a composition

fl ◦ . . . ◦ f2 ◦ f1(x)

where

fi : Rdi−1 → {±1}di , 1 ≤ i ≤ l − 1 ,

fl : Rdl−1 → {±1} .

Moreover, each component function fi,j : Rdi−1 → {±1} is computed as

fi,j(u) = sgn(wi,j · u− θi,j) ,

where wi,j ∈ Rdi−1 , θi,j ∈ R are the set of weights associated with the jth node in layer i. So, if denote the class of
functions (as we vary the weights) computed by this node by F (i,j), then the class of function associated with layer i
is simply

F (i) = F (i,1) ×F (i,2) × . . .×F (i,di) .

and the class of functions associated with the entire network is

F = F (l) ◦ . . . ◦ F (2) ◦ F (1) .

Thus, we can bound the growth function of F , using Lemmas 1.1 and 1.2, as follows.

ΠF (m) ≤
l∏
i=1

ΠF(i)(m)

≤
l∏
i=1

di∏
j=1

ΠF(i,j)(m)

≤
l∏
i=1

di∏
j=1

(
me

di−1 + 1

)di−1+1

,

where the last inequality follows by Sauer’s lemma and the fact that the VC dimension of halfspaces in d dimensions
is d+ 1. If we define

N :=
l∑
i=1

di−1∑
j=1

(di−1 + 1)

to be the total number of parameters in the net, then the above inequality implies that

ΠF (m) ≤ (me)N . (1)

Now it easy to bound the VC dimension of F .

2

Theorem 2.1. Let F denote the class of functions computed a multilayer neural network as defined above. Then
VCdim(F) = O(N log2(N)).

Proof. Let there be a set of size m that is shattered. Then ΠF (m) = 2m. Combining this with (1), we get

2m ≤ (me)N .

In order to satisfy this inequality m should be O(N log2(N)).

3 VC Dimension and Range Queries
Definition 3.1. A range space is a pair (S,R) where S is a finite or infinite set andR is a collection of subsets of S.

Definition 3.2. A finite set X ⊆ S is shattered byR if

X ∩R := {X ∩R |R ∈ R} = 2X .

Definition 3.3. The Vapnik-Chervonenkis dimension of (S,R) is the size of a largest shattered set.

Range queries are very important in computational geometry. An algorithm that answers range queries works as
follows. Given a finite set X and query region Q,

X ∩Q = ∅ ⇒ Algorithm outputs NO
X ∩Q 6= ∅ ⇒ Algorithm outputs a witness x ∈ S ∩Q

Usually, the region Q is given in some compact form.
For example, consider the case where we have a finite set X = {x1, . . . , xn} with xi ∈ Rd. Our algorithm will

preprocess X using some randomness and parameters ε and δ. With probability at least 1− δ, for all queries Q of the
form Sc,r, where

Sc,r :=
{
x ∈ Rd

∣∣ ‖x− c‖ ≤ r}
is the closed hypersphere with center c and radius r, the algorithm has the following behavior,

X ∩ Sc,r = ∅ ⇒ Algorithm outputs NO
X ∩ Sc,r ≥ εn⇒With probability at least 1− δ,

Algorithm outputs a xi such that ‖xi − c‖ ≤ r

Surprisingly, the algorithm runs in time O
(
d2

ε log d
ε + d

ε log 1
δ

)
, which is independent of n!

Theorem 3.4. Let (S,R) be a range space with VC-dimension d, and let X ⊆ S have size n. Suppose N is a random
sample of size m drawn from X . If we choose m such that

m ≥ max
{

8d
ε

log
8d
ε
,

4
ε

log
2
δ

}
then, with probability at least 1− δ, N is such that

∀R ∈ R, |R ∩X| ≥ εn⇒ R ∩N 6= ∅ .

The algorithms works as follows. It preprocesses X simply by creating a subset N by drawing

O

(
d

ε
log

d

ε
+

1
ε

log
1
δ

)
random points from S. On input c, r, if one of these points lies within distance r of c, output that point else say NO.
Note that VC dimension of hyperspheres in Rd is at most d+ 2. This follows from a theorem we proved last time. The
promised time bound now follows by using the above theorem applied to the range space(

Rd,
{
Sc,r

∣∣ c ∈ Rd, r ∈ R
})

and the fact that calculating distances in Rd takes O(d) time.

3

