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Background
Training neural networks with many free parameters w ∈
Rd and numerous instances z1, . . . ,zn ∈ Z is a central task
in machine learning applications, including modern speech
recognition and machine translation systems. To do this suc-
cessfully requires algorithms for reliable statistical infer-
ence, as well as efficient implementations of these proce-
dures. Our interest is learning efficiency: achieving the best
generalization with the least computational resources (time,
samples, etc.). In this work, we explore the possibility of im-
proving learning efficiency through a strategic use of mem-
ory and robust, potentially biased estimators of underlying
task parameters.

To ensure performance generalizes off-sample, in training
we typically use a loss l(w; z) ≥ 0, to be minimized in w,
over the random draw of z ∼ µ. Estimating µ is difficult, but
the risk R(w) = Eµ l(w; z), makes for a more practicable
objective function (albeit still unknown). A general strategy
is the approximate gradient update

w(t+1) = w(t) − α(t)ĝ(t)

where ĝ(t) is a sample-based estimate of ∇R(w(t)). When
n and d are very large, using the entire sample to build each
ĝ(t) can incur a prohibitive cost. An extreme cost-saving
tactic is to randomly choose i(t) ∈ [n] and set ĝ(t) to
∇li(t)(w(t)) = ∇l(w(t); zi(t)). Unfortunately, this approx-
imation of ∇R is so poor that many iterations are typically
required for convergence. A simple and useful “variance re-
duction” tactic has been proposed in the finite-sum optimiza-
tion context (Johnson and Zhang 2013). One simply shifts
the single-point estimators using a correction term

ĝ(t) = ∇li(t)(w(t))−∆(t),

where ∆(t) = ∇li(t)(w̃) − g̃. Here w̃ is a reference
vector computed periodically in an outer loop, and g̃ =
n−1

∑n
i=1∇l(w̃; zi), the full-sample estimate at w̃.

A natural interpretation is that the learner uses its recent
memory to identify “errant” observations, and correct them
in a direct manner. Pursuing this memory analogy further,
the quality and nature of memories assuredly impacts learn-
ing in humans, and the same should be true here. How do
corrections based on different stored memories impact learn-
ing? Does more reliable observations speed up the process?
We consider some simple examples here.

Memory-based corrections
If n is very large, one expects the approximation g̃ ≈ R′

to be accurate. Running with this, at each iteration we can
compute

β(t) = ∇li(t)(w̃)/g̃,

with division carried out element-wise. Assuming the point
i(t) has similar idiosyncracies in terms of deviation from the
mean at w̃ as at ŵ(t), then one can adjust as

ĝ(t) = ∇li(t)(w(t))/β(t).

This represents a qualitatively distinct memory, namely the
relative size, rather than explicit differences. Countless sim-
ilar examples of other types can naturally be explored.

Closely related: what if the learner’s observations them-
selves improve? Efficient learners make use of task-relevant
features; using ∇li(t)(w(t)) as an estimate of the risk gra-
dient is too naive to be plausible. While the utility of us-
ing mini-batch estimates has been well-studied (Lin and
Rosasco 2016; Jain et al. 2016), more reliable estimates can
in principle be created. One example is

θ̂(t)(w)← arg min
θ

1

|D(t)|
∑
i∈D(t)

ρ (∇li(w)− θ)

with the optimization carried out element-wise. Here ρ
is a slow-growing, convex, even function, say ρ(u) =
log(cosh(u)). While this estimate may be biased, it is easily
computed using raw observations, and truncates errant ob-
servations. While this alone is appealing (Holland and Ikeda
2017), of chief interest here is how this first layer of robust-
ness interacts with memory-based corrections. The most di-
rect way to examine this is to plug in these new observations:

ĝ(t) = θ̂(t)(ŵ(t))/β(t)

for the relative size tactic, and

∆(t) = θ̂(t)(w̃)− g̃

ĝ(t) = θ̂(t)(ŵ(t))−∆(t)

for the difference-based tactic. In addition to some theo-
retical groundwork, we provide empirical analysis of how
strategic memory use and robust observations impact learn-
ing efficiency under diverse task conditions.


