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Abstract

Learning across domains is a challenging issue especially
when data in target domain are sparse and unlabelled. This
challenge is even severe in the case that a deep neural model is
learned. This paper presents a deep semi-supervised learning
for domain adaptation by using the labelled data from source
domain and unlabelled data from target domain. There are
twofold novelties in the proposed method. First, a graphical
model is constructed to identify the latent features for labels
as well as domains which are learned by variational inference.
Second, we learn the class features which are discriminative
among classes and simultaneously invariant to both domains.
An adversarial neural model is introduced to pursue this in-
variance. Domain features are explicitly learned to purify the
extraction of class features which can improve classification
performance. A set of experiments illustrate the merits of the
proposed variational and adversarial domain adaptation.

Introduction
Domain adaptation aims to learn from a source data dis-
tribution to a different but related target data distribution
which can achieve desirable performance in target regres-
sion or classification task. This issue is crucial for many nat-
ural language applications containing symbolic words or se-
mantics, e.g. the spam filtering or the product review clas-
sification. Such systems classify the emails or reviews for a
target user or product by using the data distribution which is
learned from those data originated from source user or prod-
uct. In particular, we face the problem of transfer learning
in presence of sparse and unlabelled data in target domain.
This problem is even more severe if a deep neural model
is adopted. This study presents a symbolic neural learning
for feature-based approach to domain adaptation and pattern
classification. We learn a deep latent feature model where
the learned features are invariant to the change of domains.
Accordingly, the classification model trained from the fea-
tures of source domain can be adapted to target domain.

In the literature, the maximum mean discrepancy (MMD)
Gretton et al. (2007) was proposed to measure the differ-
ence between two distributions based on a non-parametric
kernel method. This MMD was minimized to train the latent
features which were invariant to the migration from source
domain to target domain. By incorporating the class labels,
the estimated features are discriminative among classes. In

Cui, Huang, and Chien (2012), a multi-view and multi-
objective learning were proposed to build semi-supervised
model where feature extraction and pattern classifier were
jointly optimized. In Ganin et al. (2016), the distribution
matching for domain adaptation was realized through an
adversarial neural network Goodfellow et al. (2014) which
consisted of a feature extractor Gf and a pattern classi-
fier Gy . A discriminator D was introduced to distinguish
whether the estimated latents features belong to source do-
main or target domain. D, Gf and Gy were jointly trained
to conduct distribution matching according to a minimax
two-player game theory. In Louizos et al. (2016), a vari-
ational fair autoencoder was proposed to learn a fair fea-
ture representation where a variational autoencoder (VAE)
Kingma and Welling (2014) was introduced to encourage
independence between latent factors of variations existing
in the observations x. MMD measure was incorporated to
optimize the independence. Traditionally, the latent features
zy of class labels y are extracted either by adversarial net
or MMD method. The estimated class features are mixed
with domain information which will deteriorate classifica-
tion performance.

This paper presents a variational and adversarial classifi-
cation network for domain adaptation by using labelled data
in source domain and unlabelled data in target domain. A
probabilistic semi-supervised model is proposed to charac-
terize the sophisticated relations of observations and latent
features for labels y as well as for domains d. The distribu-
tions of the associated latent features zy and zd are driven
by neural network based on VAE. Distribution of these en-
coded features can be used for data generation. The vari-
ational inference procedure is implemented to construct a
latent variable model which faithfully reflects the stochastic
behavior of latent variables for domain adaptation. A vari-
ational lower bound of log likelihood, approximated by the
stochastic gradient variational Bayes (SGVB) Kingma and
Welling (2014), is maximized. In particular, we propose two
approaches to improve classification performance based on
this variational model. First, an adversarial neural network
is merged to estimate data distributions which are invariant
to different domains. A discriminator is optimized to max-
imize the ambiguity for classifying the features of source
and target domains. Second, the domain features are explic-
itly characterized to increase the evidence of the estimated



class features for classification system.

Domain Adaptation
Assume that training samples are collected in source do-
main and target domain d = {s, t}. Let {Xs, Y s} =
{(xs1,ys1), . . . , (xsn,ysn)} denote the labeled data in source
domain s. Here, xsi means the ith training vector and ysi
corresponds to its label vector. In addition, we have the
unlabeled data Xt = {xt1, . . . ,xtm} from target domain t
where the label information Y t is missing. Basically, two
domains are related but not identical. The joint distributions
p(Xs, Y s) and p(Xt, Y t) are different. Domain adaptation
is a branch of transfer learning where the marginal distri-
butions p(Xs) and p(Xt) are different and the conditional
distributions of finding labels from data in two domains
p(Y s|Xs) and p(Y t|Xt) are assumed to be identical.

Distribution matching
We first survey two related approaches to distribution match-
ing for domain adaptation which can compensate the covari-
ate shift between p(Xs) and p(Xt). The first one is to cal-
culate the MMD measure Gretton et al. (2007) which is re-
ferred as a divergence between distributions of two data sets
{Xs, Xt} in a reproducing kernel Hilbert spaceH

MMD(Xs, Xt) =

∥∥∥∥ 1n
n∑
i=1

φ(xsi )−
1

m

m∑
j=1

φ(xtj)

∥∥∥∥
H

(1)

where φ(·) denotes a basis function vector. MMD was es-
timated by using the Gaussian kernel and then minimized
to pursue the distribution matching via re-weighting the in-
stances in source domain Huang et al. (2006). MMD was
also employed in construction of domain-invariant feature
space Long et al. (2015); Chen and Chien (2015).

training data x

features

domain label d

class label y

feature extractor Gf

domain classi¯er Dd

label predictor Dy

Figure 1: Adversarial neural network for domain adaptation

An alternative solution to distribution matching was de-
veloped by using an adversarial neural network (ANN)
Ganin et al. (2016). There are three components in ANN
feedforward architecture; feature extractor Gf , label predic-
tor Dy and domain classifier Dd. As illustrated in Figure 1,
the features, extracted by Gf , are forwarded to find class la-
bel y of training sample x using label predictor Dy . Impor-
tantly, we estimate the domain-invariant features to pursue
invariant distributions for source and target domains. A do-
main classifier Dd is applied to find domain d of a feature
sample. The “confusion” in domain classification is maxi-
mized to assure invariance. The parameters of ANN are es-

timated through a minimax learning procedure of latent fea-
tures in Gf where the classification errors of labels in Dy

are minimized and simultaneously the classification errors
of domains in Dd are maximized.

Variational fair autoencoder
In Louizos et al. (2016), a variational fair autoencoder (VFA)
was proposed to build a latent variable model for domain
adaptation. VFA aims at learning a “fair” feature representa-
tions that are invariant to noise or sensitive factors which are
not related to label. Figure 2(a) shows the graphical model
of VFA which is seen as a semi-supervised model Kingma
et al. (2014) where label information y is only available in
source domain s. Following the property of variational au-
toencoder Kingma and Welling (2014), the latent variable
zy of an input data x in VFA was driven by a posterior
distribution or variational distribution q(zy|y) based on an
autoencoder. αy denotes the parameters of latent variable
zy . Stochastic information of latent variable was character-
ized. The intractable problem in variational inference proce-
dure was tackled by SGVB estimator where the expectation
function in variational lower bound was approximated by
sampling latent variable via a differentiable transformation
with a noise variable. This yielded a simple differentiable
unbiased estimator of lower bound. An analytical solution
was therefore obtained to implement VFA through an error
backpropagation algorithm. In general, an observed sample
x is generated by the sensitive variable in applied domain
d and the latent feature zy with variation αy in class label
y. In Kingma et al. (2014), the labels y of unlabelled data
were treated as random. An additional term of classification
error of unlabelled data was incorporated in deep generative
model to ensure that the predictive posterior q(zy|y) learns
from both labelled and unlabelled data. This enriched the
latent feature representation of class label zy .

Nevertheless, the richness of this latent variable model
was constrained because the class feature zy is still contam-
inated with noise or domain factors which will deteriorate
classification performance. For example, in the task of Ama-
zon review with classes or ratings of positive and negative.
We build a model adapting from source domain “Electron-
ics” to target domain “Game”. This model may be learned
to catch the features or semantics for words ‘compact’ in
“Electronics” and ‘hooked’ in “Games” and those for many
other words corresponding to two classes. Class feature zy
does vary by domains. Furthermore, the features of domain
words, e.g. camera, phone and TV, in “Electronics” do con-
tain variations. It is crucial to characterize these variations
to elevate classification system.

Variational and Adversarial Learning
This paper presents a variational and adversarial learning for
latent feature representation.

Model construction
As shown in Figure 2(b), latent features of labels y as well
as domains d are explicitly expressed and learned to build a
domain-invariant feature space for domain adaptation. The
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Figure 2: Graphical representation for (a) VFA and (b) VDC.

domain variations are separately modeled to prevent leakage
of domain factor zd into the extraction of class feature zy .
We would like to maximally correlate the class feature zy
with class label y and impose zy to be invariant to the change
of domain d. Similarly, the domain feature zd is identified
by maximally correlating with domain label d and making
invariance with class label y. Separating the parameter αd
of domain feature zd from that αy of class feature zy can
help finding a “purified” class feature zy to improve classi-
fication. Without loss of generality, we present a variational
domain and class (VDC) representation for domain adapta-
tion. There are twofold extensions in this study. First, the
variational inference is implemented to learn the distribu-
tions of latent features which allow data reconstruction for
deep generative model. Second, an adversarial neural net-
work is merged to achieve the matching of variational distri-
butions of class features between source and target domains.

Variational autoencoder Kingma and Welling (2014) is
introduced to infer the proposed VDC model. An encoder
using variational posterior qφ(zy, zd,αy,αd,y|x,d) with
variational parameter φ and a decoder using generative
likelihood pθ(x, zy, zd,y,d,αy,αd) with model parameter
θ are merged in inference of an integrated deep neural net-
work. Here, source domain s and target domain t are denoted
by a domain vector d as [1 0]> and [0 1]>, respectively.
Variational posterior qφ(zy, zd,αy,αd,y|x,d) is used to
approximate the true posterior pθ(zy, zd,αy,αd,y|x,d)
in variational inference. The factorizations of decoder and
encoder are expressed by p(x, zy, zd,y,d,αy,αd) =
p(x|zy, zd)p(zy|y,αy)p(zd|d,αd)p(y)p(αy)p(αd) and
q(zy, zd,αy,αd,y|x,d) = q(zy|x,d)q(zd|x,d)q(αy|zy
,y)q(αd|zd,d)q(y|zy), respectively. In case that class
label y is unknown, p(y) in decoder and q(y|zy) in encoder
are disregarded. The factorized distributions of real-valued
variables and discrete-valued variables in pθ(·) and qφ(·)
are represented by Gaussian distribution N (·) and category
(multinomial) distribution Cat(·), respectively, given by

pθ(x|zy, zd) = fθ(x|zy, zd), p(y) = Cat(y|π0)
pθ(zy|y,αy) = N (zy|µ = fθ(y,αy),σ = efθ(y,αy))
pθ(zd|d,αd) = N (zd|µ = fθ(d,αd),σ = efθ(d,αd))

p(αy) = N (αy|µ0,σ0), p(αd) = N (αd|µ0,σ0)
(2)

qφ(zy|x,d) = N (zy|µ = fφ(x,d),σ = efφ(x,d))

qφ(zd|x,d) = N (zd|µ = f̃φ(x,d),σ = ef̃φ(x,d))
qφ(αy|zy,y) = N (αy|µ = fφ(zy,y),σ = efφ(zy,y))
qφ(αd|zd,d) = N (αd|µ = fφ(zd,d),σ = efφ(zd,d))

qφ(y|zy) = Cat(y|π = fφ(zy))
(3)

where fθ(x|zy, zd) is an appropriate data distribution which
is an Gaussian in this study. Mean µ and variance σ
in pθ(·) and qφ(·) are expressed by functions fθ(·) and
fφ(·), respectively, which are estimated by using differ-
ent neural networks. Latent variables in VDC consist of
{zy, zd,αy,αd,y} with class feature zy and domain fea-
ture zd.

Variational lower bound
In variational inference of VDC, we maximize the loga-
rithm of marginal likelihood by using i.i.d. training vectors
log p(xi, · · · ,xN ) =

∑N
i=1 log p(xi) where

logp(xi) = KL(qφ(zyi, zdi,αyi,αdi|xi,yi,di))‖
pθ(zyi, zdi,αyi,αdi|xi,yi,di)) + L(θ,φ;xi,yi,di).

(4)
In RHS of Eq. 4, the first term is the Kullback-Leiblier (KL)
divergence between variational posterior qφ(·) and true pos-
terior pθ(·) and the second term L(θ,φ;xi,yi,di) denotes
the variational lower bound of log likelihood of i-th sample
which is obtained by RHS of the following inequality

log p(xi) ≥Eqφ(zyi,zdi,αyi,αdi|xi,yi,di)

[− log qφ(zyi, zdi,αyi,αdi|xi,yi,di)
+ log pθ(zyi, zdi,αyi,αdi|xi,yi,di)].

(5)

VDC model is inferred by maximizing this lower bound with
respect to variational parameters φ and model parameters θ.
Lower bound for a sample is accordingly expanded as
L(θ,φ;x,y,d) = Eqφ(zy|x,d)qφ(zd|x,d)[log pθ(x|zy, zd)]
+ Eqφ(αy|zy,y)qφ(y|zy)[−KL(qφ(zy|x,d)‖pθ(zy|y,αy))]
+ Eqφ(αd|zd,d)[−KL(qφ(zd|x,d)‖pθ(zd|d,αd))]
+ Eqφ(zy|x,d)qφ(y|zy)[−KL(qφ(αy|zy,y)‖p(αy))]
+ Eqφ(zd|x,d)[−KL(qφ(αd|zd,d)‖p(αd))]
+ Eqφ(zy|x,d)[−KL(qφ(y|zy)‖p(y)].

(6)
Index i is neglected for ease of expression. Notably, this
bound is calculated by using the labelled data from source
domain {xi,yi,di = [1 0]>}ni=1 and the unlabelled data
from target domain {xj ,dj = [0 1]>}mj=1. Lower bound
L(·) is either from source domain Ls(θ,φ;xi,yi,di) or
from target domain Lt(θ,φ;xj ,dj). In addition, we also
maximize an entropy term Eqφ(zyi|xi,di)[− log qφ(yi|zyi)]
in objective function to assure the predictive posterior
qφ(y|zy) learned from both labelled and unlabelled data.
The objective function FVDC(θ,φ;X,Y,d) is constructed
by∑n

i=1 Ls(θ,φ;xi,yi,di) +
∑m
j=1 Lt(θ,φ;xj ,dj)

+ λ
∑n
i=1 Eqφ(zyi|xi,di)[− log qφ(yi|zyi)]

(7)



using training data {X,Y,d} = {Xs, Xt, Y s,d}. λ is a
regularization parameter. Lt(·) is formed by Ls(·) with the
last term in RHS of Eq. (6). A latent domain and class rep-
resentation is finally implemented.

Adversarial learning
The distribution matching based on adversarial learning is
further incorporated into VDC model to improve domain
adaptation. As a result, the distributions of class features zy
are fitted to both source and target domains. Different from
Ganin et al. (2016), an adversarial neural network (ANN) is
implemented to evaluate the hybrid feature space {zd, zy}
which is constructed for variational domain and class (VDC)
representation. This evaluation is performed via an adversar-
ial process which maximizes the ambiguity of latent class
features zy between source domain and target domain. The
resulting solution is hereafter called the Variational and Ad-
versarial learning for Domains and Classes (VADC). To
fulfill VADC framework, a discriminator based on neural
network D = fϕ(zy) is additionally introduced to judge
whether the class feature zy of an observation xi or xj are
extracted from source domain di = [1 0]> or target do-
main dj = [0 1]>. Importantly, we maximize the ambiguity
or equivalently “minimize” the negative cross entropy er-
ror function between discriminator outputs {fϕ(zyi)}n+mi=1

and desirable outputs {di}n+mi=1 over observations in both
domains {xi}n+mi=1 . Discriminator output is seen as the class
posterior fϕ(zyi) = p(d|zyi,ϕ). This VADC model is in-
ferred through a minimax optimization where a generative
model G with parameters θ and φ based on VDC and a dis-
criminative model D with parameter ϕ based on ANN are
jointly trained. The optimization problem is correspondingly
formed by

max
φ,θ

min
ϕ
FVADC(θ,φ,ϕ;X,Y,d) (8)

using the objective FVADC(θ,φ,ϕ;X,Y,d) formulated by∑n
i=1 Ls(θ,φ;xi,yi,di) +

∑m
j=1 Lt(θ,φ;xj ,dj)

+ λ1
∑n
i=1 Eqφ(zyi|xi,di)[− log qφ(yi|zyi)]

+ λ2
∑n+m
i=1

∑
c dicfϕ(zyic)

(9)

where di = {dic} and zyi = {zyic} with domain index c.
The last term in Eq. (9) corresponds to the negative cross
entropy error function. Therefore, using this integrated ob-
jective, we can learn a variational and adversarial model for
domain adaptation where the likelihood of generator in Fig-
ure 2(b) and the entropy of posterior predictor qφ(y|zy) with
parameters {θ,φ} are maximized subject to the condition
that the negative cross entropy error function of discrimi-
nator fϕ(zy) with parameter ϕ is minimized. The regular-
ization parameters λ1 for maximum entropy and λ2 for ad-
versarial learning are adopted to balance the tradeoff among
these three factors.

Implementation issue
In the inference procedure, the expectation terms in ob-
jective function of VDC or VADC and their derivatives

are intractable. To deal with this issue, we apply SGVB
estimator Kingma and Welling (2014) and approximate
the expectation through the sampling of latent variables
{zy, zd,αy,αd,y}. A re-parameterization trick is em-
ployed to avoid high variance in sampling procedure. Ac-
cordingly, we first re-parameterize a latent variable z or α
using a differentiable transformation given by an auxiliary
noise variable ε or ζ. Transformations of real-valued vari-
ables {zy, zd,αy,αd} and discrete-valued variable y are
described as

zy = µ+ σ � εy where
µ = fφ(x,d),σ = exp(fφ(x,d)), εy ∼ N (0, I)

zd = µ+ σ � εd where
µ = f̃φ(x,d),σ = exp(f̃φ(x,d)), εd ∼ N (0, I)

αy = µ+ σ � ζy where
µ = fφ(zy,y),σ = exp(fφ(zy,y)), ζy ∼ N (0, I)

αd = µ+ σ � ζd where
µ = fφ(zd,d),σ = exp(fφ(zd,d)), ζd ∼ N (0, I)

y = g(log(π + c) + ξ) where π = fφ(zy), c is fixed
(10)

where ξ is sampled from a standard Gumbel distribution.
g(·) is a function that assigns 1 to the entry with the largest
value and 0 to the other entries. These transformations are
used to approximate the expectations in objective function
by Monte Carlo estimates. Notably, the Gaussian parame-
ters {µ,σ} are estimated from the outputs of neural net-
works fφ(·) with parameters φ by using the inputs {x,d}
for latent features {zy, zd} and the inputs {zy,y, zd,d}
for latent variables {αy,αd}. SGVB estimator is imple-
mented by maximizing for generator via {θ,φ} ← {θ,φ}+
η∇{θ,φ}FVADC (θ,φ,ϕ;X,Y,d) and minimizing for dis-
criminator via ϕ ← ϕ − η∇ϕFVADC(θ,φ,ϕ;X,Y,d)
where η is learning rate. In the implementation, the dis-
criminator D = fϕ(zy) is optimized with K updating
steps before one step of updating for optimization of pa-
rameters {θ,φ} for generative model G Goodfellow et al.
(2014). This trick tends to maintain the estimated discrimi-
nator D near its optimal solution provided that the generator
G changes slowly. In case that the discriminator D is opti-
mized to completion before updating the generator G with
one step, the over-fitting problem will happen too early in
presence of a limited size of training data.

Experiments
A series of experiments are conducted to evaluate the pro-
posed VADC based on two domain adaptation tasks.

Experimental setup
The first task is a binary classification on two-dimensional
twin-moon synthetic data in presence of two classes, up-
per moon and lower moon, with source domain marked by
solid ◦ and target domain marked by +. Radius of moon
is 0.5. There are two experimental conditions (A and B) in
this evaluation. Figure 3(a) shows Condition A that the data
in target domain are rotated by an angle which is Gaussian
distributed with mean π/8 and variance π/80. Figure 3(b)
illustrates Condition B that data in both domains are sam-
pled from different shifted and overlapped segments. Obvi-



ously, the domain variation and the classification ambiguity
in Condition B are more severe than those in Condition A.
We would like to evaluate different methods based on these
two conditions. For each condition, there were 2K samples
in source domain with class labels and 2K samples in tar-
get domains without class labels. An additional set of 400
samples from individual domains was collected as test data.

(a) (b)

Figure 3: Twin-moon synthetic data. Color refers to class la-
bel. Samples marked by solid ◦ are data from source domain
while samples marked by + are data from target domain.

The second task is developed for sentiment classifica-
tion by using the multi-domain sentiment dataset Blitzer,
Dredze, and Pereira (2007) which contains Amazon prod-
uct reviews on four products including kitchen appliances,
DVDs, books, electronics. Each product is seen as a domain.
The goal is to classify the review into positive or negative
reviews. In training session, there are 1000 positive reviews
(higher than 3 stars) and 1000 negative reviews (lower than 3
stars) on each product or domain. We train a binary classifier
from labelled reviews in source domain and unlabelled re-
views in target domain and use it to predict whether a test re-
view in target domain is positive or negative. The dictionary
was built by top 2K frequent words. The tf-idf reweighting
method was applied to obtain 2000-dimensional observation
vector x. Test data were composed of 500 positive reviews
and 500 negative reviews. In these two tasks, 20% of train-
ing data were held out for validation to select regularization
parameters {λ, λ1, λ2} and other hyperparameters.

In the experiments, the baseline system was built by neu-
ral network (NN) model with topology 2-10-5-2 for 1st task
and 2000-500-50-2 for 2nd task by using labelled data from
source domain. Two hidden layers with different number of
neurons were considered. For comparison, the distribution
matching methods using MMD and ANN were implemented
over the features in hidden layers by using data from both
domains. The resulting methods, named by NN-MMD and
NN-ANN Ganin et al. (2016), were carried out. Moreover,
VFA was carried out for comparative study. In Louizos et
al. (2016), VFA was proposed as a stand-alone method or a
combined method with MMD (VFA-MMD). Data from both
domains were used. In this study, we exploited a new VFA
combined with ANN (VFA-ANN) which was implemented
by introducing a discriminator to maximize the ambiguity
of classifying the variational features zy between source

and target domains. For comparison, we implemented the
proposed VDC and VADC where the variational domain
and class features were learned. VADC was a realization
of VDC-ANN where adversarial learning was performed in
VDC representation. Interestingly, we could also implement
a new realization VDC-MMD by adding the MMD term in
a hybrid objective for VDC learning. In the experiments,
we applied the random kitchen sinks to approximate MMD
Zhao and Meng (2015). Adam algorithm was used. Size of
minibatch was 100. In implementation of VFA and VDC,
all encoders and decoders were built by neural network with
one hidden layer consisting of 10 neurons. There were nine
blocks of neural networks in VDC which was seen as a deep
model. In the 1st task, individual 10 neurons in hidden layers
of encoder and decoder were specified. Using VFA, dimen-
sions of zy andαy were 10 and 5, respectively. Using VDC,
dimensions of zy and zd were both 5 and those of αy , αd
were both 5. In the 2nd task, dimensions of zy , zd, αy and
αd were all 50. Individual 200 neurons in hidden layer of
encoder and decoder were used. In both tasks, the activation
function was sigmoid, the step number K = 10 was set, the
dimension of MMD approximator was 500 and the number
of sample in Monte Carlo estimator was one. Different mod-
els were trained with convergence.

Condition A Condition B
NN 84.3 60.4
NN-MMD 90.2 68.7
NN-ANN 90.9 73.5
VFA 87.9 68.5
VFA-MMD 94.5 74.8
VFA-ANN 94.9 77.5
VDC 88.3 74.7
VDC-MMD 94.1 79.0
VDC-ANN 94.8 82.5

Table 1: Classification accuracies (%) for adaptation under
different conditions using twin-moon synthetic data.

Experimental results
Table 1 compares the classification accuracies of differ-
ent neural models by using twin-moon synthetic data un-
der Conditions A and B. In this comparison, we evaluate
how different neural models, namely NN, VFA and the pro-
posed VDC, perform for domain adaptation without and
with distribution matching based on MMD and ANN. This
binary classification is evaluated by changing the variations
of data and their domains. Basically, the accuracies in Con-
dition A are higher than those in Condition B because
Condition B are more adverse than Condition A. Semi-
supervised learning using VFA and VDC performs better
than supervised learning using NN owing to twofold rea-
sons. First, compared with NN, VFA and VDC are learned
with additional unlabelled data from target domain. Sec-
ond, variational learning in VFA and VDC provides better
latent feature representation than deterministic modeling in
NN. In addition, we find that distribution matching consis-
tently works for different models and conditions. ANN ob-



tains slight improvement compared with MMD in Condi-
tion A. The improvement becomes significant in Condition
B. In Condition A, VDC, VDC-MMD and VDC-ANN have
comparable performance with VFA, VFA-MMD and VFA-
ANN, respectively. But, in Condition B, VDC related meth-
ods are much better than VFA related methods. This demon-
strates that latent domain and class representation in VDC
does extract the informative and purified class features for
improving classification results. Among different methods,
the best result in Condition B is obtained by VDC-ANN or
equivalently VADC.

D→B B→D B→E E→K K→D D→K
NN 74.2 77.2 70.3 83.0 68.0 75.6
NN-MMD 76.3 79.4 74.0 84.2 72.8 80.4
NN-ANN 77.1 80.7 73.5 86.0 74.1 82.1
VFA 76.3 77.1 72.5 83.9 71.3 76.9
VFA-MMD 78.2 80.0 75.1 85.9 73.9 78.5
VFA-ANN 77.8 81.1 76.9 85.1 75.0 79.9
VDC 75.9 77.5 72.0 86.7 74.2 79.7
VDC-MMD 77.8 79.8 75.5 88.1 77.0 80.2
VDC-ANN 78.0 81.9 76.0 90.1 77.9 82.2

Table 2: Classification accuracies (%) for adaptation among
different domains (K: Kitchen appliances, D: DVDs, B:
Books, E: Electronics)

Table 2 reports the performance of different methods for
sentiment classification where adaptation among various do-
mains is evaluated. Several pairs of domains are examined.
The classification results indicate that applying distribution
matching methods, MMD and ANN, consistently improves
system performance. Variational learning using additional
unlabelled data works well. In most cases, ANN performs
better than MMD when combining with NN, VFA and VDC.
But, ANN is more computationally demanding than MMD.
In addition, the improvement of VDC methods over VFA
methods is not always guaranteed in cases of adaptation
pairs of DVDs to Books, Books to DVDs and Books to Elec-
tronics. It is because that domains of the reviews of DVDs,
Books and Electronics are relatively close. Some reviews
in these domains contain similar content. However, the im-
provement becomes significantly when the pairs of adapta-
tion domains, Electronics to Kitchen, Kitchen to DVDs and
DVDs to Kitchen, are investigated. The variation of domains
in these three pairs is generally larger than that in the other
three pairs. VDC is specialized to deal with this challenge.

Conclusions
We have presented a new latent variable model for domain
adaptation based on variational and adversarial learning.
This model run the variational learning for latent domain
and class representation where latent features of domains
and classes were separately characterized. Stochastic model-
ing of latent features was performed to reflect the essence of
data generation or reconstruction. The classification system
was benefited by using the enhanced class features. At the
same time, the adversarial learning was performed to extract
the class features which are invariant to different domains.

A discriminator was introduced to maximize the ambiguity
of classifying the estimated class features to source domain
and target domain. An integrated objective learning was im-
plemented in the experiments on using synthesis data and
real-world data. The proposed method was improved espe-
cially for the cases of adaptation tasks in presence of high
variation of domains.
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