
Neural Theorem Provers

Tim Rocktäschel
University of Oxford

Oxford, UK
tim.rocktaschel@cs.ox.ac.uk

Sebastian Riedel
University College London

London, UK
s.riedel@cs.ucl.ac.uk

Current state-of-the-art methods for automated Knowledge
Base (KB) completion learn distributed representations of
fact triples using neural link prediction models (Nickel et
al. 2016). Neural networks can learn to generalize well
when observing many input-output examples, but lack in-
terpretability and straightforward ways of incorporating
domain-specific knowledge. Theorem provers, on the other
hand, provide effective ways to reason with logical knowl-
edge. However, by operating on discrete symbols they do
not make use of similarities between predicates or constants
in training data (e.g., lecturerAt ∼ professorAt,
ORANGE ∼ LEMON, etc).

Recent neural network architectures such as Neural Tur-
ing Machines (Graves, Wayne, and Danihelka 2014) replace
discrete functions and data structures by end-to-end differ-
entiable counterparts. As such, they can learn complex be-
haviour from raw input-output examples via gradient-based
optimization. In the same spirit, we introduce Neural The-
orem Provers (NTPs): end-to-end differentiable automated
theorem provers working with subsymbolic representations
(Rocktäschel and Riedel 2017).

Specifically, we use Prolog’s backward chaining algo-
rithm as a recipe for recursively constructing neural net-
works that are capable of proving facts in a KB. The suc-
cess score of such proofs is differentiable with respect to
vector representations of symbols, which enables us to learn
such representations for predicates and constants in ground
atoms, as well as parameters of function-free first-order
logic rules of predefined structure. NTPs learn to place rep-
resentations of similar symbols in close proximity in a vec-
tor space and can induce rules given prior assumptions about
the structure of logical relationships in a KB such as transi-
tivity. Furthermore, NTPs can seamlessly reason with pro-
vided domain-specific rules. As NTPs operate on distributed
representations of symbols, a single hand-crafted rule can
be leveraged for many proofs of queries with symbols that
have a similar representation. Finally, NTPs allow for a high
degree of interpretability as they induce latent rules that we
can decode to human-readable symbolic rules.

In our research we have made the following steps towards
a full and scalable implementation of NTPs: (i) we devel-
oped an NTP architecture based on differentiable backward
chaining and unification of symbol representations, (ii) we
developed optimizations to this architecture based on batch

Corpus Metric Model

ComplEx NTP NTPλ

Countries
S1 AUC-PR 99.37± 0.4 90.83± 15.4 100.00± 0.0
S2 AUC-PR 87.95± 2.8 87.40± 11.7 93.04± 0.4
S3 AUC-PR 48.44± 6.3 56.68± 17.6 77.26± 17.0

Kinship HITS@1 0.34 0.24 0.39
HITS@10 0.74 0.60 0.71

Nations HITS@1 0.46 0.48 0.45
HITS@10 0.97 0.98 0.99

UMLS HITS@1 0.47 0.47 0.51
HITS@10 0.80 0.79 0.81

Table 1: Results on four benchmark knowledge bases. Re-
sults on countries are averaged over ten runs with the stan-
dard deviation shown next to the AUC.

proving, approximate gradient calculation and joint training
with neural link prediction models, and (iii) we experimen-
tally showed that NTPs can learn representations of sym-
bols and function-free first-order rules of predefined struc-
ture, enabling them to perform complex multi-hop reason-
ing on the Countries KB (Bouchard, Singh, and Trouillon
2015). and the Kinship, UMLS and Nations datasets (Kok
and Domingos 2007). The results can be seen in Table 1 and
show PR-AUC on the Countries dataset and HITS@1 and
HITS@10 on the other datasets for the NTP alone, Com-
plEx, and an NTP implementation that uses the ComplEx
loss as a regularizer on its symbol representations (NTPλ).

In future work we plan to scale up the NTP further, and
operate directly on natural language.

References
Bouchard, G.; Singh, S.; and Trouillon, T. 2015. On approxi-
mate reasoning capabilities of low-rank vector spaces. In Spring
Symposium on Knowledge Representation and Reasoning (KRR).
Citeseer.
Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural turing
machines. CoRR abs/1410.5401.
Kok, S., and Domingos, P. M. 2007. Statistical predicate invention.
In ICML, 433–440.
Nickel, M.; Murphy, K.; Tresp, V.; and Gabrilovich, E. 2016. A
review of relational machine learning for knowledge graphs. Pro-
ceedings of the IEEE 104(1):11–33.
Rocktäschel, T., and Riedel, S. 2017. End-to-end differentiable
proving. CoRR abs/1705.11040.


