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Many real-world datasets consist of several types of
data such as texts, images, and sounds, and these differ-
ent kinds of data are referred to as views or domains. One
of the best-known approaches for analyzing a multiple-
view dataset is canonical correlation analysis (CCA) that
linearly transforms data vectors into their low-dimensional
representations. Having two-view data matrices X1 :=
(x1
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Rn×p2 , CCA considers linear transformations (A1)>x1
i ∈

RK , (A2)>x2
i ∈ RK for any fixed K ≤ q := min{p1, p2}.

Precisely, CCA finds linear transformation matrices A1 ∈
Rp1×K ,A2 ∈ Rp2×K , that maximize the total sum of simi-
larities
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function (1) from diverging. 〈a, b〉 =
∑K
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notes the inner product. The optimal matrices Â
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, Â

2

are obtained through eigenvalue decomposition of Ŝ :=
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22 , where Σ̂11 := n−1(X1)>X1, Σ̂22 :=

n−1(X2)>X2, Σ̂12 := n−1(X1)>X2. By substituting the
solution to Eq.(1), we obtain the optimal value of the objec-
tive function as

∑K
k=1 λk(Ŝ), where λk(·) denotes the k-th

largest eigenvalue.
Although CCA is widely-applicable, CCA sometimes

fails to discover a complex structure underlying real-world
datasets, because of its linearity. To address the issue, a
non-linear extension of CCA, called DCCA (Andrew et al.
2013) has been proposed. DCCA non-linearly translates data
matrices with neural networks f1θ : Rp1 → Ro1 , f2θ :
Rp2 → Ro2 , and applies CCA to the translated vectors
z1θ,i := f1θ(x

1
i ), z

2
θ,i := f2θ(x

2
i ). Similar to CCA, we have

the objective function of DCCA as
K∑

k=1

λk(Ŝθ), (2)

where Ŝθ is computed with {z1θ,i}ni=1 and {z2θ,i}ni=1. DCCA
optimizes Eq.(2) with respect to θ, then we obtain the opti-

mal deep neural networks f1
θ̂
, f2

θ̂
. We compute feature vec-

tors by applying CCA to the output of the neural networks.
Meanwhile, DCCA does not consider the importance de-

gree of each feature element, which can be computed as the
canonical correlation. By attaching weights to the elements
depending on their importance degree, we may improve the
result of DCCA. For that reason, we replace the inner prod-
uct of Eq.(1) with

〈a, b〉ν :=

q∑
k=1

νkakbk, (3)

where ν = (ν1, ν2, . . . , νq) is a weight vector. The flat
weighting

νk = 1(k ≤ K), (4)
where 1(·) is an indicator function, derives DCCA. We have
theoretically showed that the canonical correlations

νk = λk(Ŝθ), (5)
are optimal as the weights, by considering the weighted
CCA with a generalized setting. With Eq.(5), the weighted
objective function of DCCA becomes

q∑
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λk(Ŝθ)
2, (6)

that is the total sum of quadratic eigenvalues. We propose
Deep Quadratic CCA (DeQ-CCA) that maximizes the crite-
rion (6). We have verified that our methods outperform ex-
isting methods in the experiments on real-world datasets.
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Figure 1: In contrast to DCCA, whose weights are specified
as Eq.(4), DeQ-CCA uses smoothly decreasing weights.
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