
Stochastic Optimization
for Machine Learning

ICML 2010, Haifa, Israel

Tutorial by
Nati Srebro and Ambuj Tewari

Toyota Technological Institute at Chicago

Goals
• Introduce Stochastic Optimization setup, and its relationship to

Statistical Learning and Online Learning

• Understand Stochastic Gradient Descent: formulation, analysis and
use in machine learning

• Learn about extensions and generalizations to Gradient Descent
and its analysis

• Become familiar with concepts and approaches Stochastic
Optimization, and their Machine Learning counterparts

Main Goal: Machine Learning is Stochastic Optimization

Outline

• Gradient Descent and Stochastic Gradient Descent
– Including sub-gradient descent

• The Stochastic Optimization setup and the two main
approaches:
– Statistical Average Approximation
– Stochastic Approximation

• Machine Learning as Stochastic Optimization
– Leading example: L2 regularized linear prediction, as in SVMs

• Connection to Online Learning
(break)

• More careful look at Stochastic Gradient Descent
• Generalization to other norms: Mirror Descent
• Faster convergence under special assumptions

Prelude: Gradient Descent
min
w∈W

F(w)

Start at some w(0)

Iterate:
w(k+1) ← ΠW (w(k) - α(k) ∇F(w(k)))

ΠW(w) = arg minv ∈ W ||v-w||2

Gradient Descent: Analysis

• We will focus on convex, Lipschitz functions.
• Lipschitz functions:

|F(v)-F(u)| ≤ G·||u-v||2
• If f is differentiable:

||F(w)||2 ≤ G

• What if f is not differentiable?
Subgradient!

Subgradient of a Convex Function

• If F(·) is differentiable at w0, gradient gives linear lower bound on F(·):
∀v F(v) ≥ F(w0) + 〈v-w0,g〉〉〉〉 g = ∇F(w0)

• In general, subgradient is any g corresponding to a linear lower bound:
∀v F(v) ≥ F(w0) + 〈v-w0,g〉〉〉〉 ⇔ g ∈ ∇F(w0)

• G-Lipschitz: ||g||2≤G for all subgradients g∈∇F(w)

W0

W0

F(w)

Subgradients: Examples

• F(z) = |z|
∇F(z) = {-1} z<0
∇F(0) = [-1,1]
∇F(z) = {1} z>0

• F(z) = [1-z]+
∇F(z) = {-1} z<1
∇F(1) = [-1,0]
∇F(z) = {0} z>1

• F(w) = ||w||1
∇F(w)[i] = sign(w[i])∋∋∋∋

Prelude II: Sub-Gradient Descent
min
w∈W

F(w)

F(w(k))− F(w∗) ≤ O
(
GB√
k

)

Guarantee on sub-Optimality:

Start at some w(0)

Iterate:
Get subgradient g(k) = ∇F(w(k))
w(k+1) ← ΠW (w(k) - α(k)g(k))

ΠW(w) = arg minv ∈ W ||v-w||2 α(k) =
B/G√
k

||∇F(w)||2 ≤ G ||w*||2 ≤ B

O

(
G2B2

ǫ2

)

iterations

This is the best possible using only F(w) and ∇F(w)
(if the dimension is unbounded)

Stochastic Sub-Gradient Descent
min
w∈W

F(w)

Same guarantee as (best possible) full-gradient guarantee:
of stochastic iterations = # of full gradient iterations

E

[
F(w(k))

]
− F(w∗) ≤ O

(
GB√
k

)

Guarantee on sub-Optimality:

Start at some w(0)

Iterate:
Get subgradient estimate g(k), s.t. E[g(k)] ∈ ∇F(w(k))
w(k+1) ← ΠW (w(k) - α(k)g(k))

Output
α(k) =

B/G√
k

||g(k)||2 ≤ G ||w*||2 ≤ B

O

(
G2B2

ǫ2

)

iterations

w(k) = 1
k

∑k
i=1w

(i)

SGD for Machine Learning
min
w

L̂(w) =
1

m

m∑

i=1

loss(w on (xi, yi))

Subgradient estimate: g(k) = ∇w loss(w(k) on (xi,yi))

Example: linear prediction with hinge loss (SVM)

L2-regularized Linear Classification
aka Support Vector Machines

Margin: M = 1/|w|
w

<w,x> ≤ -1

<w,x> ≥ 1

ℓ(〈w,x〉,y)=[1-y〈w,x〉]+

M

?

min
‖w‖2≤B

1

m

m∑

i=1

ℓ(〈w,xi〉, yi) min
w

1

m

m∑

i=1

ℓ(〈w,xi〉, yi) +
λ

2
‖w‖2≡

SGD for Machine Learning
min
w

L̂(w) =
1

m

m∑

i=1

loss(w on (xi, yi))

Subgradient estimate: g(k) = ∇w loss(w(k) on (xi,yi))

g
(k) = ℓ′

(〈
w
(k),xi

〉
, yi

)
xi

=





−yixi yi

〈
w(k),xi

〉
< 1

0 otherwise

ℓ(〈w,x〉,y)=[1-y〈w,x〉]+

min
‖w‖2≤B

L̂(w) =
1

m

m∑

i=1

ℓ(〈w,xi〉, yi)

Start at some w(0)

Iterate: Draw i ∈ 1..n at random
If yi〈w,xi〉 < 1,

w ← w + α(k)yixi

If ||w||2 ≥ B,
w ← B w / ||w||2

wsum += w
Output wsum/k

Example: linear prediction with hinge loss (SVM)

||g(k)||2 ≤ G = sup ||xi||2

Stochastic vs Batch Gradient Descent

x1,y1

x2,y2

x3,y3

x4,y4

x5,y5

xm,ym

g1 = ∇loss(w on (x1,y1))

g2 = ∇loss(w on (x2,y2))

g3 = ∇loss(w on (x3,y3))

g4 = ∇loss(w on (x4,y4))

g5 = ∇loss(w on (x5,y5))

gm = ∇loss(w on (xm,ym))

g1 = ∇loss(w on (x1,y1))

g2 = ∇loss(w on (x2,y2))

g3 = ∇loss(w on (x3,y3))

g4 = ∇loss(w on (x4,y4))

g5 = ∇loss(w on (x5,y5))

gm = ∇loss(w on (xm,ym))

w ← w-g1

w ← w-g2

w ← w-g3

w ← w-g4

w ← w-gm-1

w ← w-∑gi

min
w

L̂(w) =
1

m

m∑

i=1

loss(w on (xi, yi))

w ← w-gm

w ← w-g5

∇L̂(w) = 1
m
gi

Stochastic vs Batch Gradient Descent

• Intuitive argument: if only taking simple gradient steps, better
to be stochastic (will return to this later)

• Formal result:
• Stochastic Gradient Descent Runtime:

• Batch Gradient Descent Runtime:

if only using gradients, and only assuming Lipschitz, this is the
optimal runtime.

• Compared with second order methods?
• For specific objectives? With stronger assumptions?

O

(
X2B2

ǫ2
d

)

O

(
X2B2

ǫ2
md

)

||x||2 ≤ X

Stochastic Optimization Setting

minw∈W F(w) = Ez[f(w,z)]
based on only stochastic information on F:
– Only access to unbiased estimates of F(w) and ∇F(w)
– No direct access to F(w)

• E.g. when distribution of z is unknown, and can only get sample z(i)

– g(k) = ∇wf(w(k),z(k)) unbiased estimator of ∇F(w)

• Traditional applications:
– Optimization under uncertainty

• Uncertainty about network performance
• Uncertainty about client demands
• Uncertainty about system behavior in control problems

– Complex systems where its easier to sample then integrate over z
• “monte carlo” optimization

Machine Learning is Stochastic
Optimization

• Up to now: apply stochastic optimization to minimizing empirical error

• But learning a good predictor is itself a stochastic optimization problem:
minh L(h) = Ex,y[loss(h(x),y)]

without knowing true distribution of (x,y),
given sample (x1,y1),…,(xm,ym)

• Special case of stochastic optimization:
– optimization variable is the predictor (hypothesis) h
– stochastic objective is generalization error (risk)
– stochasticity is over instances we would like to be able to predict

• Vapnik’s “General Learning Setting” is generic stochastic optimization:
minh F(h) = Ez[f(h,z)]

based on iid sample z1,…,zm

[Vapnik95]

General Learning: Examples

• Supervised learning:
z = (x,y)
h specifies a predictor h: X → Y
f(h ; (x,y)) = loss(h(x),y)

• Unsupervised learning, e.g. k-means clustering:
z = x ∈ Rd

h = (µµµµ[1],…,µµµµ[k]) ∈ Rd×k specifies k cluster centers
f((µµµµ[1],…,µµµµ[k]) ; x) = minj ||µµµµ[i]-x||2

• Density estimation:
h specifies probability density ph(x)
f(h ; x) = -log ph(x)

• Optimization in uncertain environment, e.g.:
z = traffic delays on each road segment
h = route chosen (indicator over road segments in route)
f(h ; z) = 〈h,z〉 = total delay along route

Minimize F(h)=Ez[f(h;z)] based on sample z1,z2,…,zn

Stochastic Convex Optimization

• We will focus mostly on stochastic convex optimization:
minw∈W F(w) = E[f(w,z)]

– W is a convex subset of a normed vector space (e.g. Rd)

– f(w,z), and so also F(w), is convex in w.

• For supervised learning:
minw∈W L(w) = E[loss(〈w,φ(x,y)〉,y)]

A non-linear predictor will not yield convex L(w) with any meaningful-for-
prediction loss function (linear in some implicit feature space is OK).

convex lossconvex subset of
normed vector space

Stochastic Convex Optimization
in Machine Learning

minw∈W L(w) = E[loss(〈w,φ(x,y)〉,y)]

• Can capture different:
– convex loss functions
– norms (regularizers)
– explicit or implicit feature maps

• Including:
– SVMs (L2 norm with hinge loss)
– Regularized Logistic Regression
– CRFs, Structural SVMs (L2 norm with structured convex loss functions)
– LASSO (L1 norm with squared loss)
– Group LASSO (Group L2,1 or L∞,1 norm)
– Trace-Norm Regularization (as in MMMF, multi-task learning)

• Does NOT include, e.g.:
– Non-convex loss (e.g. 0/1 loss)
– Decision trees, decision lists
– Fromulas (CNF, DNF, and variants)

convex loss
convex subset of

normed vector space

These are instances of stochastic
optimization, but not stochastic
convex optimization

•Focus on computational efficiency

•Generally assumes unlimited sampling
- as in monte-carlo methods for complicated
objectives

•Optimization variable generally a vector
in a normed space

- complexity control through norm

• Discussion mostly parametric
BUT: - most convergence results are

dimension-independent
- methods and analysis applicable
also to non-parametric problems

•Mostly convex objectives (or at least
convex relaxations)

Stochastic Optimization

•Focus on sample size

•What can be done with a fixed number
of samples?

•Abstract hypothesis classes
- linear predictors, but also combinatorial
hypothesis classes
- generic measures of complexity such as
VC-dim, fat shattering, Radamacher

• Parametric (finite-dim) and
non-parametric classes

• Non-convex classes and loss functions
- multi-layer networks
- sparse and low-rank models
- combinatorial classes

Statistical Learningvs

Two Approaches to Stochastic Optimization

minw∈W F(w) = E[f(w,z)]

• Sample Average Approximation (SAA):
[Kleywegt, Shapiro, Homem-de-Mello 2001], [Rubinstein Shapiro 1990], [Plambeck et al 1996]

– Collect sample z1,…,zm

– Minimize

– In our terminology: Empirical Risk Minimization
– Analysis typically based on Uniform Concentration

• Sample Approximation (SA):
[Robins Monro 1951]

– Update w(k) based on weak estimator to F(w(k)), ∇F(w(k)), etc
• E.g., based on g(k) = ∇f(w,z(k))

– Simplest method: stochastic gradient descent
– Similar to online approach in learning (more on this later)

F̂(w) = 1
m

∑m
i=1 f (w, zi)

Stochastic Approximation for Machine Learning
minw L(w) = E[ℓ(〈w,x〉,y)]

• Our previous approach was a mixed approach:
– SAA: collect sample of size m and minimize empirical error (w/ norm constraint):

– Optimize this with SGD, i.e. applying SA to the empirical objective
• At each SGD iteration, pick random (x,y) from empirical sample

– SGD guarantee is on empirical suboptimality:

– To get guarantee on L(w(k)), need to combined with uniform concentration:

• Pure SA approach:
– Optimize L(w) directly

• At each iteration, use an independent sample from the source distribution
– Same SGD guarantee, but directly to the generalization error:

L̂(w(k)) ≤ L̂(ŵ) +O

(√
X2B2

k

)

sup‖w‖≤B
∣∣∣L̂(w)− L(w)

∣∣∣ ≤ O
(√

X2B2

m

)

L(w(k)) ≤ L(w∗) +O





√
X2 ‖w∗‖22

k





min‖w‖2≤B L̂(w) =
1
m

∑m
i=1 ℓ(〈w,xi〉, yi)

|ℓ’|≤1 ||x||2 ≤ X

Stochastic Approximation (SGD)
for Machine Learning

Start at some w(0)

Iterate:
Draw (x(k),y(k)) ∼ D

g(k) = ℓ’(〈w(k),x(k)〉,y(k)) x(k)

w(k+1) ← w(k) - α(k) g(k)

Output w(k) = 1
k

∑k
j=1w

(k)

Draw (x1,y1),…,(xm,ym) ∼ D

Start at some w(0)

Iterate:
Draw i = i(k) ∼ Unif(1..m)
g(k) = ℓ’(〈w(k),xi〉,yi) xi

w(k+1) ← ΠB(w(k) - α(k) g(k))

Output w(k) = 1
k

∑k
j=1w

(k)

Direct SA Approach:SGD on Empirical Objective
(SA inside SAA):

min‖w‖2≤B L̂(w)

• SA requires fresh sample at every iteration, i.e. needs m ≥ k
• If m<k, similar, except for projection (and sampling with replacement)
• “SA inside SAA” allows #iterations k > sample size m

• Do we need k > m iterations?
• And also, recall earlier question: Is SAA with 2nd Order Optimization better then SGD ?

Stochastic Approximation (Stochastic
Gradient Descent) for Machine Learning

Start at some w(0)

Iterate:
Draw (x(k),y(k)) ∼ D

g(k) = ℓ’(〈w(k),x(k)〉,y(k)) x(k)

w(k+1) ← w(k) - α(k) g(k)

Output w(k) = 1
k

∑k
j=1w

(k)

Draw (x1,y1),…,(xm,ym) ∼ D

Start at some w(0)

Iterate:
Draw i = i(k) ∼ Unif(1..m)
g(k) = ℓ’(〈w(k),xi〉,yi) xi

w(k+1) ← ΠB(w(k) - α(k) g(k))

Output w(k) = 1
k

∑k
j=1w

(k)

Direct SA Approach:SGD on Empirical Objective
(SA inside SAA):

α(k) =
B/X√
k

min‖w‖2≤B L̂(w)

L(w(k)) ≤ L(w∗) +O





√
X2B2

k




L̂(w(k)) ≤ L̂(ŵ) +O

(√
X2B2

k

)

sup‖w‖≤B
∣∣∣L̂(w)− L(w)

∣∣∣ ≤ O
(√

X2B2

m

)

L(w(k)) ≤ L(w∗) +O

(√
X2B2

k

)

+O

(√
X2B2

m

) ||w*||≤B

SA vs SAA for L2 Regularized Learning

L(w) = E[ℓ(〈w,x〉,y)]

• SA (Single-Pass Stochastic Gradient Descent)
– fresh sample (x(k),y(k)) at each iterations

– i.e. single pass over the data
– After k iterations:

⇒ to get L(w) ≤ L(w*) + ǫ:

• SAA (Empirical Risk Minimization)
– Sample size to gurantee L(w) ≤ L(w*) + ǫ:

⇒ using any method:

– And with a sample of size m, whatever we do, can’t guarantee generalization
error better then:

L(w(k)) ≤ L(w∗) +O

(√
X2‖w∗‖22

k

)

sample size m = O

(
X2‖w∗‖22

ǫ2

)
runtime = O(md) = O

(
X2‖w∗‖22

ǫ2
d

)

m = Ω

(
X2‖w∗‖22

ǫ2

)

runtime ≥ Ω
(
X2‖w∗‖22

ǫ2
d

)

|ℓ’|≤1 ||x||2 ≤ X

L(w∗) +O

(√
X2‖w∗‖22

m

)

SA vs SAA for L2 Regularized Learning
L(w) = E[ℓ(〈w,x〉,y)]

• Summary:
–Can obtain familiar SVM generalization guarantee directly from

[Nemirovski Yudin 78]: with m samples, and after k=m iterations:

–Even with limited sample size, can’t beat SA (single-pass SGD):
guarantees best-possible generalization error with optimal runtime*

* Up to constant factors

* Without further assumptions (tightness is “worst-case” over source distribution)

L(w(m)) ≤ L(w∗) +O

(√
X2‖w∗‖22

m

)

|ℓ’|≤1 ||x||2 ≤ X

ŵ = argmin‖w‖≤B L̂(w) w(m) =
output of one-pass
SGD on m samples

w(0)

ŵ

w(m)

w*

SGD (SA)

ERM (SAA)
O

(√
X2‖w∗‖22

m

)

(figure adapted
from Leon Bottou)

Those pesky constant factors…

• The constant factor in the theoretical guarantees we can show for
SA is actually a bit better then in the ERM guarantee (two vs four)

• Its tight, in the worst case, up to a factor of eight.

• But in practice, the ERM does seem to be better...

• Said differently: with a fixed-size sample, after a single SGD pass
over the data, we still don’t obtain the same generalization
performance as the ERM.

ŵ = argmin‖w‖≤B L̂(w) w(m) =
output of one-pass
SGD on m samples

Mixed approach: SGD on Empirical Error

0 1,000,000 2,000,000 3,000,000

0.052

0.054

0.056

0.058

iterations k

T
es

t m
is

cl
as

si
fic

at
io

n
er

ro
r

m=300,000
m=400,000
m=500,000

Reuters RCV1 data, CCAT task

• The mixed approach (reusing examples) can make sense
• Still: fresh samples are better

⇒ With a larger training set, can reduce generalization error faster
⇒ Larger training set means less runtime to get target generalization error

[Shalev-Shwartz, Srebro 2008]

Outline

• Gradient Descent and Stochastic Gradient Descent
– Including sub-gradient descent

• The Stochastic Optimization setup and the two main
approaches:
– Statistical Average Approximation
– Stochastic Approximation

• Machine Learning as Stochastic Optimization
– Leading example: L2 regularized linear prediction, as in SVMs

• Connection to Online Learning
(break)

• More careful look at Stochastic Gradient Descent
• Generalization to other norms: Mirror Descent
• Faster convergence under special assumptions

Online Optimization (and Learning)
• Online optimization setup:

– As in stochastic optimization fixed and known f(w,z) and domain W
– z(1),z(2),… presented sequentially by “adversary”
– “Learner” responds with w(1),w(2),…

– Learner’s goal: minimize regret versus best single response in hindsight.

– E.g., investment return:
w[i] = investment in holding i
z[i]= return on holding i
f(w,z) = -〈w,z〉

– Learning: f(w,(x,y)) = loss(hw(x) on y)

w(1) ….
z(1)

Learner:

Adversary: z(2) z(3)

w(2) w(3)

1
k

k∑

j=1

f (w(j), z(j))− inf
w∗∈W

1
k

k∑

j=1

f (w∗, z(j))

Online Optimization (and Learning)
• Online optimization setup:

– As in stochastic optimization fixed and known f(w,z) and domain W
– z(1),z(2),… presented sequentially by “adversary”
– “Learner” responds with w(1),w(2),…

– Learner’s goal: minimize regret versus best single response in hindsight.

• Online Gradient Descent [Zinkevich 03]:

w(1) ….
z(1)

Learner:

Adversary: z(2) z(3)

w(2) w(3)

1
k

k∑

j=1

f (w(j), z(j))−1
k

k∑

j=1

f (w∗, z(j)) ≤ O
(
GB√
k

)

Start at some w(0)

Iterate: Predict w(k), receive z(k), pay f(w(k),z(k))
w(k+1) ← ΠW (w(k) - α(k)∇f(w(k),z(k)))

||w*||≤B

α(k) =
B/G√
k||∇f(w,z)||2 ≤ G

Online Optimization vs Stochastic Approximation

• In both Online Setting and Stochastic Approximation
– Receive samples sequentially
– Update w after each sample

• But, in Online Setting:
– Objective is empirical regret, i.e. behavior on observed instances
– z(k) chosen adversarialy (no distribution involved)

• As opposed on Stochastic Approximation:
– Objective is Ez[f(w,z)], i.e. behavior on “future” samples
– i.i.d. samples z(k)

• Stochastic Approximation is a computational approach, Online Learning
is an analysis setup
– E.g. “Follow the leader” is an online algorithm that solves an ERM problem

at each iteration. It is still fully in the online setting, and is sensible to
analyze as such

Online To Stochastic

• Any online algorithm with regret guarantee:

can be converted to a Stochastic Approximation algorithm, by
outputting the average of the iterates [Cesa-Bianchi et al 04]:

(in fact, even in high confidence rather then in expectation)

1
k

k∑

j=1

f (w(j), z(j))− 1
k

k∑

j=1

f (w∗, z(j)) ≤ R(k)

E

[
F(w(k))

]
− F(w∗) ≤ R(k) w(k) = 1

k

∑k
i=1w

(i)

Stochastic Gradient Descent
[Nemirovski Yudin 78]

Onlined Gradient Descent
[Zinkevich 03] [Cesa-Binachi et al 04]

online2stochastic

Break

Outline

• Gradient Descent and Stochastic Gradient Descent
– Including sub-gradient descent

• The Stochastic Optimization setup and the two main
approaches:
– Statistical Average Approximation
– Stochastic Approximation

• Machine Learning as Stochastic Optimization
– Leading example: L2 regularized linear prediction, as in SVMs

• Connection to Online Learning
(break)

• More careful look at Stochastic Gradient Descent
• Generalization to other norms: Mirror Descent
• Faster convergence under special assumptions

Stochastic Gradient Descent
min
w∈W

F(w)

Start at w(0)=0
Iterate:

Get subgradient estimate g(k)

w(k+1) ← ΠW (w(k) - α(k)g(k))
Output w(k) = 1

k

∑k
j=1w

(j)

ΠW(w) = arg minv∈W ||v-w||2

Assumptions for analysis:
• F(w) is convex in w
• Independent and unbiased (sub)-gradient estimates: E[g(k)] ∈ ∇F(w(k))
• E[||g(k)||22] ≤ G2

– Equivalently: supw||∇F(w)||2 + Var[g(k)] ≤ G2

– Slightly weaker then ||g(k)||2 ≤ G

• We do not need W to be bounded (could be Rd)

– But stepsize and convergence gurantee will depend on ||w*||2

Stochastic Gradient Descent:
Stepsizes and Convergence

• Main inequality:

(same as for Gradient Descent analysis, but in expectation)

• With any α(k)→ 0 and ∑j=1..kα
(j)→ ∞:

• Fixed stepsizes:

• Decaying stepsizes:

• If we don’t know G,||w*||, getting the stepsize wrong is not too bad:

E

[
F(w(k))− F(w∗)

]
≤

∥∥∥w∗ −w(0)
∥∥∥
2
+
∑k−1
j=0(α

(k))2E

[∥∥∥g(k)
∥∥∥
2
]

2
∑k−1
j=0 α

(k)

limE

[
F(w(K))

]
≤ F(w∗)

α(j) =
‖w∗‖2
G
√
K

E

[
F(w(K))

]
≤ F(w∗) + G ‖w∗‖2√

K

α(j) = ǫ
G2

E

[
F(w(k))

]
− F(w∗) ≤ ǫ k =

G2‖w∗‖22
ǫ2

with

E

[
F(w(k))

]
≤ F(w∗) + 4

G ‖w∗‖2√
k

α(k) =
‖w∗‖2
G
√
k

α(k) = β
‖w∗‖2
G
√
k

E

[
F(w(k))

]
≤ F(w∗) + 4

G ‖w∗‖2√
k

max
(
β,1β

)

Stochastic Gradient Descent: Comments

• Fairly robust to stepsize

• Projections:
– If minimizing L(w) stochastically, using fresh samples at each iteration, can

take W=Rd, and no need to project

– In mixed SA/SAA approach (SGD on L(w), reusing sample): must take
W={w | ||w||≤ B} to ensure generalization

• Sampling with/without replacement:
– In mixed SA/SAA approach, when reusing sample, theory only valid when

sampling iid with replacements.

– In practice: better to take random permutation of data (ie sample without
replacement). When permutation is exhusted (finished a pass over the
data), take another random permutation, etc. Warning: No theory for this!

– See Leon Bottou’s webpage.

E

[
F(w(k))

]
≤ F(w∗) +O

(
G ‖w∗‖2√

k

)

α(k) = Θ

(
1√
k

)

ˆ

Stochastic Gradient Descent: Comments
• Averaging:

– As presented, SGD outputs the average over the iterates w(k)

– Instead of taking the average, same gurantee holds for random iterate:
• When done, pick j ∈ 1..K at random, output w(j)

• Equivalently, use a random number of iterations (pick number of iterations at
random between 1..K: on average you are fine).

– Not aware of guarantee of w(k) for non-random, predetermined k
• E.g., it could be that for some problem, taking exactly 7328 SGD iterations

would be bad, even in expectation over the sample, but taking a random
number of iterations between 1 and 7328 would be fine.

• My guess: we are missing some theory here…

– In practice: averaging reduces variance.

• High Confidence Guarantee:
With probability at least 1-δ over the samples:

e.g. using an online to stochastic conversion [Cesa Bianchi et al 2004]

– Only for average! (not for random iterate)

F(w(k)) ≤ F(w∗) +O

(
G ‖w∗‖2+ log 1

δ√
k

)

Other Regularizers
• Discussion so far focused on ||w||2, and L2 regularization
• In particular, SGD sample complexity depends on ||w||2, and so

matches the sample complexity of L2 regularized learning.
• What about other regularizers?

– E.g. L1, group norms, matrix norms

• Option 1: SAA approach, minimizing:

perhaps using SGD (runtime might depend on L2, but sample
complexity on ||w||reg)

• Option 2: SA approach geared towards other norms…

min
‖w‖reg≤B

L̂(w) min
w
L̂(w) + λ ‖w‖regor

w
(k+1)← argmin

w
F(w(k)) +

〈
g
(k),w −w(k)

〉
+

1

2α

∥∥∥w −w(k)
∥∥∥
2

= argmin
w
α
〈
g
(k),w

〉
+

1

2

∥∥∥w −w(k)
∥∥∥
2

= w
(k) − αg(k)

SGD as a Proximal Method

• Another motivation for (stochastic)
gradient descent:

F(w(k))+〈∇F(w(k)),w-w(k)〉

F(w)

w(k)

1st order model of F(w)
around w(k), based on g(k)

only valid near w(k),
so don’t go too far

SGD as a Proximal Method

• Another motivation for (stochastic)
gradient descent:
w
(k+1)← argmin

w
F(w(k)) +

〈
g
(k),w −w(k)

〉
+

1

2α

∥∥∥w −w(k)
∥∥∥
2

= argmin
w
α
〈
g
(k),w

〉
+

1

2

∥∥∥w −w(k)
∥∥∥
2

= w
(k) − αg(k)

Start at w(0)=0
Iterate: Get subgradient estimate g(k)

w(k+1) ← arg minw∈W α
(k)〈g(k),w(k)〉+ ½||w-w(k)||2

Output w(k) = 1
k

∑k
j=1w

(j)

replace with replace with
other norm?other norm?

Bregman Divergences

• For a differentiable, convex R define the Bergman Divergence:
DR(w,v) = R(w)-R(v)-〈∇R(v),w-v〉

• We will need R that is non-negative and τ-strongly convex w.r.t. our
norm of interest ||w||, i.e. s.t.:

DR(w,v) ≥ τ/2 ||w-v||2

v

w

R(v)-〈∇R(v),w-v〉

DR(w,v)

Bregman Divergences

• For a differentiable, convex R define the Bergman Divergence:
DR(w,v) = R(w)-R(v)-〈∇R(v),w-v〉

• We will need R that is non-negative and τ-strongly convex w.r.t. our
norm of interest ||w||, i.e. s.t.:

DR(w,v) ≥ τ/2 ||w-v||2

• Examples:
– R(w)=½||w||22 is 1-strongly convex w.r.t. ||w||2, DR(w,v)=½||w-v||22

– R(w)=½||w||p2 is (p-1)-strongly convex w.r.t ||w||p, for p>1
– R(w)=log(d)-∑iw[i]·log(w[i]) is 1-strongly convex w.r.t. ||w||1

on {w ∈ Rd
+ | ||w||<1 }

Stochastic Mirror Descent

w(k) = 1
k

∑k
j=1w

(j)

Start at w(0)=arg minw R(w)
Iterate: Get subgradient estimate g(k)

w(k+1) ← arg minw∈W α
(k)〈g(k),w(k)〉+ DR(w,w(k))

Output
Bergman divergence of R, where

R(w) is τ-strongly convex w.r.t. ||w||

E

[
F(w(k))

]
− F(w∗) ≤ O





√
G2B2

τk





||g(k)||* ≤ G

Similar guarantee to stochastic gradient descent:

R(w*) ≤ B2

Stochastic Mirror Descent for Linear Prediction
minw L(w) = E[ℓ(〈w,x〉,y)]

• Using R(w)=½||w||p
2 which is (p-1)-strongly convex w.r.t ||w||p

• For ||w||1, either:
– Use R(w)=½||w||p2 with p=log(d)
– Or, use R(w)=B2log(d)–B∑ix[i]·log(x[i]), which is 1-strongly convex on

{ x | x[i] ≥ 0, ||x||1 ≤ B }

Either way:

• Similarly also for other norms. E.g. for the L2,1 “group Lasso”, can
use R(W) = ||W||2,p

2, with p=log(d).

|ℓ’|≤1

E

[
F(w(k))

]
− F(w∗) ≤ O






√√√√(sup ‖x‖2q) ‖w∗‖2p
(p − 1)k






E

[
F(w(k))

]
−F(w∗) ≤ O





√
(sup ‖x‖2∞) ‖w∗‖21 logd

k





Intermediate Summary

• SGD as proximal method with an L2 “regularizer”
• Mirror Descent as a generalization to other regularizers

– Versatile: Just plug in appropriate strongly convex R for your
application (Lp norms, Group norms, Schatten p-norms)

– Powerful: Typically gives bounds matching ERM
– Optimal: In a “worst case” sense, i.e. without making further

assumptions.

• Proximal point view also allows other extensions, such
as partial linearization (e.g. FOBOS [Duchi Singer 09])

Moving beyond 1/√k rates

• Need to assume stronger properties of the
objective function F(w)

• We will discuss:
– Strongly Convexity
– Smoothness

Strongly Convex Objectives
• Focusing on the Euclidean norm ||w||2, F(w) is λ-strongly convex iff its

Hessian is bounded from below:
λmin(∇2F(w)) ≥ λ

• If F(w) is λ-strongly convex, then SGD converges much faster:

with

or, with more sophisticated randomly changing α(k): [Hazan Kale 10]

• As with standard case, this is the optimal rate, even when using full gradients,
and for any method using only (full or stochastic) gradient information.

• Very sensitite to stepsize: very bad convergence is steps too short.
• log(k) gap between online regret and stochastic optimization guarantee.

E

[
F(w(k))

]
− F(w∗) ≤ O

(
G logk

λk

)
||g(k)||2 ≤ G

α(k) = 1
λk

E

[
F(w(k))

]
− F(w∗) ≤ O

(
G

λk

)

Strongly Convex Objectives
in Machine Learning

• When do we encounter strongly convex objectives in
Machine Learning?

minw L(w) = E[ℓ(〈w,x〉,y)]

• Only when:
– loss ℓ(t,y) is strongly convex, e.g. squared loss ℓ(t,y)=(t-y)2

– and data is well conditioned, i.e. λmin(Var[x]) ≥ λ

• Matches ERM gurantees

• More relevant for SGD on regularized empirical loss in
mixed SAA/SA approach (next slide)

Regularized Empirical Risk Minimization

• Regardless of (convex) loss function or data distribution, F(w) is
always λ-strongly convex

• PEGASOS [Shalev-Shwartz et al 07]: Optimize this regularized
empirical risk using SGD, with gradient estimates:

g(k) = ℓ’(〈w(k),xi〉〉〉〉,yi)yixi + λw(k)

yielding:

But need to take λ = ǫ/||w*||2, and so this still yields

and there ins’t really a win here

min
w

F(w) = L̂(w)+
λ

2
‖w‖2 = 1

m

m∑

i=1

(
ℓ(〈w, xi〉, yi) +

λ

2
‖w‖2

)

E

[
F(w(k))

]
≤ F(ŵλ) +O

(
X

λk

)

E

[
L(w(k))

]
≤ L(w∗) +O

(√
X2‖w∗‖22

k

)

Smooth Objectives
• A function F(w) is H-smooth if

||∇F(w) - ∇F(v)||2 ≤ H·||w-v||
i.e. upper bound on Hessian, or roughly speaking, 2nd derivative is
bounded.

• Full (non-stochastic) Gradient Descent converges as:

• And, “accelerated” first order methods (using only gradient
information and simple computations, but steps or not exactly in
gradient direction):

F(w(k)) ≤ F(w∗) +O

(
H ‖w∗‖22

k

)

F(w(k)) ≤ F(w∗) +O

(
H ‖w∗‖22
k2

)

SGD with a Smooth Objective

• Stochastic Gradient Descent:

• “Accelerated” stochastic-gradient method [Lan 09]:

• Where E[g(k)]∈∇F(x(k)), and Var[g(k)]≤σ

• In the typical machine learning situation, when stochastic
estimates of the gradient are based on single samples,
we can only guarantee Var[g(k)] ≤ X2, and we do not get
any improvement.

F(w(k)) ≤ F(w∗) +O



H ‖w
∗‖22

k
+

√
σ2 ‖w‖22

k





F(w(k)) ≤ F(w∗) +O



H ‖w
∗‖22

k2
+

√
σ2 ‖w‖22

k





Beyond SGD / Mirror Descent

• Stochastic Coordinate Descent
–Stochastic in method, not in setup (deterministic objective, in our

case the empirical error)
–L1 regularization

• update one random feature at a time
–Dual of SVM objective [Hsieh et al 2008]

• update a random dual variable at a time
• similar in many ways to SGD on primal, which also updates one

“multiplier” at a time
• guarantee on dual sub optimality, but not on primal suboptimality

• Stochastic 2nd Order Methods
–Leon Bottou’s web page and tutorials
–Using stochastic Hessian information [Bryd Chin Neveitt Nocedal 2010]

Is SA Always Relevant?
• Supervised learning (as well as “General Learning Setting”) is stochastic

optimization

• But SA approaches not always possible, even if SAA (ERM) possible:
– E.g. low dimensional linear prediction with 0/1 loss
– Combinatorial problems, where “subgradient” not defined

• In non-convex problems over normed vector spaces:
– Multilayer Networks
– Low Rank Models
– Clustering problems

stochastic gradient descent possible, and often works well, but:
– Local minima are a problem
– Convergence properties, step size rule, less clear

• Sometimes (not in supervised learning) SA does converge, but not SAA
[Shalev-Shwartz et al 09]

Summary

Machine Learning is Stochastic Optimization

• Classic Stochastic Approximation results, using
Stochastic Mirror Descent and Stochastic Gradient
Descent, match familiar Statistical Learning guarantees.

• Stochastic Approximation (≈ Online) approaches in a
sense “optimal” for machine learning problems.

• Mixed approach often beneficial in practice: Optimize
ERM using Stochastic Approximation

