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Introduction
Natural language is an efficient medium for non-expert users
to specify tasks for robotic agents. To effectively map nat-
ural language instructions to actions, a robotic agent must
solve natural language, sensing, and planning problems. For
example, consider the Blocks environment and instructions
in Figure 1 (Bisk, Yuret, and Marcu 2016). The agent ob-
serves the environment as an RGB image using a camera
sensor. Given the RGB input, the agent must recognize the
blocks and their layout. To understand the instruction, the
agent must identify the block to move (Toyota block) and the
destination (just right of the SRI block). This requires solv-
ing semantic and grounding problems. For example, con-
sider the topmost instruction in the figure. The agent needs
to identify and ground the phrase Toyota block referring to
the block to move. It must resolve and ground the phrase SRI
block as a reference position, which is then modified by the
spatial meaning recovered from the same row as or first open
space to the right of, to identify the goal position. Finally,
the agent needs to generate actions, for example moving the
Toyota block around obstructing blocks.

Previous work assumed a symbolic environment repre-
sentation (Chen and Mooney 2011; Artzi and Zettlemoyer
2013; Artzi, Das, and Petrov 2014; Misra et al. 2015;
Mei, Bansal, and Walter 2016), or combined separately
trained models to solve the different problems (Matuszek,
Fox, and Koscher 2010; Tellex et al. 2011). We recently pro-
posed a single-model approach for mapping instructions and
visual observations to actions (Misra, Langford, and Artzi
2017). Our approach does not require intermediate represen-
tations, planning procedures, or training different models.
Training relies on a reinforcement learning method approx-
imated in a contextual bandit setting (Langford and Zhang
2007). During learning, the reward function requires access
to the world state to evaluate task progress and completion.
While this can be achieved by instrumenting the training en-
vironment (Levine et al. 2016), this is not always practical.

We address this limitation by learning a distance-based
reward function (Popov et al. 2017) using distance learning,
an efficient method for learning a distance function (Wein-
berger, Blitzer, and Saul 2006). Learning relies on simple
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Put the Toyota block in the same row as the SRI block, in the
first open space to the right of the SRI block
Toyota to the immediate right of SRI, evenly aligned and slightly
separated

Figure 1: Instructions in Blocks. The above instructions
describe the same task. Given the observed RGB image
of the start state (large image), our goal is to execute such
instructions. In this task, the direct path to the target po-
sition is blocked. The agent must move the Toyota block
around. The small image shows the target and an example
path, which includes 34 steps.
statistics over execution states. Once learned, the reward
function is computed using agent observations and does not
require access to the world state. In this abstract, we de-
scribe our ongoing work towards this goal. We evaluate in
the simulated Blocks environment (Bisk, Marcu, and Wong
2016), and empirically demonstrate the effectiveness of the
learned reward. Our approach shows limited degradation
in performance in comparison to a reward that has access
to the world state, while outperforming supervised learning
and common reinforcement learning methods.

Problem Description
Task Let X be the set of all instructions, S the set of all
world states, and A the set of all actions. An instruction
x̄ ∈ X is a sequence 〈x1, . . . , xn〉, where each xi is a token.
The agent executes instructions by generating a sequence of
actions, and indicates execution completion with the spe-
cial action STOP. Action execution modifies the world state
following a transition function T : S × A → S. The exe-
cution ē of an instruction x̄ starting from s1 is an m-length
sequence 〈(s1, a1), . . . , (sm, am)〉, where sj ∈ S, aj ∈ A,
T (si, ai) = si+1 and am = STOP. In Blocks (Figure 1), a
state specifies all block positions. For each action, the agent
moves a block on the plane in one of four directions (north,
south, east, or west). There are 20 blocks, and 81 possible
actions at each step, including STOP. For example, the action
TOYOTA-SOUTH moves the Toyota block one step south.
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Figure 2: Illustration of the policy architecture showing the 10th step in the execution of Place the Toyota east of SRI starting
from the state in Figure 1. The inputs are the instruction x̄, the current state image I10, previous state images (I8 and I9), and the
previous action a9. The text and images are embedded with a recurrent neural network LSTM (Hochreiter and Schmidhuber
1997) and a convolutional neural network CNN (LeCun et al. 1998). The action is selected with a multi-layer perceptron.

Data We train and evaluate on Blocks. The data set in-
cludes 16, 767 natural language instructions with a vocab-
ulary of 1, 426. The mean instruction length is 15.27, and
the mean number of actions 15.4. When compared to com-
mon data sets (MacMahon, Stankiewics, and Kuipers 2006;
Matuszek et al. 2012; Misra et al. 2015), the instructions are
longer, have a larger vocabulary, and require a larger number
of actions (Misra, Langford, and Artzi 2017, Table 1).

Single-Model Approach
Model The agent observes the world state using a camera
sensor. Given a world state s, the agent observes an RGB im-
age I ∈ I generated by the function IMG(s). We distinguish
between the world state s and the agent context s̃, which
includes the instruction, the image observation IMG(s), im-
ages of previous states and the previous action. To map in-
structions to actions, the agent reasons about the agent con-
text to generate a sequence of actions. At each step, the
agent generates a single action. We model the agent with
a neural network policy. At each step j, the network takes
as input the current agent context s̃j , and predicts the next
action to execute aj . Figure 2 illustrates the policy network.
For full details see Misra, Langford, and Artzi (2017).
Learning We estimate the policy parameters using rein-
forcement learning in a contextual bandit setting. In a con-
textual bandit setting, maximizing the immediate reward
suffices and provides stronger theoretical guarantees than
unconstrained reinforcement learning (Agarwal et al. 2014).

Reward with an Instrumented Environment
In Misra, Langford, and Artzi (2017), we define a sim-
ple task-completion reward computed from the world state.
To leverage demonstrations of the desired system behav-
ior, we use reward shaping (Ng, Harada, and Russell 1999;
Wiewiora, Cottrell, and Elkan 2003). Computing this reward
requires instrumenting the training environment, a challeng-
ing engineering task in complex domains.

Reward Learning with Metric Learning
We adopt an inverse reinforcement learning (Ng and Rus-
sell 2000, IRL) approach and learn a reward function that is
computed from the agent context. The original reward func-
tion is based on comparing world state and computing dis-
tances between them. Therefore, we cast the reward learning
problem as learning a distant metric between world states, as
observed in the agent context. Formally, our goal is to learn
a distance function dθ : I × I → R with parameters θ.
We define dθ(I1, I2) = ‖φθ(I1) − φθ(I2)‖2, where φ is a

Algorithm Distance Error
Demonstrations 0.35
RANDOM 15.3
SUPERVISED 4.65
REINFORCE (Sutton et al. 1999) 5.57
DQN (Mnih et al. 2013) 6.04
Our approach

w/instrumented environment 3.60
w/learned reward 4.07

Table 1: Mean error development results.
convolutional neural network with parameters θ. To learn
the distance function, we assume access to a dataset of im-
age triplets {(I(n)a , I

(n)
+ , I

(n)
− )}Nn=1, where the state of I(n)+

is closer to state of I(n)a than the state of I(n)− . We minimize
the triplet loss (Weinberger, Blitzer, and Saul 2006):

L =
1

N

N∑
n=1

max{0, dθ(I(n)a , I
(n)
+ )− dθ(I

(n)
a , I

(n)
− ) + 1} .

To generate triplets we assume access to executions with
progress meta data. The progress data includes for each
execution step if it is closer to the final state than the pre-
vious step or further. A state may be further from the fi-
nal state than the previous if the agent was moving fur-
ther to, for example, go around an obstacle. We generate
triplets for each pair of adjacent states and the final exe-
cution state. The image of the final state is Ia, and the
images of the next state and the current state are used as
I+ and I−, or vice versa, based on the progress meta data.
The reward function is then defined as a potential difference
R(I, a, I ′) = dθ(Ig, I) − dθ(Ig, I ′) where I, I ′ and Ig are
the images of the current, next, and goal states.
Results Table 1 shows current development results. We
measure execution error as the distance between the final
and goal states, normalized by the block size. We report the
mean error of following the demonstrations, random behav-
ior (RANDOM), supervised learning (SUPERVISED), two re-
inforcement learning baselines (REINFORCE and DQN),
our contextual bandit approach with instrumented training
environment, and our approach with a learned reward.

Conclusion
We use metric learning to induce a reward function for
learning to map instructions to actions. The reward func-
tion does not require the world state, and enables reinforce-
ment learning without instrumenting the training environ-
ment. Our contextual bandit learning approach is designed
for a few-samples regime. When the number of samples is
unbounded, the drawbacks observed in this scenario for op-
timizing longer term reward do not hold.
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