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Abstract

In order for autonomous robots and humans to effectively col-
laborate on a task, robots need to be able to perceive their
environments in a way that is accurate and consistent with
their human teammates. To develop such cohesive perception,
robots further need to be able to digest human teammates’ de-
scriptions of an environment to combine those with what they
have perceived through computer vision systems. In this con-
text, we develop a graphical model for fusing object recog-
nition results using two different modalities—computer vision
and verbal descriptions. In this paper, we specifically focus
on three types of verbal descriptions, namely, egocentric po-
sitions, relative positions using a landmark, and numeric con-
straints. We develop a Conditional Random Fields (CRF)
based approach to fuse visual and verbal modalities where we
model n-ary relations (or descriptions) as factor functions. We
hypothesize that human descriptions of an environment will
improve robot’s recognition if the information can be prop-
erly fused. To verify our hypothesis, we apply our model to
the object recognition problem and evaluate our approach on
NYU Depth V2 dataset and Visual Genome dataset. We re-
port the results on sets of experiments demonstrating the sig-
nificant advantage of multimodal perception, and discuss po-
tential real world applications of our approach.

Introduction

In order for a human-robot team to effectively perform col-
laborative tasks in complex environments, it is essential
for the team to build accurate and cohesive perception of
the environments. Robots in general perceive their environ-
ment via on-board sensors, e.g., by using computer vision
based approaches on camera images or 3-D point clouds. In
a human-robot team setting (Hoffman and Breazeal 2007;
Wang, Pynadath, and Hill 2016), in order to develop cohe-
sive team perception, robots also need to be able to digest
human teammates’ descriptions of the shared environment
to combine those with what they have perceived through
computer vision systems. In this context, we address the fol-
lowing research question: How can we develop a perception
system that can fuse information coming in different modal-
ities such as images from camera sensors and verbal/textual
descriptions from human teammates so that the perceived
world model is consistent across team members?
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To tackle this problem, we develop a graphical model for
multimodal perception. Specifically, in this paper, we fo-
cus on fusing object recognition results using two different
modalities—computer vision and textual descriptions. Based
on the computer vision recognition results with errors, as
the human make the command or descriptions to describe
the environments, we aim to adjust the labels of objects
(bounding boxes) based on the embedded relations. In this
paper, we specifically focus on three types of descriptions,
namely, egocentric positions, relative positions using a land-
mark, and numeric constraints. A Random Walk based ap-
proach on fusing vision with language performs well on un-
derstanding descriptions using binary spatial relations (Shi-
ang et al. 2017); however, this approach is difficult to gener-
alize to support more general n-ary relations. To overcome
this limitation, we develop a Conditional Random Fields
(CRF) (Chavez-Garcia et al. 2013; Sutton and McCallum
2012) based approach where we model n-ary relations as
factor functions.

We hypothesize that human descriptions of an environ-
ment will improve robot’s recognition if the information can
be properly fused. To verify our hypothesis, we evaluate our
approach on an indoor object recognition problem. Our ex-
perimental results show that team perception using our ap-
proach significantly improves the recognition performance,
by up to 11.44% for the case of objects of interest.

Related work

Although the idea of human-in-the-loop perception system
is not new, existing approaches are designed for specific
problems or focus on the analysis of human robot interac-
tion. For example, counting the number of objects in com-
plex scenes by asking users to label each object in an im-
age (Sarma et al. 2015), and detecting part of objects by
asking humans to click the position of an image according to
given questions that have been generated by maximizing the
information gain (Wah et al. 2011). Notably, Russakovsky
et al. focus on the problem of actively engaging in human
computation to improve object detection (Russakovsky, Li,
and Fei-Fei 2015). They formulated active annotation prob-
lem as a Markov Decision Process (MDP) (Sutton and Barto
1998) to ask an optimal question such as “Is this a chair?”
according to a trade-off between the utility and the cost
of asking a question. By answering such questions, human



workers directly perform the labeling role to actively assist
computer vision. Conversely, our proposed method does not
make any assumption on the strong tie between computer
vision systems and humans who provide descriptions, and
thus focuses on utilizing information in the descriptions that
humans have generated independently of the computer vi-
sion results. Our approach can be applied to many practical
real-world problems, e.g., the use of social media in disas-
ter response, where data in different modalities can come
from unrelated sources. We note that the system architec-
ture doesn’t prevent our approach from recruiting a directly
interactive approach when crowdsourcing is feasible.

In addition to active learning, multimodal information
brings benefits to improve the system using single modal-
ity. Kong et al. proposed Markov Random Fields model for
coreference of human descriptions for scenes (Kong et al.
2014). Different from the coreference task of pure text, they
used multimodal features, such as depth and object posi-
tions, to reinforce the results of both textual coreference and
visual grounding; for example, for the objects referring to
the textual terms which are regarded as in the same coref-
erence cluster, they are more likely to be the same one, and
vice versa. Another work that is relevant to ours is (Thoma-
son et al. 2016) where users describe objects using attributes,
e.g., distance, when playing I-SPY game. Because their ap-
proach was designed for the game specifically, a direct com-
parison was not possible. Their experimental results also
compare the multimodal approach against their vision-only
system; Fl-measures are 0.196 and 0.354 for vision-only
and multimodal approaches, respectively.

For fusing information in visual and textual modalities,
Chavez-Garcia et al. (Chavez-Garcia et al. 2013) proposed
Markov Random Fields to rerank the image retrieval re-
sults according to pseudo-relevance feedback, which con-
tains both image and language. A Random Walk based ap-
proach known as MultiRank was proposed in (Shiang et
al. 2017) where they used two types of contextual infor-
mation generated by humans: Spatial relations specified in
a human commander’s commands and object co-occurence
statistics mined from an online image data source. This ap-
proach has proven effective in improving object recognition
results; however, because a spatial relation is encoded in the
edges on their graph representation, the types of spatial re-
lations that can be supported are limited to binary relations.
Since this approach shares a high-level framework as our
approach, we use this work as our baseline.

Graphical Model for Fusion
Problem definition

The target perception problem in this paper is object recog-
nition. An object recognition problem in general can be de-
fined as: Given an image input, segment the image into a set
of regions and assign a class label for each region. Multi-
modal object recognition relaxes the input type to support
additional modalities. For instance, we consider text data
that human teammates and/or crowdsourcing can provide to
describe the same scene. As illustrated in Figure 1, the data
need to be interpreted and understood using specific tech-

l i i 1 Environment ﬁ
Camera image Language description
(Robot) (Human)
Vision Language

Bounding box Language
detection understanding

CNN features 3
Object classifier Spatial reasoning

Object Constraints
bounding boxes

- RS

Multimodal Perception
Graphical Model

Team 1 i
perception |
OUtPUt

Figure 1: An architecture for multimodal team perception.
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niques for each modality, e.g., an image data is analyzed
using computer vision techniques whereas text data is pro-
cessed using natural language processing and language un-
derstanding techniques. Our target problem here is to fuse
the information from both sources in a principled way to
generate the recognition output that is cohesive across the
modalities.

In this problem, since the final output format from the
recognition system is the same as that of the computer vi-
sion systems, we formulate this problem as object recogni-
tion conditioned on additional information. Formally, given
set R of regions (such as bounding boxes) and set C' of ob-
ject class labels, let ¢ : R — C denote an assignment of
all regions to class labels, ® be a set of all possible assign-
ments, O denote a set of random variables each of which
representing the probability of the assignment being accu-
rate, and M = my,...m, be a set of input data representing
n modalities. Then, the object recognition problem is finding
the assignment that maximizes this distribution as follows:

OIM. ¢).
argrgggp( M, ¢)

Background: Conditional Random Fields Conditional
Random Fields is a probabilistic framework for structured
predictions (Lafferty, McCallum, and Pereira 2001). Let G
denote a factor graph over input and output (or label) vari-
ables X and Y. Probability distribution (X,Y") is conditional
random fields if the conditional distribution p(y|z) factor-
izes for every observed value x in X for Graph G, i.e., the
distribution can be written as a product of factors (or local
functions) (Sutton and McCallum 2010). In general, the lo-
cal functions in a CRF are defined as a weighted sum of
feature functions as follows:

K
PIYIX) = 705 exp(>_ O fr(z,y)) (1)
k=1

where fi,(z,y) and 6x(x) denote the k* feature function
and its weight, respectively, and Z(x) is the normalization
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Figure 2: Our CRF model for fusing vision, egocentric (e)
and relative (r) relations and numeric (n) constraints.

function defined as follows:

K
Z(x) =Y exp(d_ Oxfu(z,y)) @)
k=1

yey

Since a node in a CRF only depends on its neighbors in
its Markov Blanket (Pearl 1988), the conditional distribution
can be efficiently approximated using Gibbs Sampling (Liu
1994). The prediction algorithm selects the most probable
label based on the feature functions as follows:

K
y = argmaz(cxp(D_ O fr(z,1))) 3)
k=1
Algorithm: CRFs for information fusion To model mul-
timodal perception as a CRF, we construct a factor graph
over the input variables X, the bounding boxes from a com-
puter vision based object recognition, and the output vari-
ables Y, a set of possible labels. We then define 4 types
of factor functions: One to represent a visual modality and
three to encode relation descriptions in a textual modality.
Specifically, we focus on 3 kinds of relations that might be
embedded in language inputs: Egocentric position, relative
position, and numerical constraints, denoted by rel., rel,,
and rel,, respectively. ?? shows the CRF model for multi-
modal team perception, illustrating different types of factors
for fusing multiple modalities.

Spatial reasoning: Before we introduce the factor func-
tions, we first define preliminaries. For each bounding box,
we have the coordinates for bounding box (wy, hy, wa, hs)
describing top_left and bottom_right points. The horizon-
tal center of the bounding box is (wy + wsy)/2. Each de-
scription function returns true if its statement is satis-
fied, false otherwise. In this paper, we use the following
predefined descriptions. For egocentric relations, we cur-
rently support three location descriptions, denoted by €2 =
{Left, Right, Middle} where w(z)inQ takes a bounding
box x as an input argument.

1. Left: The center of box x lies in the region between
(0,0.25 - |[WV)).

2. Middle: The center of box x lies in the region between
(0.25 - |W|,0.75 - [WV)).

3. Right: The center of box x lies in the region between
(0.75 - [W[, [W]).

Definition 1 (Match (z,w)) Given bounding box x and re-

lation function w in ), if the evaluation of function w(x)
holds true then box x is matched with relation defined by w.

For the relative spatial relations, we currently define 5
types of relations = = {Left, Right, Above, Below, On}
where £(z,z’) in Z takes two bounding box inputs x =
(w11, h11, w12, hi2) and 2’ = (wa1, ha1, waz, haa).

1. Left: The left-most point bounding box 1 (wq1) is smaller
than the left-most point of bounding box 2 (ws1), the
right-most point bounding box 1 (w;2) is smaller than the
right-most point of bounding box 2 (ws2), and the ver-
tical difference between two bounding boxes is smaller
than max(hlg — hlla h22 — hgl).

2. Right: Similar to relation Left except that the two bound-
ing boxes are reversed in the horizontal axis.

3. Above: The top-most point bounding box 1 (hiy) is
smaller than the top-most point of bounding box 2 (hs1),
the bottom-most point bounding box 1 (h;2) is smaller
than the bottom-most point of bounding box 2 (hs2), and
the horizontal difference between two bounding boxes is
smaller than max (w2 — w1, Was — wWway).

4. Below: Similar to relation Above except that the two
bounding boxes are reversed in the vertical axis.

5. On(Attach): Bounding box z is contained by the landmark
bounding box z’.

Definition 2 (Match (z,z’,£)) Given bounding boxes x
and 7', and relation function & in 2, if the evaluation of
Sunction &(x, x') holds true then box x and landmark ' are
matched with relation defined by &.

Factor functions: Let M = {my, me, m,, m, } repre-
sent the input modalities for vision, and the three textual
modalities (we divide the textual modality into subgroups
for easier reading). We define the four factors as follows:

1. Computer vision: For each bounding box z, we get a con-
fidence score cv(z,y) for each label candidate y from a
computer vision based recognizer, which constitutes the
computer vision feature function foy as:

fCV(xa y) = cv(;v,y),Vm € Mey. 4

2. Egocentric positions: This feature encodes a type of de-
scription from the camera point of view, e.g., “The cat is
in the middle (of the image).” For each bounding box =z,
if an egocentric position relation rel. (y,w) matches with
the spatial location of box z, the feature function is de-
fined as:

fe(z,y) {

0, otherwise
)
3. Relative positions: This feature supports descriptions us-
ing a set = of relative spatial relations, e.g., left, right or
above. A relative position of an object is specified in re-
lation to a landmark object, e.g., “The cat is on the right
of the chair,” where chair is used as a landmark to spec-
ify the location of the cat. This sentence can be expressed
as: rel,.(‘cat’, ‘chair’, ‘right’). For every pair of bounding
boxes, if there is a matching spatial relations, £ € =, and
the object labels referred to in the description have pos-
itive probability mass, then we create a factor function

cv(z,y), if match(z,w) A rel.(y,w) € me



linking the variables representing the two boxes. Then,
the feature function for a relative position for variable x
and landmark variable z’ can be written as:

C’U(LE, y)CU($/7 y/)7 Zf match(a:, x/a 5)
Arelr(y,y',§) € my
0, otherwise

fR(xa Z‘/, Y, y/) =

(6)
4. Numeric constraints: A numeric constraint can specify
how many instances of an object class are in an environ-
ment, e.g., “There are 2 cats.” This example can be ex-
pressed as rel, (X, ‘cat’) = 2. Whereas other types of
factors are localized in a subgraph that is relevant to a
specific relation, a numeric constraint imposes a global
constraint over all input variables.

— |Num(X,y) — reln(X,y)]
if reln(X,y) € mn @)
0, otherwise

fN(va) =

Prediction fusion: The objective of solving the CRF for
making predictions is to maximize the following distribution
function:

POYIX) = ——caplloy Y for(m) + 3 0nfem)+

Z(Z‘) yey yey
Z 9RfR<xax,7yay/)+ZeNfN(Xay))
z, 2’ €X,y,y' €Y yey

(®)
where O¢cy, 0p,0r, 0N are the weights for each feature
function. Because there are only four weight parameters in
our CRF model, we tune the parameters from a validation set
as in (Shiang et al. 2017). In general, if the number of param-
eters is large, the weights of a CRF can be obtained by using
quasi-Newton methods (Schraudolph, Yu, and Giinter 2007).
We use Gibbs Sampling to update each random variable to
get an approximate solution. For each bounding box (ran-
dom variable), we fix the labels of all other bounding boxes
to calculate the probability using the feature functions; we
then select the label with the highest probability value as
the new label for that random variable. This process can be
written formally as below and we iteratively update it until
convergence:

y* = argmaz(fov Y fov(y) + Y Opfe(y)+
Y

yey yey

. ©
Z eRfR(xvxayay)+ZHNfN(va))
z,x'€X,y,y’ €Y yeYy
Experiments

We replicated the experimental setup of our baseline ap-
proach, MultiRank, as described in (Shiang et al. 2017).
To validate our method, we verify it on NYU Depth
v2 dataset (Silberman et al. 2012) and Visual Genome
dataset (Krishna et al. 2016). We describe the setup here.
Data preparation: In NYU Depth v2 dataset, there are
1449 indoor scenes that includes over 800 kinds of objects

in cluttered environments. We collected textual descriptions
for 40 randomly selected images from the set (35 for testing,
5 for validation). Because natural language processing is
not our main focus in this work, we collected the descrip-
tions in a structured language that can be parsed readily.
We also used another set of relations from Sentence3D
dataset (Kong et al. 2014), where there are descriptions
and extracted relations for each image. We filtered out all
the relations with subjects or objects not in our label set;
therefore there are overall 59 relations and 8 images without
any relations. In the Visual Genome dataset, we used those
images that include the following set of spatial relations:
{left, right, up, down, below, above,

on, attached, near, next, around} and that
include at least 5 objects of the 20 object labels from the
Pascal VOC 2012 set (Everingham et al. ). We finally used
202 images and 1541 relations.

Evaluation metric: As in the baseline, we used accuracy
as the main evaluation metric.

Vision-only algorithm: For the computer vision based
object recognizer, we also adopted the same algorithms used
in the baseline to reproduce the same inputs for the fusion
system. A set of bounding boxes was detected using Con-
strained Parametric Min-Cuts (CPMC) (Carreira and Smin-
chisescu 2012). We then classified the bounding boxes using
a Support Vector Machine (SVM) with the fc7 features from
the fully connected layer of AlexNet pretrained on ILSVRC
2012 (Krizhevsky, Sutskever, and Hinton 2012). This vision-
only with detected bounding box algorithm achieved accu-
racy of 0.4229 on the test data set. We also report the results
using the ground truth bounding boxes; vision-only with
ground-truth bounding boxes achieved accuracy of 0.6299.

The naive fusion algorithm: The naive fusion algorithm
is a simple model where a new score for node x having label
y is computed as a product of the confidence score of the
bounding box and the sum of multiplications of the confi-
dence score of other bounding boxes with match relations:

score(z,y) = cv(x,y): Z

' eX,x'#X,E€E

where match(z,z’,£) is a (0 or 1) binary function specify-
ing whether the two boxes satisfy spatial relationship &.

Experimental Results

Figure 3 shows four examples of comparing the vision only
and the multimodal perception results; the first row lists tex-
tual descriptions, the second row, the vision only results, and
the third row, the multimodal results (corrections are high-
lighted in yellow). For analytic results, we report on sets
of experiments that evaluate the performance of our CRF
approach against the vision-only algorithm, the naive ap-
proach, and the MultiRank algorithm.

Results on relative spatial relations Table 1 show the re-
sults using the naive, MultiRank and CRFs when textual in-
puts include only binary spatial descriptions, that is, an input
describes an object using its relative position with respect to
a landmark. An example of this type is “A cat is below the
table.” In this set, the vision-only object recognizer achieved

ev(x',y'") - mateh(z, 2, €)
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Figure 3: The examples showing the recognition performance of the vision-only (upper) and our multimodal (lower) approaches.
The blue boxes are the correctly classified ones; the red boxes, misclassified ones; and the yellow boxes, those boxes that have
been corrected after multimodal fusion. The numbers shown are the confidence score.

Table 1: Results of vision-only recognizer versus MultiRank
and CREF using relative spatial relations with ground-truth
bounding boxes. significant t-test: x=p value <= 0.05, t=p
value<= 0.10.

Naive | MultiRank | Proposed

vision-only 0.6299

relative(1) | 0.6303 0.6311 0.6330
relative(3) | 0.6417 0.6607 0.6675
relative(5) | 0.6518 0.6856 0.6789
relative(8) | 0.6583 0.7142 0.7052
relative(10) | 0.6688 0.7240 0.7114
relative(*) | 0.6344 0.6347 0.6359
vision-only 0.4359

relative(*) | 04632 | 0.4814 | 0.4836

62.99% in accuracy for the ground truth bounding boxes
in NYU depth dataset. Because the environments are clut-
tered in the images used in the experiments, the naive model
failed to effectively utilize the relations and it only achieved
3.89% improvement given 10 relations for the ground-truth
bounding boxes. By contrast, both graphical models, Mul-
tiRank and CRF approaches, achieved significant improve-
ments over the (vision-only) inputs using 3, 5, 8, 10 relations
per image. MultiRank performed slightly better than CRF
model, but the results were compatible. The difference here
might be due to the optimization implementation of Multi-
Rank and CRFs. Recall that, in CRFs, we use Gibbs Sam-
pling to deal with the intractable structure and thus the re-
sults are approximate.

We also verify our results on relations generated from
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Figure 4: CRF multimodal perception performance on ob-
jects of user interest. Only the objects mentioned in the rela-
tion set are counted for evaluation.

Sentence3D relations, which is shown in relative(*) row. In
sentence3D dataset, there are 1-2 relations per image in av-
erage; therefore the improvement is subtle. However, it’s not
to say that there are not abundant information in human de-
scriptions or our algorithm performs not good, it’s because
in NYU depth dataset we filtered 74 object labels from 8§91
labels, thus some of the relations are not subjected to the ob-
jects that we choose. The original number of relations is 135
in 35 images, which is 4 relations per image in average.
The lower part of Table 1 is the results for Visual Genome
dataset. The vision-based classifier achieve 43.59% in accu-
racy and the our proposed method achieves 48.36% in ac-
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Figure 5: Results using CRF with different information.
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Figure 6: Results with different information combination.

curacy, which slightly performs better than MultiRank. Re-
call that the number of images in our test set is 202 and the
overall number of relations are 1541, which means that there
are about 7 relations per image. The relative improvement is
about 4.77%, which is consistent with our experiments in
NYU Depth v2 dataset.

CREF performance on objects of user interest In this set
of experiments, we checked the performance only based on
those objects that are directly referred to in the textual in-
puts. As illustrated in Figure 4, we gained more substan-
tial improvements in this case when compared to the pre-
vious set in ?? . In the ground-truth bounding boxes case,
we achieved 10.94%, 10.04% and 10.11% gain of accuracy
using 1, 5 and 10 relations. In the detected bounding boxes
case, because we began with a significantly lower vision-
only inputs, the accuracy in an absolute scale was lower;
however, we observed even more substantial improvement,
which is 10.70%, 15.51% and 17.28% using 1, 5 and 10 rela-
tions. Based on the result, we expect multimodal perception
can improve the performance at the task level, e.g., robots
following human directions can benefit from our approach
by being able to interpret user commands, such as “’Pick up
the cup on the table,” with an increased accuracy.

CRF performance on information types In this experi-
ment, we evaluated how each type of information impacts
the performance of the CRF approach. Figure 5 shows
the accuracy using 4 different types of information on the
ground-truth and the detected bounding boxes cases. The

result using relative spatial relations performed the best,
achieving 8.15% improvements using 10 relations, respec-
tively. The result using egocentric position relations per-
formed fairly well but with a smaller amount of improve-
ment, 4.63% improvements using 10 relations, respectively.
A reason for the weaker performance in the case of egocen-
tric description might be because the number of objects in-
cluded in each description is only one. The improvement us-
ing numeric constraints was not significant. This observation
indicates that the feature function may not fully capture nu-
meric constraints to be effectively updated in the CRF where
the variables are updated in a random order as opposed to
being updated in an informative order where those variables
that are relevant to given descriptions can be given a higher
priority.

In the detected bounding box case (the second figure
in Figure 5), the improvement using relative spatial relations
was higher than using other types of information, and the
improvement of using numeric constraints was close to 0
(Note that the two data lines of ‘numeric’ and ‘vision-only’
almost overlapped.) Unfortunately, the numeric constraint is
hard to make improvement under the current bounding box
scenario. For instance, because there are a lot of errors in
bounding box detection, several objects can be grouped to-
gether in one bounding box. In such a case, even when all
of the detected bounding boxes are accurately classified, the
number of objects can still be incorrect.

Figure 6 shows how the performance changes when dif-
ferent types of information are combined. Letters R, E and
N represent relative, egocentric and numeric constraints, re-
spectively. In this figure, the x-axis shows the number of
descriptions in each category, e.g., value of 3 for the R+E+N
means that 3 relative relations, 3 egocentric relations, and 3
numeric constraints were used. When multiple types of in-
formation was used together, there was further improvement
in the final outcome. This shows the ability of the proposed
model to achieve further improvement, compared to Multi-
Rank which can only utilize binary relations, given various
kinds of information.

Conclusion

In this paper, we present a generalized model for multi-
modal team perception using the CRF framework. We de-
fine feature functions to encode multimodal inputs, namely
the recognition results from a computer vision system and
three different types of textual descriptions about shared en-
vironments. In sets of experiments, we demonstrate that our
multimodal approach significantly improves the perception
performance from the vision only, single-modal system. We
also show that our CRF model can generalize to support
structured n-ary relations that the existing baseline model
is not able to represent. The results are promising to indi-
cate that our multimodal team perception approach can be
applied to real world problems such as multimodal semantic
map construction in disaster response or other general hu-
man robot systems.
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