
Learning to Parse Natural Language to
Grounded Reward Functions with Weak Supervision

Edward C. Williams∗
edward c williams@brown.edu

Mina Rhee∗
mina rhee@brown.edu

Nakul Gopalan∗

nakul gopalan@brown.edu
Stefanie Tellex

stefie10@cs.brown.edu

Brown University, Providence, Rhode Island
∗ The first three authors contributed equally.

Abstract

In order to intuitively and efficiently collaborate with humans,
robots must learn to complete tasks specified using natural
language. We represent natural language instructions as goal-
state reward functions specified using lambda calculus. To
map sentences to such reward function, we learn a weighted
linear Combinatory Categorial Grammar (CCG) semantic
parser. The parser, including both parameters and the CCG
lexicon, is learned from a validation procedure that does not
require execution of a planner, annotating reward functions,
or labeling parse trees. To learn a CCG lexicon and parse
weights, we use coarse lexical generation and validation-
driven perceptron weight updates using the approach of Artzi
and Zettlemoyer (2013). Initial results on the Cleanup World
domain (MacGlashan et al. 2015) demonstrate the potential
of our approach. We report an F1 score of 0.79 with a cor-
pus of 5 tasks and 500 corresponding sentences. We are cur-
rently growing the set of evaluation tasks and corresponding
sentences, and expanding the expressiveness of our semantic
representation.

Introduction
Natural language provides an expressive and accessible
method to specify goals for robotic agents. For example,
a user of a household robot may easily specify navigation
(e.g., “go to the TV room”) or manipulation (e.g., “place the
dishes in the sink”) goals without needing to learn complex
APIs or user interfaces. In this paper, we propose to learn to
map natural language instructions to reward functions that
can be executed by conventional planners.

To interface effectively with conventional planning pro-
cedures, we formally specify goals using Object-Oriented
Markov Decision Process (Diuk, Cohen, and Littman 2008,
OO-MDP) reward functions. These function are represented
as goal-state proposition functions, which give the agent
positive reward for reaching the goal state. Planning then
aims to maximize the sum of rewards the agent receives.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The use of reward functions as an intermediate representa-
tion allows a separation between language interpretation and
planning systems.

Existing approaches for learning to map sentences to such
reward functions require fully supervised data, including re-
ward function specifications paired with each natural lan-
guage command (MacGlashan et al. 2015; Arumugam et
al. 2017). In this work, we propose to learn a mapping from
language to reward functions using demonstrations as anno-
tations. We adopt a grounded lambda-calculus logical form
representation for reward functions and induce a Combina-
tory Categorial Grammar (Steedman 2000, CCG) semantic
parser. While existing approaches rely on executing logi-
cal forms by planning during training(Artzi and Zettlemoyer
2013; Artzi, Das, and Petrov 2014), our method allows for
efficient learning without performing any planning. Our ap-
proach does not require annotation of parse trees or reward
functions, while avoiding the overhead of planning each
considered hypothesis during learning.

We perform tasks in Cleanup Domain (MacGlashan et al.
2015). Cleanup Domain is a simulated mobile manipulator
domain, where the set of tasks involve moving to a specific
room, or moving next to a particular object. We collected
data on Amazon Mechanical Turk and evaluate our system
on a held out test dataset. Our initial results demonstrate ef-
fective learning of a weakly supervised parser with 0.79 F1
score. We are currently adding more tasks to our dataset,
while also expanding the set of predicates in our semantic
representation.

Related Work
Zettlemoyer and Collins (2005) presented a supervised
method to learn CCG parsers given natural language an-
notated with lambda-calculus logical forms. Krishnamurthy
and Mitchell (2012) demonstrated a weakly supervised
method to learn CCG semantic parsers given a syntacti-
cally parsed sentence and a knowledge base. Krishnamurthy
and Kollar (2013) jointly learned perceptual functions and
a CCG parser for identifying objects in an image described



(a) State at task initiation (b) State at task completion

Figure 1: The figure shows an example pair used to collect
data. Here we ask the users to give a command to the robot
that will result in the pre- and post condition behavior shown
in the pair of images.

by users, as well as demonstrating that weakly supervised
models achieved similar performance to strongly supervised
models. Artzi and Zettlemoyer (2013) used navigation tra-
jectories as weak supervision for CCG parser learning. Dur-
ing learning, proposed lambda-calculus semantic represen-
tations were executed to produce a trajectory, which was
compared to a ground-truth trajectory to provide a valida-
tion signal. While this lambda-calculus lexicon allows the
representation of commands describing entire trajectories,
our assumption that commands are primarily goal-based al-
lows us to avoid planning during learning.

Tellex et al. (2011) described a method using syntac-
tic parse trees of language to create probabilistic graphi-
cal models (PGM) to factorize the distribution over possi-
ble groundings for natural language commands. The process
of generating trajectories directly from language is expen-
sive, hence Howard, Tellex, and Roy (2014) used a similar
PGM, derived from a pre-trained syntactic parser, to gen-
erate constraints that be used to plan. Our work also relies
on a separation between language processing and planning
components of an instruction-following system, although
we produce a reward function in an MDP rather than con-
straints for a general planner. A related line of work looks to
map language to reward functions (MacGlashan et al. 2015;
Arumugam et al. 2017), either via sequence-to-sequence
translation or classification into a fixed set of reward func-
tions. However, these approaches lack the compositionality
of a lambda-calculus reward representation.

Next we discuss our methodology for learning grounded
reward functions with weak supervision.

Method
We model our tasks in Cleanup Domain (MacGlashan et al.
2015) shown in Figure 1 using Markov Decision Processes
(MDPs) (Bellman 1957). An MDP is formally represented
as a five-tuple (S, A, T , R, E). Here S represents the envi-
ronment’s state space;A represents the agent’s action space;
T (s, a, s′) is a probability distribution defining the transi-
tion dynamics (i.e., the probability that a transition to state
s′ occurs when action a is taken in state s); R(s, a, s′) rep-
resents the reward function returning the numerical reward
that the agent receives for transitioning to state s′ with ac-

tion a from state s; and E ⊂ S is a set of terminal states that,
once reached, prevent any future action. The goal of plan-
ning in an MDP is to find a policy—a mapping from states
to actions—that maximizes the expected future discounted
reward.

In our Cleanup Domain-based data set, there are 5 types
of tasks which involve moving into a room (containment)
and moving next to an object (adjacency). We specify this
our domain as an Object Oriented MDP (OO-MDP) (Diuk,
Cohen, and Littman 2008), which allows factored represen-
tation of an MDP problem. The state space encodes the posi-
tion of the objects and the agent, and information about con-
figurations of rooms. The factorization of the environment
and actions is done using objects present in the environ-
ment, which enables a convenient linkage between language
describing objects and the objects themselves. We learn a
weighted linear CCG parser (Clark and Curran 2007) that
maps natural language commands x ∈ X to a logical form
y ∈ Y in our semantic representation. For this, we first
define a semantic representation that can be provided as a
grounded reward function to an MDP planner. Secondly, we
collect a data set where each element is an ordered pair of
the form (xi, Si), where xi ∈ X is a natural language com-
mand, and Si is a set of pairs of MDP states. Each pair con-
sists of initial and termination states for the task described
by the command. Next we then define a validation func-
tion V(y, S) ∈ {0, 1} that determines if a given semantic
parse will produce the correct behavior as described by our
training data. Finally, to learn parser weights, we applied the
validation-driven perceptron learning algorithm of Artzi and
Zettlemoyer (2013). We describe these steps in more detail
below.

Semantic Representation and Execution We define a
lambda-calculus semantic representation that is tailored to
representing a goal-state reward function in an MDP do-
main. In this work, we make the assumption that natural
language commands to our agent define a configuration of
the world that the user would like the agent to produce,
by re-arranging objects in the world or moving to a dif-
ferent location. We adopt much of the notation from (Artzi
and Zettlemoyer 2013; 2011; Zettlemoyer and Collins 2005;
Steedman 2000) for our lambda-calculus functions. How-
ever, we eschew the neo-Davidsonian event semantics used
by Artzi and Zettlemoyer (2013), as our tasks are purely rep-
resented by state configurations.

We model nouns as single-argument lambda-calculus
functions that map OO-MDP objects in a given state to
Boolean values. For example, the phrase “block” would
be represented as a function λx.block(x) that, when eval-
uated in an OO-MDP state, returns true if the given ob-
ject satisfies the proposition function. Adjectival language,
such as “green block,” are modeled as conjunctions of
these single-argument proposition functions. The function
λx.green(x) ∧ block(x) checks two attributes of the ob-
ject provided as its argument. As an OO-MDP object is pa-
rameterized using object classes and attributes, these single-
argument proposition functions can be implemented simply
as lookup operations on object instances.



We model the definite determiner “the” as a function that
maps a proposition function to an object that satisfies the
given proposition function, following Artzi and Zettlemoyer
(2013). This can be represented as a search over a set of ob-
jects in an OO-MDP state. We note that definite determiners
are evaluated with respect to the initial state of the task, as
we assume object references should be resolved in the state
in which the natural language command was issued.

Spatial relationships between two objects are modeled
as lambda-calculus functions of arity two. The function
λx.λy.in(x, y), for example, uses the spatial dimensions of
the object provided as the second argument to determine
if it contains the first argument. All relationship proposi-
tion functions produce Boolean outputs when evaluated in
a given OO-MDP state. Currently, we model two spatial re-
lationships, containment and adjacency.

The above functions can be composed to produce
predicates that describe a particular configuration of
the world state. For example, the task in Figure 1
can be represented as the lambda-calculus function
near(the(λx.agent(x)), the(λy.red(y) ∧ chair(y))).

All lambda-calculus functions were implemented as
JScheme (Anderson, Hickey, and Norvig 2013) predicates
that operate on states and objects in the BURLAP (Mac-
Glashan 2014) reinforcement learning library.

Parsing Our learning objective is to learn a set of parser
weights θ ∈ Rd for a weighted linear CCG parser (Clark
and Curran 2007) with a d-dimensional feature represen-
tation Φ(x, y). This parser uses a variant of the dynamic-
programming CKY algorithm to produce the highest scor-
ing parse ŷ from a natural language command x. To perform
training and inference, we use the linear CCG parser imple-
mented in the Cornell Semantic Parsing Framework (SPF)
(Artzi 2016).

Example Sentences Collected from AMT
“Move to the green room”
“Go by the red chair”
“Move to stand next to the chair”
“Move close to the chair”
“Stand in the blue room”

Table 1: Example sentences collected from the AMT HIT
where the users were shown a set of pre-and post condition
states and asked to give a command that would instruct the
robot to complete the task.

Data We gathered training data using the Amazon Me-
chanical Turk (AMT) platform. Users were shown three
pairs of pre- and post- condition states, all representing the
same task in different domain configurations. They were
then asked to provide a single command that would instruct
the robot to complete the task in every domain configuration.
This provided multiple pre- and post- condition pairs for
each training example, to incentivize both the learning algo-
rithm and AMT users to produce outputs that are task- rather
than configuration-specific. We generated five pre- and post-

condition state pairs for twelve different tasks, and sampled
three from a set of five for each AMT Human Intelligence
Task (HIT). Each possible permutation of three from a set
of five needed for a single AMT HIT was used ten times
to gather a total of 500 natural language commands. Data
was then split the data into 400 commands used for train-
ing, and 100 used for quantitative evaluation. Some example
commands are shown in Table 1.

Parse Validation To facilitate our validation-driving per-
ceptron learning, we define a parse validation function sim-
ilar to those of Artzi and Zettlemoyer (2013). We define the
function V(y, S), which takes as input a semantic parse y
and set of pre- and post- condition state pairs S and returns
1 if the parse is valid for all pairs of states in S. A parse val-
idates correctly with respect to a state pair if the proposition
function is satisfied in the post-condition state, after ground-
ing is performed with respect to the pre- condition state, and
not satisfied in the pre- condition state. As our proposition
functions define sets of goal states, this is sufficient to check
if a parse is valid without invoking a planner.

Coarse Lexical Generation To generate new lexical en-
tries for words and phrases not present in the seed lexi-
con, we adapt the coarse lexical generation algorithm of
(Artzi and Zettlemoyer 2013) to our validation procedure.
The algorithm generates new proposed lexicon entries from
all possible combinations of factored lexical entries (see
(Kwiatkowski et al. 2011) for a detailed description of the
lexicon) and words in a given training examples, then dis-
cards entries leading to parses that fail to validate.

Learning With our validation function, modified lexical
generation procedure, we use the validation-driven percep-
tron learning algorithm of Artzi and Zettlemoyer (2013) to
learn parsing weights. We provided the learning algorithm
with a seed lexicon Λ0, as in Artzi and Zettlemoyer (2013)
and Zettlemoyer and Collins (2005), used to initialize the
coarse lexical generation procedure. We used a beam width
of 75 for lexicon generation during training, which was per-
formed over 10 epochs. We used the implementation of this
algorithm in the Cornell SPF (Artzi 2016).

Results
We trained our parser on the 400 training examples de-
scribed above, and evaluated on 100 pairs of unseen natural
language commands annotated with state pair sets. As the
commands in test data also did not have logical form an-
notations, we determined test accuracy using our validation
function. We defined a test parse y as correct if it validates
with respect to its corresponding state pair set. Our current
model has an F1 score of 0.79 on our full data set with a
precision of 82.7% and a recall of 77%. We observe that
a baseline predicting random reward functions would have
an accuracy below 20%, as we learn reward functions for 5
domain-independent tasks as specified above. Note that our
method has never seen a complete example of a reward func-
tion at training time, and induces every reward function from
its seed lexicon and the provided validation function.



A closer look at the data has shown that some AMT users
gave given incomplete, or incorrect language specifications,
which lead to incorrect parses. Further, many parse errors
arise from confusion between the near (adjacency) predi-
cate and in (containment) predicate specified in our ontol-
ogy, as users often used similar words to describe tasks that
involve approaching an object and entering a room. We also
hypothesize that part of this confusion is due to the rela-
tionship between containment and adjacency predicates. At
learning time, adjacency-based tasks are often satisfied by
reward functions using containment predicates, leading to
suboptimal lexical entries and parser parameters.

The two spatial relationship predicates in our ontology of-
ten produce goal-state reward functions whose sets of satis-
faction states intersect. Consider Figure 1; the relationship
that best satisfies the task is adjacency, that is, asking the
agent to go next to the red chair. This adjacency predicate
is of the form near(the(λx.agent(x)), the(λy.red(y) ∧
chair(y))). However, another more general predicate of
containment can also satisfy this task, that asks the agent to
go to the red room. This containment predicate will have the
form, in(the(λx.agent(x)), the(λy.red(y) ∧ room(y))).
During learning both of these functions would be valid
if misleading, possibly leading to the wrong parse being
learned and incorrect behavior at testing time. We plan to
collect an additional corpus, with more discriminatory ex-
amples, to learn subset–superset relationships within our
validation procedure.

Conclusion
We presented a method for learning a parser that maps nat-
ural language commands to reward functions using a CCG
parser via weak supervision. We showed that this parser can
be learned using modifications of existing semantic parser
learning algorithms, and its outputs are executable as goal-
state reward functions with off the shelf planners. Our model
produces valid reward functions with an F1 score of 0.79,
which is on par with previous weakly supervised semantic
parsing baselines (Artzi and Zettlemoyer 2013). However,
our method presents a new way to learn goal-based reward
function from natural language, without using a planner in
the parsing loop. In future we want to learn a larger set of
tasks with more complex predicates. We also plan to im-
prove the performance of our model with improved features
and further testing. Further, we plan to extend our work to
accurately learn subset relationships between spatial propo-
sition functions. For example, the commands ”go to the right
of the red block” and ”go near the block” describe state ter-
mination sets where one set is contained within the other set.

Acknowledgement
We would like to thank Yoav Artzi for his insightful com-
ments and help with the Cornell SPF library.

References
Anderson, K. R.; Hickey, T. J.; and Norvig, P. 2013. The
jscheme language and implementation.

Artzi, Y., and Zettlemoyer, L. 2011. Bootstrapping semantic
parsers from conversations. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Process-
ing.
Artzi, Y., and Zettlemoyer, L. 2013. Weakly supervized
learning of semantic parsers for mapping instructions to ac-
tions. In Annual Meeting of the Association for Computa-
tional Linguistics.
Artzi, Y.; Das, D.; and Petrov, S. 2014. Learning com-
pact lexicons for ccg semantic parsing. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 1273–1283. Doha, Qatar: As-
sociation for Computational Linguistics.
Artzi, Y. 2016. Cornell SPF: Cornell Semantic Parsing
Framework.
Arumugam, D.; Karamcheti, S.; Gopalan, N.; Wong, L. L.;
and Tellex, S. 2017. Accurately and efficiently interpret-
ing human-robot instructions of varying granularities. CoRR
abs/1704.06616.
Bellman, R. 1957. A Markovian decision process. Indiana
University Mathematics Journal 6:679–684.
Clark, S., and Curran, J. R. 2007. Wide-coverage efficient
statistical parsing with ccg and log-linear models. Compu-
tational Linguistics 33(4):493–552.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In International Conference on Machine Learning.
Howard, T. M.; Tellex, S.; and Roy, N. 2014. A natural
language planner interface for mobile manipulators. In IEEE
International Conference on Robotics and Automation.
Krishnamurthy, J., and Kollar, T. 2013. Jointly learning to
parse and perceive. In Transactions of the Association for
Computational Linguistics.
Krishnamurthy, J., and Mitchell, T. M. 2012. Weakly
supervised training of semantic parsers. In Proceedings
of the Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language
Learning.
Kwiatkowski, T.; Zettlemoyer, L.; Goldwater, S.; and Steed-
man, M. 2011. Lexical generalization in ccg grammar in-
duction for semantic parsing. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Process-
ing, 1512–1523. Association for Computational Linguistics.
MacGlashan, J.; Babeş-Vroman, M.; desJardins, M.;
Littman, M. L.; Muresan, S.; Squire, S.; Tellex, S.; Aru-
mugam, D.; and Yang, L. 2015. Grounding english com-
mands to reward functions. In Robotics: Science and Sys-
tems.
MacGlashan, J. 2014. Brown–UMBC Reinforce-
ment Learning and Planning (BURLAP)–Project Page.
http://burlap.cs.brown.edu/.
Steedman, M. 2000. The Syntactic Process. Cambridge,
MA, USA: MIT Press.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M. R.; Banerjee,
A. G.; Teller, S.; and Roy, N. 2011. Understanding natural



language commands for robotic navigation and mobile ma-
nipulation. In AAAI Conference on Artificial Intelligence.
Zettlemoyer, L., and Collins, M. 2005. Learning to map sen-
tences to logical form: Structured classification with proba-
bilistic categorial grammars. In Proceedings of the Confer-
ence on Uncertainty in Artificial Intelligence.


