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Abstract

Grounding natural language expressions to visual context in
an image is essential to understanding the semantic mean-
ing of an image. Recent attention approaches on the task of
grounded question answering in images simply rely on either
attention over arbitrary regions in an image or attention over
words in a question, which have not exploited the informa-
tion behind candidate answers when encoding the question.
To address this limitation, we propose two Answer-Aware
Attention (AAA) models which use attention over candidate
answers, i.e., global and local attention over answers, each
of which learns an answer-aware summarization vector of a
question. Our proposed attention model leverages informa-
tion from both textual and visual modalities, which boosts
the prediction accuracy in the grounded question answering
task. Extensive experiments show that our proposed atten-
tion model performs comparably to the state-of-the-art mod-
els with much fewer learning parameters.

Introduction
The task of visual question answering (Antol et al. 2015;
Wu et al. 2017) has gained significant popularity over the
past few years in both the computer vision and natural lan-
guage processing communities. Grounded question answer-
ing in images (Zhu et al. 2016) is a new type of visual ques-
tion answering task in which answers to textual questions
are image regions. Searching for a corresponding image re-
gion in an image based on a text entity is known as ground-
ing. This requires the artificial intelligence system to learn
semantic links between textual expressions and image re-
gions. However, learning the similarity or correspondence
of data in textual modality and visual modality remains far
from solved due to the intrinsic difference between symbolic
representations of words and continuous representations of
images at the pixel-level.

Attention mechanism in neural network models mimics
the attention behavior of human’s visual system–when hu-
man perceive an image, attention allows for distilling infor-
mation down to most salient objects rather than the entire
image. Fusing and encoding information from visual and
textual data via attention mechanism have achieved great
success in jointly modeling vision and language tasks, such
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as image captioning (Xu et al. 2015), image generation from
text (Mansimov et al. 2015), and grounded question answer-
ing (Hu et al. 2016a; Zhu et al. 2016). Pioneering work in
grounded question answering in images (Zhu et al. 2016;
Hu et al. 2016a) applied attention mechanism to summa-
rize the textual question either over the question itself or
over arbitrary regions extracted from convolution neural net-
works. These attention models suffer from missing informa-
tion from the candidate visual answers during the summa-
rization of the textual question.

Motivated by the goal of encoding a textual question via
attending to its candidate answers, we present two Answer-
Aware Attention (AAA) models that explicitly model the at-
tention either globally over all candidate answers or locally
over each candidate answer, and learn an answer-aware sum-
marization vector of a question. To perform global attention
over answers, we use a pooling function to integrate infor-
mation from all candidate answers before encoding the ques-
tion, whereas we summarize a specific question vector con-
ditional on the local attention over each candidate answer.
We evaluate our models on Visual7W dataset. Experiemtal
results show that our models are comparable to the state-
of-the-art model in terms of the grounding accuracy, while
our models have fewer learning parameters thus resulting in
faster training.

Related Work
Grounded Question Answering in images refers to the
task of retrieving an image bounding box from a pool
of candidates in an image according to a textual ques-
tion (Hu et al. 2016b; Mao et al. 2016; Rohrbach et al. 2016;
Yu et al. 2016; Nagaraja, Morariu, and Davis 2016). First
of all, the pool of candidate bounding boxes can be ob-
tained by object proposal networks (Arbeláez et al. 2014;
Krähenbühl and Koltun 2014; Uijlings et al. 2013; Zitnick
and Dollár 2014), or provided by human annotations. An
encoding model is first learned to summarize the context
of a given textual question, and a scoring function is then
learned to score each candidate based on the question em-
bedding. Finally, the candidate bounding box with the high-
est score is retrieved as the grounding prediction. Visual7w
pointing dataset (Zhu et al. 2016) is a benchmark dataset
for grounded question answering given a pool of annotated
bounding boxes in an image. In this paper, we focus on



learning the encoding model of the textual question, and the
scoring function which capture the relevance between the
visual and textual modalities.

Attention Models have recently attracted lots of re-
search interest in the fields of the textual question answer-
ing and visual question answering. A large batch of works
on question answering (Seo et al. 2016; Fukui et al. 2016;
Hu et al. 2016a) have demonstrated significant improve-
ments by integrating attention mechanisms in neural models.
The baseline method in (Zhu et al. 2016) follows the simi-
lar idea of the image captioning model in (Xu et al. 2015)
which extracts a large number of feature maps from the con-
volution layer of a pre-trained convolution neural network,
and performs soft attention over the features maps during
the encoding of the question. This method suffers from a
large amount of computation on the attention over the ex-
tracted feature maps which attend to arbitrary regions in an
image. Compositional Modular Networks proposed in (Hu
et al. 2016a) perform soft attention over the question words
to obtain three embedding vectors for the subject, relation,
object respectively in a relation triple. The localization mod-
ule then grounds the bounding boxes with the text embed-
ding of the subject and object, while the relationship mod-
ule grounds the spatial embedding of two bounding boxes
with the text embedding of the relation. These models en-
codes the question via attention either on the text or the im-
age without explicitly fusing the information from the can-
didate bounding boxes. Our answer-aware attention model
summarizes the question embedding conditional on either
each the candidate bounding box locally or all the candidate
bounding boxes globally.

Answer-Aware Attention Model
In this section, we first define the problem formally, and then
describe two novel answer-aware attention models for the
task of grounded question answering in images. Last, we in-
troduce the learning objective to optimize the models.

Problem Definition
Given an image I and a question Q = {q1,q2, · · · ,qM},
where qi is the vector representation of the i-th words in
the question with M words, we aim at learning a decision
function to predict the correct answer out of N candidate
answers {a1,a2, · · · ,aN} which are N bounding boxes in
the image.

Model Description
Figure 1 shows the general architecture of our proposed
method, in which every dot in the orange area denotes a sim-
ilarity score between a bounding box and a question word.

1. Embedding Layer is responsible for mapping the ques-
tion and answer to the fixed-size vector spaces.

Question Encoding. The fixed-size vector representa-
tion qi of each word in the question can be obtained from
pre-trained word embeddings, e.g., GloVe (Pennington,
Socher, and Manning 2014). We further use a Long Short-
Term Memory Network (LSTM) (Hochreiter and Schmid-
huber 1997) on top of the word embeddings to model

Figure 1: Illustration of the network architecture.

the interactions between words. Hence we obtain H =
{h1,h2, · · · ,hM} where H ∈ Rd×M . M is the length of
question. Notice that here we can also use any advanced re-
current neural network, e.g., stack LSTM or Bi-directional
LSTM.

Answer Encoding. We use a Convolution Neural Net-
work (CNN), i.e., VGG16 (Simonyan and Zisserman 2014)
pre-trained on ImageNet dataset, to extract a fixed-size vec-
tor representation vCNN for each bounding box in the im-
age. We obtain the vector representation in 4,096 dimensions
from the fc7 layer of the VGG16. Since each candidate an-
swer is a bounding box in the image, we follow (Hu et al.
2016a) to extract a 5-dimensional spatial feature vspatial for
each answer, i.e., the vertical and horizontal coordinates of
the top left point, the width, height and area of the box. We
then concatenate these two vectors to represent each bound-
ing box, i.e., v′ = [vspatial;vCNN] ∈ Rd′ , where [; ] denotes
the concatenation of two column vectors throughout this pa-
per. We further map the feature vector of each bounding box
to the word embedding space by a linear transformation, i.e.,
v = WT

(v)v
′ ∈ Rd.

2. Attention Layer is responsible for connecting and fus-
ing information from both textual and visual modalities.
Unlike previous attention methods which ignore attentions
over the candidate answers during the encoding of the ques-
tion sequence, we encode an answer-aware representation of
the question after reading all the candidate answers. More
specifically, we compute the similarity matrix β where each
element βij = g(hi,vj) measures the relevance of the i-th
question word and the j-th candidate answer and g(·, ·) can
be any similarity function. In this paper, we use g(h,v) =
wT

(β)[h;v;h � v] + b(β) where � is the elementwise mul-
tiplication operator. Next, we perform attention over candi-
date answers globally and locally.

Global Attention Over Answers (GAOA) first compute
the attention weight over the entire question sequence by



integrating the relevant information from all the candidate
answers in Equation 1.

α = softmax(poolrow(β)), (1)

where poolrow(β) is a pooling function of an input matrix
over rows, e.g., max-pooling, mean-pooling. In this paper,
we use the mean-pooling function which returns the mean
value of each row in the matrix. Hence we can obtain an
answer-aware summarization of the question ĥ ∈ Rd, and
compute the relevance score between the question vector
and each candidate answer by Equation 2 and 3.

ĥ =

M∑
i

αihi, (2)

Ŝ =softmax([φ(ĥ,v1); · · · ;φ(ĥ,vM )]) (3)

where φ(·, ·) can be any similarity function. Specifically in

this paper, we use φ(ĥ,vj) = wT
(φ)

ĥ�vj

‖ĥ�vj‖2
+ b(φ).

Local Attention Over Answers (LAOA) focuses on each
candidate bounding box and compute the attention weight
over the entire question sequence conditional on each box
locally by Equation 4.

γj = softmax(β:,j) (4)

where β:,j denotes the j-th column of β. Hence we can
also obtain an answer-aware summarization of the question
h̄ conditional on a specific answer, and compute the rele-
vance score between the question vector and each candidate
answer in Equation 5 and 6.

h̄j =

M∑
i

γihi, (5)

S̄ =softmax([ϕ(h̄1,v1); · · · ;ϕ(h̄M ,vM )]) (6)

where ϕ(·, ·) can be any similarity function. In this paper,
we use ϕ(h̄j ,vj) = wT

(ϕ)
h̄j�vj

‖h̄j�vj‖2
+ b(ϕ)

3. Output Layer is responsible for selecting one bound-
ing box as the grounding result. We can choose the bound-
ing box with the highest score defined in Equation 3 and 6
respectively. We can also ensemble the two models by lin-
early interpolating the scores from both attentions, and place
a softmax function to estimate the probability of predicting
the correct answers in Equation 7.

S = softmax((1− λ)Ŝ + λS̄) ∈ RN , j∗ = arg max(S)
(7)

where λ is a hyper-parameter that trade-offs the global at-
tention and local attention over answers.

Learning
In the training phrase, we have the ground truth label of the
correct answer for each question. Hence we can define the
cross-entropy loss over all the question-answer pairs:

L(θ) = − 1

T

T∑
t=1

log(Syt) + µ‖θ‖2 (8)

where yt denotes the index of the correct answer to the t-th
question, θ is the collections of all the learning parameters,
and µ is a regularization constant. We apply stochastic gra-
dient descent to update all the parameters.

Experiments
Dataset statistics
We use the visual7W data (Zhu et al. 2016)1 which is a
benchmark dataset for grounded question answering in im-
ages. More specifically, we focus on the visual7w point-
ing task. The visual7w pointing dataset includes 188,068
QA pairs on 25,733 COCO images (Lin et al. 2014),
together with 308,407 bounding boxes from 22,594 dis-
tinct categories. Follow the same splits in (Zhu et al.
2016), the dataset is split into 12,881/5,072/7,780 images
for the train/validation/test sets respectively, resulting in
93,813/36,990/57,265 question-answer pairs.

Experimental Setup
To make fair comparisons, all our proposed methods adopt
the same setup. We initialize the learning rate to 0.005,
and applies the exponential decay to the learning rate with
a base of 0.1 every 8,0000 iterations. We use the GloVe
word embeddings with the dimension of 300, and fix the
vocabularity size to be 72,704. The hidden dimension of
LSTM used in our proposed methods is set to 500. We use
the Faster-RCNN VGG-16 network pre-trained on the Ima-
geNet dataset to extract the visual features of the bounding
boxes. We set the parameter λ in Equation 7 to be 0.5.

Results and Discussions
Table 1 shows the prediction accuracy on the test set and
validation set in the Visual7w pointing task. Several obser-
vations can be drawn as follows.
• The attention over arbitrary convolution feature maps pro-

posed in (Zhu et al. 2016) performs worse than the at-
tention over words in the question proposed in (Hu et al.
2016a). This indicates that identifying the key words in
the question is essential in learning a good representation
of the question, while attention over arbitrary convolution
feature maps confuses the sentence encoder in encoding a
good representation of a question.

• LAOA performs better than GAOA in terms of the predic-
tion accuracy. Since that LAOA summarizes the question
vector conditional on each candidate answer locally with-
out including additional information from other candidate
answers. The performance of GAOA relies on selecting
a good pooling function to fuse information over all the
candidate answers, which we leave as our future work.

• The number of the learning parameters of the LSTM en-
coder in CMN is 21x larger than that in our two proposed
attention models, while the performance of LAOA is com-
parative to that of CMN. This indicates that our proposed
models are more efficient in learning from the question
answering pairs, and have the advantage of faster train-
ing.
1http://web.stanford.edu/˜yukez/visual7w/

http://web.stanford.edu/~yukez/visual7w/


Table 1: Experimental Results

Method Test accuracy LSTM hidden dimension LSTM layer
Visual Attention Baseline (Zhu et al. 2016) 0.561 1000 1-layer unidirectional LSTM

CMN (Localization) (Hu et al. 2016a) 0.716 1000 1-layer unidirectional LSTM
CMN (full) (Hu et al. 2016a) 0.725 1000 2-layer bi-directional LSTM

GAOA 0.707 500 1-layer unidirectional LSTM
LAOA 0.723 500 1-layer unidirectional LSTM

GAOA+LAOA 0.713 500 1-layer unidirectional LSTM
GAOA w/o LSTM 0.697 - -
LAOA w/o LSTM 0.642 - -

Figure 2: Venn diagram on the number of correct answers
predicted by CMN, LAOA and GAOA.

• The last two lines in Table 1 show the performance of
our two proposed models directly using GloVe word em-
beddings for question words rather than encoding them
by a single layer unidirectional LSTM. The results show
that the performance of both models without using LSTM
drops dramatically. This indicates that fine-tuning the rep-
resentation of question words by a LSTM using the train-
ing data performs much better than fixed representations.

Visualization
To further understand the performance benefits of in-
corporating answer-aware attention mechanisms into the
grounded question answering in images, we can take a look
at the questions on which models disagree. Figure 2 shows
the Venn Diagram on the questions that have been corrected
identified by our two proposed attention models and the
state-of-the-art CMN model. Here we see that the vast ma-
jority of the correctly answered questions are shared across
all three models. The rest of them indicating questions that
models disagree are distributed fairly evenly.

Figure 3 shows a case study of the similarity heatmap be-
tween question tokens and candidate answers for exclusively
correct examples as well as wrong examples predicted by

LAOA. The exclusively correct examples means examples
that only LAOA gives the correct predictions while the other
two, CMN and GAOA, provide wrong answers. The abso-
lute number and the relative percentage of the exclusively
correct examples could be found in the above Venn diagram,
Figure 2.

A few observations could be found from the examples:

• It can be seen that our LAOA model has the ability to ex-
tract the target object the question is asking, for instance,
the word vehicle in the first example and the word bush in
the sixth example.

• LAOA could also find the key properties or relationships
to other object that helps distinguish with other answers,
for instance, the word orange in the second example and
the word underneath in the fourth example.

• There are also some situations when the LAOA model
makes mistakes. In the seventh example, LAOA could
not perform a deeper reasoning of figuring out what is
“in front of the others”, where coreference is involved. In
the last example, although LAOA is very confident about
the mapping between the word hanging and the yellow
bounding box, it makes the wrong prediction in the end.
The reason could be that the dominating confidence ac-
tually obscures the target object the question really asks,
which hinders the model to give the correct answer.

From the heatmap we could conclude that our LAOA
model is capable of learning reasonable semantic mappings
between the visual space and the textual space. This abil-
ity of bridging the visual-textual modality gap enables the
LAOA model to have such a good performance. On the
other hand, the model could still fail at some questions, even
if some visual-textual correspondences are correctly found.
This is because our model still lacks the deeper reasoning
ability.

Conclusion and Future Directions
In this paper, we propose two attention models each of which
learns an answer-aware summarization vector of a question
after reading candidate answers. Our proposed models fuse
information from both visual and textual modalities, and
ground key words in a question to the corresponding bound-
ing box in an image. Experimental results show that our pro-
posed local attention model over answers performs compar-



Figure 3: Visualization of the similarity heatmap between question tokens and candidate answers for exclusively correct exam-
ples and wrong examples predicted by LAOA. For each example, the image and candidate answers (label is green, prediction
is yellow, others are blue) are shown on the left, and the similarity heatmap (darker is higher) between question tokens (x axis)
and candidate answers (y axis) is on the right. The last two examples are wrong predictions made by LAOA.

atively to the state-of-the-art method on the Visual7w point-
ing task while having much fewer learning parameters. Fu-
ture directions can be further explored in the following as-
pects: (1) Selecting a good pooling function in the GAOA
model to fuse relevant information from all the candidate
answers is challenging, and more advanced strategies can
be further explored weight over answers. (2) More effective

similarity functions can be designed to capture the corre-
spondence at different granularity levels, e.g., attention at
the word, phrase and sentence level. (3) Extra image bound-
ing boxes with correspondent text annotations are helpful to
fine-tune the mapping function that projects the visual em-
bedding vectors to the textual space. Obtaining a good pro-
jection to an appropriate textual space allows the represen-



tation of candidate bounding boxes to be distinguishable.
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