

Toward Human-Style Learning in Robots

Sergei Nirenburg and Peter Wood
Departments of Cognitive Science and Computer Science

Rensselaer Polytechnic Institute

Abstract
This paper presents a system that uses results of deep lan-
guage understanding to guide a robot’s learning of complex
activities. Specifically, it demonstrates how natural lan-
guage communication facilitates grouping primitive actions
that the robot is assumed to be able to recognize and per-
form into named sequences representing complex events. As
a result, the robot learns hierarchical transition networks,
thus circumventing the notorious knowledge acquisition
bottleneck that has posed a major obstacle to AI systems of
all kinds.

 Setting the Stage
It is broadly recognized that progress in social robotics is
predicated on improving robots’ ability to communicate
with humans. But there are different levels of communica-
tion. While robots have been able to react to vocal com-
mands and other communications for quite some time, this
ability has not so far been predicated on a sufficient level
of understanding of the meaning of the utterances (or dia-
log turns) that the robots obtain as inputs from the human
collaborator. Indeed, human-robot collaboration has been
largely studied using observation-based methods of acqui-
sition of skills (e.g., learning from demonstration).
 Not that the robotics community has willfully disregard-
ed the promise of language-endowed robots. The decision
to bypass true language processing in human-robotic inter-
action has been forced on the community. The reason for
this is that extracting, representing and manipulating the
meaning of natural language texts – true language under-
standing – is a very challenging task. A major component
of this task’s complexity is that true language understand-
ing extends well beyond language as such. If one’s aim is
to make robots understand language with a proficiency
approaching that of humans, then one must also make the
robot understand extralinguistic context: the way the world
(or at least the application domain) is organized, including
what role(s) the robot and the human collaborator(s) can

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

play, and the current situation (or discourse context), in-
cluding the current goals and plans of the human collabora-
tor.
 Once such “deep” natural understanding is implemented,
even with a knowledge substrate narrower than that pos-
sessed by an average human, a number of new possibilities
become available. One such potential new capability is to
use the robot’s newly acquired ability to understand lan-
guage to help it learn new concepts and new lexical items
that can then help it improve its understanding of the world
and become more human-like as a collaborator. This kind
of learning, reliant as it is on overt semantics and
knowledge, will be radically different from any current
machine learning paradigm. This style of learning mirrors
a major mode of learning in humans. Indeed, since an early
age all of us have spent a lot of our time learning through
language: by being instructed in school and elsewhere and
by reading. This paper presents our first step toward en-
dowing robots with this kind of learning capability.

Learning How to Build a Chair
Furniture assembly is a well-known application task in
robotics. It has been widely used as a sample domain to
demonstrate human-robot collaboration on a joint activity
(e.g., Knepper et al. 2014). The system described by Yale
robotics group led by Brian Scassellati (Roncone et al.
2017) supplies the robot with high-level models of tasks,
represented in the hierarchical transition network (HTN)
formalism, and then uses limited-bandwidth communica-
tion between the human and the robot “to convert high-
level hierarchical models into low-level task planners ca-
pable of being executed by the robot.” Our work is a col-
laborative effort with the Yale group and is directed toward
broadening the bandwidth of human-robot communication
by endowing the robot with the capability of understanding
and, hence, learning in a way approaching human learning.
 Roncone et al. assume that the initial high-level HTN
representation is available to the robot and proceed to
demonstrate how a narrow-bandwidth communication
channel with a human collaborator can help the robot learn

the low level POMDP-based representation that overtly
addresses the problem of allocating tasks to the human and
to the robot when they collaboratively build a chair. In this
paper, we address an earlier step in this process: we
demonstrate how, instead of assuming that a robot starts
out with an HTN, a human can help a language-endowed
robot to learn the HTN for building a chair.
 Figure 1 shows a sample input sequence juxtaposing
Roncone et al’s non-linguistic communication style with
the natural-language-enhanced version we are developing.
The non-linguistic commands, shown without quotation
marks, indicate primitive actions that the robot is ordered
to carry out along with the objects to which they apply.
The speech utterances, shown in quotation marks, describe
the sequence in natural language. Note that the robot is
completely trusting the human: the sequence may, in fact,
not correctly describe the process of building a chair.

1. “You will build a chair.”
2. “First, you need to get a screwdriver.”
3. Action: Get; Object: screwdriver
4. “Then, you are going to build the legs.”
5. “First, you will build a front leg.”
6. Action: Get; Object: dowel
7. Action: Get; Object: leg
8. Action: Tighten; Object: screw
9. Action: Get; Object: dowel
10. Action: Get; Object: leg
11. Action: Get; Object: top-bracket
12. “You built a back leg.”
13. “Then you will build another front leg.”
14. Action: Get; Object: dowel
15. Action: Get; Object: leg
16. Action: Tighten; Object: screw
17. “You will build another back leg.”
18. Action: Get; Object: dowel
19. Action: Get; Object: leg
20. Action: Get; Object: top-bracket
21. “You are going to build the back.”
22. Action: Get; Object: board
23. Action: Get; Object: bracket
24. Action: Tighten; Object: screw
25. Action: Get; Object: board
26. Action: Get; Object: bracket
27. Action: Tighten; Object: screw
28. “You built the seat.”
29. Action: Get; Object: back
30. Action: Get; Object: dowel
31. Action: Get; Object: chair-bracket
32. “You attached the back to the seat.”

Figure 1. A sample input sequence combining non-linguistic
commands with natural language utterances.

 At the start of the process, the robot is expected to know
a set of primitive actions (e.g., fetching) and primitive ob-
jects (e.g., a dowel). The “visible” part of the process con-
sists of the human giving the robot a sequence of inputs
(Figure 1). The result of the process will be the robot

knowing a set of complex actions – both their names and
their semantics – represented as an HTN. The inputs from
the human are of two types: a) commands to execute a
(known) action affecting certain objects, whose types are
also already known to the robot; and b) natural language
utterances introducing (naming and partially describing)
actions hitherto unknown to the robot.
 The decision to use both types of inputs stems exclusive-
ly from the desire for smooth integration with the system
of Roncone et al., where non-linguistic commands to exe-
cute an action are directly connected with the robot’s effec-
tors, with no need for representing and manipulating their
semantics. Once that system is augmented with the capa-
bilities described in this paper, the robot will no longer
require the non-linguistic commands and, instead, will be
able to learn by reasoning over the results of processing
natural language inputs from the human, without having to
actually carry out the actions directly specified in the
commands. A formal representation of the semantics of the
actions and objects in the input utterances is a prerequisite
for this capability that our approach provides.
 So, instead of the non-linguistic commands, the human
instructor will be able to issue language utterances describ-
ing those commands. The robot will understand the utter-
ances and interpret their semantics in terms of concepts
already present in its knowledge base. Those concepts will,
of course, also be linked to specific actuator procedures of
the robot, thus providing a semantic substrate for connect-
ing language perception, reasoning and action. (Once the
robot is equipped with additional perception modalities,
such as vision, the results of their processing will also be
connected with the robot’s knowledge substrate.)
 Even if we retain the two types of input from humans,
the results of processing the commands and the utterances
should be represented in a single formalism. This will fa-
cilitate a variety of robot functionalities down the line, but
the immediate need is the use of a semantically uniform
representation for all the elements (nodes) of the HTN re-
sulting from the process described in this paper. This in-
cludes the HTN’s terminal nodes that stand for the primi-
tive actions (conveyed by commands) that the robot is sup-
posed to know at the start of the process as well as its non-
terminal nodes that stand for complex actions (conveyed
by utterances) learned by the robot during this system’s
operation.

Stage One: Input Understanding with OntoSem
The first stage of the robot’s learning process takes as input
a sequence of non-linguistic commands and utterances like
the one in Figure 1 and outputs a sequence of meaning
representations (MRs) of these commands and utterances.
These MRs are obtained automatically using the OntoSem
language understanding system (McShane et al. 2016), a

component of the OntoAgent cognitive architecture (e.g.,
Nirenburg and McShane 2015). The latter is used to
integrate all the components of our learning-endowed ro-
bot. The MRs obtained as a result of processing input se-
quences like the one in Figure 1 are stored in the robot’s
short-term memory (STM).

The operation of OntoSem is supported by extensive
knowledge resources, including an ontological world mod-
el and an English semantic lexicon. The meanings of en-
tries in the lexicon are interpreted in terms of the ontologi-
cal world model. Within the OntoAgent architecture, the
ontology and the lexicon are components of the robot’s
long-term memory (LTM). The family of interrelated
metalanguages for representing MRs, the ontology, the
lexicon and other OntoAgent knowledge resources is de-
scribed in detail in Nirenburg and Raskin (2004).

At the beginning of each run of the learning process, we
ascertain that the robot’s ontology covers all the concepts –
actions and objects – that are used in the commands in the
inputs, such as those in Figure 1. The robot’s lexicon co-
vers all the lexical items that we expect the human collabo-

rator to use in a training session. (Treatment of unexpected
input in OntoSem is an active research direction (see, e.g.,
Nirenburg and McShane 2016, McShane et al. 2017). The
decision to avoid the treatment of unexpected input at this
time was made to simplify the experimentation with robot-
ic learning through language. We fully expect to remove
this constraint in future versions of the system.) The results
of learning are made manifest through the automatic aug-
mentation of the robot’s ontology. Specifically, as a result
of the learning process, the robot will:

• create new complex events,
• name them,
• determine their constituent subevents,
• determine the events of which they are subevents, and
• record this new knowledge in its ontology.

In the system of Roncone et al., the robot does not record
its actions in memory. The learning robot that we are de-
scribing must remember what it has done. So, it must rec-
ord the results of its processing of both kinds of input to
use them in the subsequent learning stage. All MRs are

Figure 2. MRs for the non-linguistic command Action: Get; Object: screwdriver (converted to “I got a screwdriver” for purposes of MR
generation) and for the natural language utterance “You will build a chair.”

generated by OntoSem: those for utterances are generated
in the usual way; those for non-linguistic commands are
generated by representing the commands as simplified ut-
terances. Thus, to obtain an MR for the command Action:
Get; Object: screwdriver we send the ‘utterance’ “Get
screwdriver” to OntoSem.
 Figure 2 illustrates the output MRs produced by On-
toSem for the utterance “You will build a chair” and the
command Action: Get; Object: screwdriver, respectively.
Note that the latter is represented in the robot’s STM not as
a command but as the result of an action that it has already
performed, which is rendered as the MR for the meaning of
the statement “I got a screwdriver.” An attentive reader
will notice that at the time of processing the concept AC-
QUIRE1 in the robot’s ontology has the constraint human on
the filler of its agent case role. This is because this robot
‘inherited’ a worldview in which this action could be car-
ried out only by people. After learning that it can also get a
screwdriver, the robot will be able to automatically aug-
ment its ontology to include robot as another legal filler for
the agent case of acquire. We do not describe this process
in this paper.

Stage Two: Robotic Learning
Once Stage One processes have generated MRs for every
member of the input sequence and stored them as a time-
ordered sequence in the STM, the learning stage com-
mences. The objective of this stage is to produce an HTN
from the sequence of MRs at input. Effectively, the process
expects the MRs corresponding to commands in the origi-
nal input to form the set of terminal nodes in the resulting
HTN tree. We will call these MRs MRPs (MR-Primitive).
Non-terminal nodes in the resulting HTN will be created,
named and placed in the tree on the basis of the MRs cor-
responding to utterances in the original input. These latter
MRs we will call MRUs (MR-Utterance).
 The algorithm for the learning process is illustrated in
Figures 3-5. The learning process that we report at this
time is implemented using two procedures – Build-HTN
and Resolve-Disputes. We expect the input sequence to be
ambiguous. Therefore, we expect Build-HTN to yield sit-
uations where the ancestry of some nodes will be disputed.
A disambiguation procedure, Resolve-Disputes, is includ-
ed in the learning process. At present, this procedure is
called after the initial processing of the input string of MRs
by Build-HTN. The instances of disputes that must be re-
solved are marked when a call to Find-Closeable-Branch
fails.

Build-HTN (Figure 3) processes MRs in the order they
appear in the input. The procedure Add-Node has three
parameters: a) current-parent (CP), the node of which the

1 We follow the OntoAgent notational convention of using SMALL CAPS to
designate concepts in the agent’s ontology. In the current OntoAgent
ontology, ACQUIRE does not presuppose inalienable possession.

newly created node will become a child,2 b) the type of the
node – terminal or nonterminal; and c) the node’s name.
The procedure Name-Node (Node) concatenates the
EVENT of the MR with the THEME of the MR. Next, if there
is a secondary theme, in the MR, it concatenates “-AND-”
THEME2. If the INSTRUMENT case role in the MR is filled, it
is concatenated and preceded with “-WITH-.”

Build-HTN
For each MR in an input sequence:
Read the MR
IF MR = MRP
 THEN IF CP has no nonterminal children
 THEN Add-Node(CP, terminal, Name-Node(MRPi))
 ;routinely incorporate this MRP, note call to Name-Node
 ELSE CP ß Add-Node(CP, nonterminal, dummy)
 ;we need a dummy nonterminal but we can’t yet name it
 Add-Node(CP, terminal, Name-Node(MRPi))
 ;and we add the new terminal node as the child
 ;of the newly created nonterminal
 ELSE ;MR is an MRU!
 IF MRUi.time ≥ t0 ;t0 is time of speech
 ;we call such MRUs non-past MRUs, NPMRUs
 THEN
 Adjust-Branch(MRUi, MRUi-1)
 ;find correct CP to attach
 Add-Node(CP, non-terminal, Name-Node(MRUi))
 CP ← (MRUi)
 ;the root from which to grow the next branch
 ELSE ;the case when MRU is a past MRU, PMRU
 ;Either a previously-opened branch will be closed,
 ;or a dispute will be recorded.
 Find-Closeable-Branch
 IF Find-Closeable-Branch returns failure
 THEN CP ← CP.parent

 Add-Node(CP, non-terminal, Name-Node(MRUi))
 Disputes += (MRUi, MRUi-1)
 ;MRUi-1 is the previous child of CP)

Figure 3. The Build-HTN procedure.

The procedure Adjust-Branch (Figure 4) assesses bounda-
ries between consecutive (current and previous) nodes in
the tree and adjusts the current parent so that the new
branches are appropriately positioned.

Adjust-Branch(current, previous)
IF current is MRU and previous is MRP
 THEN CP ← CP.parent
IF current is NPMRU
 THEN candidate ← CP.parent
 WHILE current.theme not PART-OF candidate.theme
 candidate ← candidate.parent
 IF candidate != root
 THEN CP ← candidate

Figure 4. The Adjust-Branch procedure.

When an NPMRU follows an MRP in the input, this means
that a new branch of the tree must be added. By default,

2 This parameter is optional. The root node is created unattached.

this means that the current parent should be moved one
level up, so that the root of the new branch is a sibling of
the root of the branch that was completed when the current
NPMRU was input. However, conceptually, the new
branch can belong to a higher node in the tree. To deter-
mine what node that should be, the Adjust-Branch proce-
dure uses ontological knowledge to determine whether the
filler of the THEME case role in the MR in question is a
component of (technically, a member of the set that forms
the filler of) the HAS-AS-PART property of the filler of the
case. Thus, since the robot’s ontology contains information
that legs can be parts of chairs but not of screwdrivers,
node 4 is attached to node 1 and not node 2 in Frame B of
the example below.

The occurrence of a PMRU in the input string signifies
that a branch in the nascent tree must be closed. The pro-
cedure Find-Closeable-Branch (Figure 5) finds at what
node in the tree this branch opened and adjusts the CP ac-
cordingly in anticipation of a new branch opening at the
next input.

Find-Closeable-Branch(MRU)
candidate ← CP
WHILE not (candidate is dummy or candidate has same name as
MRU)
 candidate ← candidate.parent
IF candidate = root
 THEN return failure
IF candidate.name = dummy
 Name-Node(candidate, MRU)
CP ← candidate.parent

Figure 5. The Find-Closeable-Branch procedure.

If the procedure fails, then a) a new node is created as the
child of the current CP (that is, a sibling of the parent of
the previous nonterminal node), and b) a dispute is record-
ed for future resolution.

Disputes arise when the input string of MRs contains a
substring of consecutive MRPs with an NPMRU, Np, pre-
ceding them and a PMRU, Nf, following them (cf. the sub-
string between the 13th and the 20th element in the sample
input of Figure 1). This means that the input is ambiguous:
some of the disputed terminal nodes may be children of the
nonterminal preceding them and some others, of the termi-
nal following them.

Resolve-Disputes attempts to resolve this ambiguity.
The heuristic it uses is contextual (not ontological, as in the

case of Adjust-Branch): it tries to find in the tree a non-
terminal N, with undisputed children whose name is the
same as that of Np or Nf. If found, the children of N are
compared with the list of disputed terminals and if the ap-
propriate match is found, the dispute is resolved by assign-
ing the matched subsequence to Np if it matches the begin-
ning of the disputed sequence and to Nf if it matches the
end of it, with the remainder of the sequence being as-
signed to the Nf and Np, respectively. If this type of match
cannot be found, the dispute remains unresolved. This
means that the robot’s learning will be incomplete in this
case. The robot will still record the incomplete result in its
LTM and will expect to resolve this issue in future pro-
cessing (a major property of the kind of learning we are
implementing is that it is life-long). An operation of Re-
solve-Disputes is illustrated in Frames H and I below.

An Example
The frames A-H in Figure 6 show the nascent HTN for the
input sequence in Figure 1 at various points in the robot’s
learning process. Numbers in the nodes correspond to the
elements of the input sequence, the highest number in the
frame being the element last processed. To save space,
sequences of MRP s are bunched in one node. The nodes
highlighted in bold are CPs at that point in the process.
Sets of disputed nodes are marked with dotted lines. MRPs
are in lowercase, MRUs, in all-caps. Thus, Frame A shows
the nascent HTN after the first three elements of the input
sequence are processed. Frame B captures the state after
Adjust-Branch is called, while Frame D illustrates the
state of the HTN before a call to Adjust-Branch. Frame C
illustrates the first, and Frame E, the second time a dispute
is marked. Frame F illustrates the situation when an un-
named grouping of primitive actions is introduced, and
Frame G illustrates how, after the PMRU “You have at-
tached the back to the seat,” the corresponding nonterminal
node is named. Finally, Frame H illustrates the operation
of Resolve-Disputes, made possible by the comparison of
Input 13 with a subset of the disputed sequence 6-11 trig-
gered by the fact that inputs 5 and 13 both announce build-
ing a front leg.

Figure 6. The nascent HTN for the input sequence in Figure 1 at various points in the robot’s learning process.

Discussion and Future Work

The mechanism described in this paper is a step toward
integrating true language understanding, reasoning and
robotic action in a comprehensive cognitive robotic archi-
tecture. Experiments with such integration have been con-
ducted before, notably by Matthias Scheutz and his co-
workers (e.g., Scheutz et al. 2013, 2017). Our group’s the-
ory and methodology shares many high-level objectives
and assumptions with Scheutz’s group. We cannot discuss
the differences in detail due to space constraints. Suffice it
to say that our group extensively models the knowledge
internalized in the robot’s memory, which allows deeper
integration of language processing and general reasoning,
including understanding what was not overtly mentioned in
the incoming utterances.
 We view the work presented in this paper as the begin-
ning of a sustained research initiative, with a large number
of issues to be tackled in the future. This is another way of
saying that the current implementation of the system oper-
ates under a number of constraints and assumptions.
 Thus, as currently implemented, the robot does not make
sufficient use of its memory. The system presumes that the
complex events the robot learns are new to the it. A more
realistic situation would be if the robot already had in its
ontology the concept corresponding to the complex event
described in an input sequence. The newly learned infor-
mation would then help it hone the concept. An important
side effect of such learning can be made manifest if the
overall set-up allowed for communication with more than
one other member of the robot’s team (either human or a
robot like itself). This would introduce the potential for
attributing any discrepancies in the specification of newly
learned concepts to specific sources, which can provide
invaluable heuristics for managing the robot’s trust in the
other team members on specific tasks.
 At this time, for our learner to succeed, the human train-
er must be rather precise in his or her communications.
This requirement is clearly unrealistic in the real world.
The current system is already attuned to some cases of im-
precisions and paraphrasing in human communications.
The procedures Adjust-Branch and Resolve-Disputes
have been introduced specifically for the purpose of deal-
ing with them. However, many more heuristics must be
brought to bear in order to allow humans to communicate
with the robot in a way approaching that in which they
communicate with other humans. This means modeling the
human ability to balance vagueness and ambiguity against
length and complexity of natural language utterances di-
rected at a particular recipient: the higher the expectations
that the recipient understands the language and the context,
the more lapidary and imprecise (and shorter) the message
can be. This view ultimately ascends to the principle of

least effort. Its application to language communication is
discussed in Piantadosi et al. (2012).
 We will independently continue to enhance OntoSem,
the natural language component of our system. In particu-
lar, we will concentrate on eliminating brittleness in the
face of a variety of types of “unexpected” input and en-
hancing its ability to resolve a variety of referential expres-
sions (including, notably, elliptical ones) to elements of the
robot’s ontology and its episodic memory that straddles its
STM and LTM. But in parallel to this work, we will also
work on expanding the set of heuristics for treating the
various failures in the learning process that are due to sub-
standard input from the human. We will look for additional
sources of such heuristics in the robot’s ontology and the
STM component of its episodic memory. We will also in-
vestigate using other components of the robot’s LTM, such
as its long-term episodic memory of actual events and re-
sults of its reasoning.
 At present the language communication is initiated ex-
clusively by the human. This is not realistic. We will intro-
duce mixed-initiative communication, initially by allowing
the robot to backchannel (e.g., saying “OK, got it”) and to
ask clarification questions. Special attention will be given
to heuristics for deciding when (and when not) to ask such
questions as well as how to formulate the questions so as to
increase the chances of getting the most appropriate answer
from the human.
 The learning process should not stop with learning what
the human trainer wants the robot to learn. We saw above
that the robot will have the opportunity to hone its ontolog-
ical and lexical knowledge by reasoning over the meanings
of human’s utterances, as illustrated by the above example
of modifying the filler of AGENT of ACQUIRE. In an ad-
vanced cognitive robot, this kind of learning must be al-
ways “on,” irrespective of whether any specific communi-
cation with others is related to learning.
 In the current implementation algorithm, the entire input
sequence is interpreted and represented in MRs before the
learning process starts. In future versions, we will inter-
leave the interpretation and learning processes, making
them more realistic.
 The algorithm described in this paper covers conceptual
learning on the basis of a mixed input sequence of robotic
actions and language utterances. A similar process can
improve the execution side of the robot’s functioning. It is
worth investigating whether broadening the communica-
tion channel between the human and the robot that is used
in Roncone et al. (2017) for converting the high-level HTN
into an execution-ready POMDPs will improve that pro-
cess.

Acknowledgements. This work was supported in part by
Grant N00014-17-1-221 from the U.S. Office of Naval
Research. Any opinions or findings expressed in this mate-

rial are those of the author and do not necessarily reflect
the views of the Office of Naval Research.

References
Knepper, R.A., T. Layton, J. Romanishin, and D. Rus, “IkeaBot:
An autonomous multi-robot coordinated furniture assembly sys-
tem,” in IEEE International Conference on Robotics and Automa-
tion, 2013.
McShane, M., Nirenburg, S. and Beale, S. 2016. Language under-
standing with Ontological Semantics. Advances in Cognitive Sys-
tems 4:35-55
McShane, M., K. Blissett, and I. Nirenburg. 2017 Treating Unex-
pected Input in Incremental Semantic Analysis. Proceedings of
The Fifth Annual Conference on Advances in Cognitive Systems
Nirenburg, S. and McShane, M. 2015. The interplay of language
processing, reasoning and decision-making in cognitive compu-
ting. Proceedings of the 20th International Conference on Appli-
cations of Natural Language to Information Systems (NLDB
2015). Passau, Germany.
Nirenburg, S. and McShane, M. 2016. Slashing metaphor with
Occam's Razor. Proceedings of The Fourth Annual Conference
on Advances in Cognitive Systems
Piantadosi, S. T., Tily, H. & Gibson, E. (2012). The communica-
tive function of ambiguity in language. Cognition 122, 280–291.
Roncone, A., O. Mangin and B. Scassellati. 2017. Transparent
Role Assignment and Task Allocation in Human Robot Collabo-
ration. Proceedings of International Conference on Robotics and
Automation. Singapore.
Scheutz, M. J. Harris and P. Schmermerhorn. 2013. Systematic
Integration of Cognitive and Robotic Architectures. Advances in
Cognitive Systems 2:277-296.
Scheutz, M., E. Krause, B. Oosterveld, T. Frasca, and R. Platt.
2017. Spoken Instruction-Based One-Shot Object and Action
Learning in a Cognitive Robotic Architecture. Proceedings of
AAMAS '17.

