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Abstract 
This paper presents a system that uses results of deep lan-
guage understanding to guide a robot’s learning of complex 
activities. Specifically, it demonstrates how natural lan-
guage communication facilitates grouping primitive actions 
that the robot is assumed to be able to recognize and per-
form into named sequences representing complex events. As 
a result, the robot learns hierarchical transition networks, 
thus circumventing the notorious knowledge acquisition 
bottleneck that has posed a major obstacle to AI systems of 
all kinds. 

 Setting the Stage   
It is broadly recognized that progress in social robotics is 
predicated on improving robots’ ability to communicate 
with humans. But there are different levels of communica-
tion. While robots have been able to react to vocal com-
mands and other communications for quite some time, this 
ability has not so far been predicated on a sufficient level 
of understanding of the meaning of the utterances (or dia-
log turns) that the robots obtain as inputs from the human 
collaborator. Indeed, human-robot collaboration has been 
largely studied using observation-based methods of acqui-
sition of skills (e.g., learning from demonstration). 
 Not that the robotics community has willfully disregard-
ed the promise of language-endowed robots. The decision 
to bypass true language processing in human-robotic inter-
action has been forced on the community. The reason for 
this is that extracting, representing and manipulating the 
meaning of natural language texts – true language under-
standing – is a very challenging task. A major component 
of this task’s complexity is that true language understand-
ing extends well beyond language as such. If one’s aim is 
to make robots understand language with a proficiency 
approaching that of humans, then one must also make the 
robot understand extralinguistic context: the way the world 
(or at least the application domain) is organized, including 
what role(s) the robot and the human collaborator(s) can 
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play, and the current situation (or discourse context), in-
cluding the current goals and plans of the human collabora-
tor. 
 Once such “deep” natural understanding is implemented, 
even with a knowledge substrate narrower than that pos-
sessed by an average human, a number of new possibilities 
become available. One such potential new capability is to 
use the robot’s newly acquired ability to understand lan-
guage to help it learn new concepts and new lexical items 
that can then help it improve its understanding of the world 
and become more human-like as a collaborator. This kind 
of learning, reliant as it is on overt semantics and 
knowledge, will be radically different from any current 
machine learning paradigm. This style of learning mirrors 
a major mode of learning in humans. Indeed, since an early 
age all of us have spent a lot of our time learning through 
language: by being instructed in school and elsewhere and 
by reading. This paper presents our first step toward en-
dowing robots with this kind of learning capability. 

Learning How to Build a Chair 
Furniture assembly is a well-known application task in 
robotics. It has been widely used as a sample domain to 
demonstrate human-robot collaboration on a joint activity 
(e.g., Knepper et al. 2014). The system described by Yale 
robotics group led by Brian Scassellati (Roncone et al. 
2017) supplies the robot with high-level models of tasks, 
represented in the hierarchical transition network (HTN) 
formalism, and then uses limited-bandwidth communica-
tion between the human and the robot “to convert high-
level hierarchical models into low-level task planners ca-
pable of being executed by the robot.” Our work is a col-
laborative effort with the Yale group and is directed toward 
broadening the bandwidth of human-robot communication  
by endowing the robot with the capability of understanding 
and, hence, learning in a way approaching human learning.  
 Roncone et al. assume that the initial high-level HTN 
representation is available to the robot and proceed to 
demonstrate how a narrow-bandwidth communication 
channel with a human collaborator can help the robot learn 



the low level POMDP-based representation that overtly 
addresses the problem of allocating tasks to the human and 
to the robot when they collaboratively build a chair. In this 
paper, we address an earlier step in this process: we 
demonstrate how, instead of assuming that a robot starts 
out with an HTN, a human can help a language-endowed 
robot to learn the HTN for building a chair.  
 Figure 1 shows a sample input sequence juxtaposing 
Roncone et al’s non-linguistic communication style with 
the natural-language-enhanced version we are developing. 
The non-linguistic commands, shown without quotation 
marks, indicate primitive actions that the robot is ordered 
to carry out along with the objects to which they apply. 
The speech utterances, shown in quotation marks, describe 
the sequence in natural language. Note that the robot is 
completely trusting the human: the sequence may, in fact, 
not correctly describe the process of building a chair. 
 
1.  “You will build a chair.” 
2.  “First, you need to get a screwdriver.” 
3.  Action: Get; Object: screwdriver 
4.  “Then, you are going to build the legs.” 
5.  “First, you will build a front leg.” 
6.  Action: Get; Object: dowel 
7.  Action: Get; Object: leg 
8.  Action: Tighten; Object: screw 
9. Action: Get; Object: dowel 
10.  Action: Get; Object: leg 
11.  Action: Get; Object: top-bracket 
12.  “You built a back leg.”  
13.  “Then you will build another front leg.” 
14.  Action: Get; Object: dowel 
15.  Action: Get; Object: leg 
16.  Action: Tighten; Object: screw 
17.  “You will build another back leg.” 
18. Action: Get; Object: dowel 
19.  Action: Get; Object: leg 
20.  Action: Get; Object: top-bracket 
21.  “You are going to build the back.” 
22.  Action: Get; Object: board 
23.  Action: Get; Object: bracket 
24.  Action: Tighten; Object: screw 
25.  Action: Get; Object: board 
26.  Action: Get; Object: bracket 
27.  Action: Tighten; Object: screw 
28.  “You built the seat.” 
29.  Action: Get; Object: back 
30.  Action: Get; Object: dowel 
31.  Action: Get; Object: chair-bracket 
32.  “You attached the back to the seat.” 

Figure 1. A sample input sequence combining non-linguistic 
commands with natural language utterances.  

 At the start of the process, the robot is expected to know 
a set of primitive actions (e.g., fetching) and primitive ob-
jects (e.g., a dowel). The “visible” part of the process con-
sists of the human giving the robot a sequence of inputs 
(Figure 1). The result of the process will be the robot 

knowing a set of complex actions – both their names and 
their semantics – represented as an HTN. The inputs from 
the human are of two types: a) commands to execute a 
(known) action affecting certain objects, whose types are 
also already known to the robot; and b) natural language 
utterances introducing (naming and partially describing) 
actions hitherto unknown to the robot. 
 The decision to use both types of inputs stems exclusive-
ly from the desire for smooth integration with the system 
of Roncone et al., where non-linguistic commands to exe-
cute an action are directly connected with the robot’s effec-
tors, with no need for representing and manipulating their 
semantics. Once that system is augmented with the capa-
bilities described in this paper, the robot will no longer 
require the non-linguistic commands and, instead, will be 
able to learn by reasoning over the results of processing 
natural language inputs from the human, without having to 
actually carry out the actions directly specified in the 
commands. A formal representation of the semantics of the 
actions and objects in the input utterances is a prerequisite 
for this capability that our approach provides.  
 So, instead of the non-linguistic commands, the human 
instructor will be able to issue language utterances describ-
ing those commands. The robot will understand the utter-
ances and interpret their semantics in terms of concepts 
already present in its knowledge base. Those concepts will, 
of course, also be linked to specific actuator procedures of 
the robot, thus providing a semantic substrate for connect-
ing language perception, reasoning and action. (Once the 
robot is equipped with additional perception modalities, 
such as vision, the results of their processing will also be 
connected with the robot’s knowledge substrate.)  
 Even if we retain the two types of input from humans, 
the results of processing the commands and the utterances 
should be represented in a single formalism. This will fa-
cilitate a variety of robot functionalities down the line, but 
the immediate need is the use of a semantically uniform 
representation for all the elements (nodes) of the HTN re-
sulting from the process described in this paper. This in-
cludes the HTN’s terminal nodes that stand for the primi-
tive actions (conveyed by commands) that the robot is sup-
posed to know at the start of the process as well as its non-
terminal nodes that stand for complex actions (conveyed 
by utterances) learned by the robot during this system’s 
operation.  

Stage One: Input Understanding with OntoSem  
The first stage of the robot’s learning process takes as input 
a sequence of non-linguistic commands and utterances like 
the one in Figure 1 and outputs a sequence of meaning 
representations (MRs) of these commands and utterances. 
These MRs are obtained automatically using the OntoSem 
language understanding system (McShane et al. 2016), a 



component of the OntoAgent cognitive architecture (e.g., 
Nirenburg and McShane 2015). The latter is used to 
integrate all the components of our learning-endowed ro-
bot. The MRs obtained as a result of processing input se-
quences like the one in Figure 1 are stored in the robot’s 
short-term memory (STM).  

The operation of OntoSem is supported by extensive 
knowledge resources, including an ontological world mod-
el and an English semantic lexicon. The meanings of en-
tries in the lexicon are interpreted in terms of the ontologi-
cal world model. Within the OntoAgent architecture, the 
ontology and the lexicon are components of the robot’s 
long-term memory (LTM). The family of interrelated 
metalanguages for representing MRs, the ontology, the 
lexicon and other OntoAgent knowledge resources is de-
scribed in detail in Nirenburg and Raskin (2004).  

At the beginning of each run of the learning process, we 
ascertain that the robot’s ontology covers all the concepts – 
actions and objects – that are used in the commands in the 
inputs, such as those in Figure 1. The robot’s lexicon co-
vers all the lexical items that we expect the human collabo-

rator to use in a training session. (Treatment of unexpected 
input in OntoSem is an active research direction (see, e.g., 
Nirenburg and McShane 2016, McShane et al. 2017). The 
decision to avoid the treatment of unexpected input at this 
time was made to simplify the experimentation with robot-
ic learning through language. We fully expect to remove 
this constraint in future versions of the system.) The results 
of learning are made manifest through the automatic aug-
mentation of the robot’s ontology. Specifically, as a result 
of the learning process, the robot will:  
 
• create new complex events,  
• name them,  
• determine their constituent subevents,  
• determine the events of which they are subevents, and 
• record this new knowledge in its ontology. 
 
In the system of Roncone et al., the robot does not record 
its actions in memory. The learning robot that we are de-
scribing must remember what it has done. So, it must rec-
ord the results of its processing of both kinds of input to 
use them in the subsequent learning stage. All MRs are 

Figure 2. MRs for the non-linguistic command Action: Get; Object: screwdriver (converted to “I got a screwdriver” for purposes of MR 
generation) and for the natural language utterance “You will build a chair.” 



generated by OntoSem: those for utterances are generated 
in the usual way; those for non-linguistic commands are 
generated by representing the commands as simplified ut-
terances. Thus, to obtain an MR for the command Action: 
Get; Object: screwdriver we send the ‘utterance’ “Get 
screwdriver” to OntoSem.  
 Figure 2 illustrates the output MRs produced by On-
toSem for the utterance “You will build a chair” and the 
command Action: Get; Object: screwdriver, respectively. 
Note that the latter is represented in the robot’s STM not as 
a command but as the result of an action that it has already 
performed, which is rendered as the MR for the meaning of 
the statement “I got a screwdriver.” An attentive reader 
will notice that at the time of processing the concept AC-
QUIRE1 in the robot’s ontology has the constraint human on 
the filler of its agent case role. This is because this robot 
‘inherited’ a worldview in which this action could be car-
ried out only by people. After learning that it can also get a 
screwdriver, the robot will be able to automatically aug-
ment its ontology to include robot as another legal filler for 
the agent case of acquire. We do not describe this process 
in this paper.  

Stage Two: Robotic Learning 
Once Stage One processes have generated MRs for every 
member of the input sequence and stored them as a time-
ordered sequence in the STM, the learning stage com-
mences. The objective of this stage is to produce an HTN 
from the sequence of MRs at input. Effectively, the process 
expects the MRs corresponding to commands in the origi-
nal input to form the set of terminal nodes in the resulting 
HTN tree. We will call these MRs MRPs (MR-Primitive). 
Non-terminal nodes in the resulting HTN will be created, 
named and placed in the tree on the basis of the MRs cor-
responding to utterances in the original input. These latter 
MRs we will call MRUs (MR-Utterance).  
 The algorithm for the learning process is illustrated in 
Figures 3-5. The learning process that we report at this 
time is implemented using two procedures – Build-HTN 
and Resolve-Disputes. We expect the input sequence to be 
ambiguous. Therefore, we expect Build-HTN to yield sit-
uations where the ancestry of some nodes will be disputed. 
A disambiguation procedure, Resolve-Disputes, is includ-
ed in the learning process. At present, this procedure is 
called after the initial processing of the input string of MRs 
by Build-HTN. The instances of disputes that must be re-
solved are marked when a call to Find-Closeable-Branch 
fails. 

Build-HTN (Figure 3) processes MRs in the order they 
appear in the input. The procedure Add-Node has three 
parameters: a) current-parent (CP), the node of which the 
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newly created node will become a child,2 b) the type of the 
node – terminal or nonterminal; and c) the node’s name. 
The procedure Name-Node (Node) concatenates the 
EVENT of the MR with the THEME of the MR. Next, if there 
is a secondary theme, in the MR, it concatenates “-AND-” 
THEME2. If the INSTRUMENT case role in the MR is filled, it 
is concatenated and preceded with “-WITH-.”  
 
Build-HTN 
For each MR in an input sequence: 
Read the MR 
IF  MR = MRP 
 THEN IF CP has no nonterminal children 
     THEN Add-Node(CP, terminal, Name-Node(MRPi))      
         ;routinely incorporate this MRP, note call to Name-Node 
     ELSE CP ß Add-Node(CP, nonterminal, dummy)  
          ;we need a dummy nonterminal but we can’t yet name it 
          Add-Node(CP, terminal, Name-Node(MRPi)) 
           ;and we add the new terminal node as the child  
           ;of the newly created nonterminal 
  ELSE    ;MR is an MRU! 
            IF MRUi.time ≥ t0  ;t0 is time of speech    
                ;we call such MRUs non-past MRUs, NPMRUs 
      THEN 
            Adjust-Branch(MRUi, MRUi-1) 
                ;find correct CP to attach   
          Add-Node(CP, non-terminal, Name-Node(MRUi))  
             CP ← (MRUi)  
                ;the root from which to grow the next branch             
       ELSE ;the case when MRU is a past MRU, PMRU 
                ;Either a previously-opened branch will be closed,  
                ;or a dispute will be recorded. 
           Find-Closeable-Branch 
           IF Find-Closeable-Branch returns failure 
           THEN CP ← CP.parent 

 Add-Node(CP, non-terminal, Name-Node(MRUi)) 
                       Disputes += (MRUi, MRUi-1)  
                          ;MRUi-1 is the previous child of CP) 

Figure 3. The Build-HTN procedure.  

The procedure Adjust-Branch (Figure 4) assesses bounda-
ries between consecutive (current and previous) nodes in 
the tree and adjusts the current parent so that the new 
branches are appropriately positioned.  
 
Adjust-Branch(current, previous) 
IF current is MRU and previous is MRP 
   THEN CP ← CP.parent 
IF current is NPMRU 
   THEN candidate ← CP.parent 
   WHILE current.theme not PART-OF candidate.theme 
       candidate ← candidate.parent 
   IF candidate != root 
       THEN CP ← candidate 

Figure 4. The Adjust-Branch procedure.  

When an NPMRU follows an MRP in the input, this means 
that a new branch of the tree must be added. By default, 
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this means that the current parent should be moved one 
level up, so that the root of the new branch is a sibling of 
the root of the branch that was completed when the current 
NPMRU was input. However, conceptually, the new 
branch can belong to a higher node in the tree. To deter-
mine what node that should be, the Adjust-Branch proce-
dure uses ontological knowledge to determine whether the 
filler of the THEME case role in the MR in question is a 
component of (technically, a member of the set that forms 
the filler of) the HAS-AS-PART property of the filler of the 
case. Thus, since the robot’s ontology contains information 
that legs can be parts of chairs but not of screwdrivers, 
node 4 is attached to node 1 and not node 2 in Frame B of 
the example below. 

The occurrence of a PMRU in the input string signifies 
that a branch in the nascent tree must be closed. The pro-
cedure Find-Closeable-Branch (Figure 5) finds at what 
node in the tree this branch opened and adjusts the CP ac-
cordingly in anticipation of a new branch opening at the 
next input.  

 
Find-Closeable-Branch(MRU) 
candidate ← CP 
WHILE not (candidate is dummy or candidate has same name as 
MRU) 
   candidate ← candidate.parent 
IF candidate = root 
   THEN return failure 
IF candidate.name = dummy 
   Name-Node(candidate, MRU) 
CP ← candidate.parent 

Figure 5. The Find-Closeable-Branch procedure. 

 
If the procedure fails, then a) a new node is created as the 
child of the current CP (that is, a sibling of the parent of 
the previous nonterminal node), and b) a dispute is record-
ed for future resolution. 

Disputes arise when the input string of MRs contains a 
substring of consecutive MRPs with an NPMRU, Np, pre-
ceding them and a PMRU, Nf, following them (cf. the sub-
string between the 13th and the 20th element in the sample 
input of Figure 1). This means that the input is ambiguous: 
some of the disputed terminal nodes may be children of the 
nonterminal preceding them and some others, of the termi-
nal following them.  

Resolve-Disputes attempts to resolve this ambiguity. 
The heuristic it uses is contextual (not ontological, as in the 

case of Adjust-Branch): it tries to find in the tree a non-
terminal N, with undisputed children whose name is the 
same as that of Np or Nf. If found, the children of N are 
compared with the list of disputed terminals and if the ap-
propriate match is found, the dispute is resolved by assign-
ing the matched subsequence to Np if it matches the begin-
ning of the disputed sequence and to Nf if it matches the 
end of it, with the remainder of the sequence being as-
signed to the Nf and Np, respectively. If this type of match 
cannot be found, the dispute remains unresolved. This 
means that the robot’s learning will be incomplete in this 
case. The robot will still record the incomplete result in its 
LTM and will expect to resolve this issue in future pro-
cessing (a major property of the kind of learning we are 
implementing is that it is life-long). An operation of Re-
solve-Disputes is illustrated in Frames H and I below. 

An Example 
The frames A-H in Figure 6 show the nascent HTN for the 
input sequence in Figure 1 at various points in the robot’s 
learning process. Numbers in the nodes correspond to the 
elements of the input sequence, the highest number in the 
frame being the element last processed. To save space, 
sequences of MRP s are bunched in one node. The nodes 
highlighted in bold are CPs at that point in the process. 
Sets of disputed nodes are marked with dotted lines. MRPs 
are in lowercase, MRUs, in all-caps. Thus, Frame A shows 
the nascent HTN after the first three elements of the input 
sequence are processed. Frame B captures the state after 
Adjust-Branch is called, while Frame D illustrates the 
state of the HTN before a call to Adjust-Branch. Frame C 
illustrates the first, and Frame E, the second time a dispute 
is marked. Frame F illustrates the situation when an un-
named grouping of primitive actions is introduced, and 
Frame G illustrates how, after the PMRU “You have at-
tached the back to the seat,” the corresponding nonterminal 
node is named. Finally, Frame H illustrates the operation 
of Resolve-Disputes, made possible by the comparison of 
Input 13 with a subset of the disputed sequence 6-11 trig-
gered by the fact that inputs 5 and 13 both announce build-
ing a front leg.  
 
 



 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 6. The nascent HTN for the input sequence in Figure 1 at various points in the robot’s learning process. 



Discussion and Future Work 
 
The mechanism described in this paper is a step toward 
integrating true language understanding, reasoning and 
robotic action in a comprehensive cognitive robotic archi-
tecture. Experiments with such integration have been con-
ducted before, notably by Matthias Scheutz and his co-
workers (e.g., Scheutz et al. 2013, 2017). Our group’s the-
ory and methodology shares many high-level objectives 
and assumptions with Scheutz’s group. We cannot discuss 
the differences in detail due to space constraints. Suffice it 
to say that our group extensively models the knowledge 
internalized in the robot’s memory, which allows deeper 
integration of language processing and general reasoning, 
including understanding what was not overtly mentioned in 
the incoming utterances.  
 We view the work presented in this paper as the begin-
ning of a sustained research initiative, with a large number 
of issues to be tackled in the future. This is another way of 
saying that the current implementation of the system oper-
ates under a number of constraints and assumptions.  
 Thus, as currently implemented, the robot does not make 
sufficient use of its memory. The system presumes that the 
complex events the robot learns are new to the it. A more 
realistic situation would be if the robot already had in its 
ontology the concept corresponding to the complex event 
described in an input sequence. The newly learned infor-
mation would then help it hone the concept. An important 
side effect of such learning can be made manifest if the 
overall set-up allowed for communication with more than 
one other member of the robot’s team (either human or a 
robot like itself). This would introduce the potential for 
attributing any discrepancies in the specification of newly 
learned concepts to specific sources, which can provide 
invaluable heuristics for managing the robot’s trust in the 
other team members on specific tasks.  
 At this time, for our learner to succeed, the human train-
er must be rather precise in his or her communications. 
This requirement is clearly unrealistic in the real world. 
The current system is already attuned to some cases of im-
precisions and paraphrasing in human communications. 
The procedures Adjust-Branch and Resolve-Disputes 
have been introduced specifically for the purpose of deal-
ing with them. However, many more heuristics must be 
brought to bear in order to allow humans to communicate 
with the robot in a way approaching that in which they 
communicate with other humans. This means modeling the 
human ability to balance vagueness and ambiguity against 
length and complexity of natural language utterances di-
rected at a particular recipient: the higher the expectations 
that the recipient understands the language and the context, 
the more lapidary and imprecise (and shorter) the message 
can be. This view ultimately ascends to the principle of 

least effort. Its application to language communication is 
discussed in Piantadosi et al. (2012). 
 We will independently continue to enhance OntoSem, 
the natural language component of our system. In particu-
lar, we will concentrate on eliminating brittleness in the 
face of a variety of types of “unexpected” input and en-
hancing its ability to resolve a variety of referential expres-
sions (including, notably, elliptical ones) to elements of the 
robot’s ontology and its episodic memory that straddles its 
STM and LTM. But in parallel to this work, we will also 
work on expanding the set of heuristics for treating the 
various failures in the learning process that are due to sub-
standard input from the human. We will look for additional 
sources of such heuristics in the robot’s ontology and the 
STM component of its episodic memory. We will also in-
vestigate using other components of the robot’s LTM, such 
as its long-term episodic memory of actual events and re-
sults of its reasoning.  
 At present the language communication is initiated ex-
clusively by the human. This is not realistic. We will intro-
duce mixed-initiative communication, initially by allowing 
the robot to backchannel (e.g., saying “OK, got it”) and to 
ask clarification questions. Special attention will be given 
to heuristics for deciding when (and when not) to ask such 
questions as well as how to formulate the questions so as to 
increase the chances of getting the most appropriate answer 
from the human. 
 The learning process should not stop with learning what 
the human trainer wants the robot to learn. We saw above 
that the robot will have the opportunity to hone its ontolog-
ical and lexical knowledge by reasoning over the meanings 
of human’s utterances, as illustrated by the above example 
of modifying the filler of AGENT of ACQUIRE. In an ad-
vanced cognitive robot, this kind of learning must be al-
ways “on,” irrespective of whether any specific communi-
cation with others is related to learning. 
 In the current implementation algorithm, the entire input 
sequence is interpreted and represented in MRs before the 
learning process starts. In future versions, we will inter-
leave the interpretation and learning processes, making 
them more realistic. 
 The algorithm described in this paper covers conceptual 
learning on the basis of a mixed input sequence of robotic 
actions and language utterances. A similar process can 
improve the execution side of the robot’s functioning. It is 
worth investigating whether broadening the communica-
tion channel between the human and the robot that is used 
in Roncone et al. (2017) for converting the high-level HTN 
into an execution-ready POMDPs will improve that pro-
cess.    
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