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Introduction

Our goal is to enable robots to interpret or ground nat-
ural language instructions from a human in the context
of the operating workspace. We address the problem of
grounding linguistic references within an instruction associ-
ated with semantic objects populating the scene. In realistic
workspaces, the types and locations of objects may only be
partially known to the robot. Hence, the robot may encounter
novel objects types for which pre-trained visual classifiers
may not exist and hence cannot be recognized from an im-
age. Further, ambiguity arises when an instruction may refer
to one of several unknown object types detected in the scene.

Recent progress has been made in probabilistic ap-
proaches that relate language with semantic concepts de-
rived from the environment, such as (Tellex et al. 2011),
(Howard, Tellex, and Roy 2014), (Matuszek, Fox, and
Koscher 2010), (Chai et al. 2016), (Paul et al. 2016), (Mei,
Bansal, and Walter 2016) and (Shridhar and Hsu 2017).
These models rely on an a priori known set of object types
and hence cannot ground references to novel objects in
the scene. Complementary work exists in the computer vi-
sion community, where researches explore zero shot learn-
ing, i.e., the ability to learn a classifier for unseen or novel
objects. Approaches in this category learn a classification
model based on primitive visual attribute such as shape,
texture, patterns etc. Examples include (Ferrari and Zisser-
man 2007), (Farhadi et al. 2009), (Lampert, Nickisch, and
Harmeling 2009), and (Jayaraman and Grauman 2014).

In this work, we consider the scenario of grounding un-
known noun references in scenes populated multiple objects
that the robot cannot recognize. We build on prior work and
present a model that resolves ambiguity amongst unknown
groundings by eliciting visual attribute descriptions from the
human. Linguistic attribute descriptions that convey texture,
material, shape, and appearance is fused with a probabilistic
language grounding framework by introducing probabilistic
factors that predict a set of visual attributes from an image.
The attribute predictor is trained from a crowd sourced dense
image annotation data set. Figure 1 presents an overview of
the approach.
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Human: Move to the crackers.

Robot: I don't know the ‘crackers’ object,
could you describe its appearance? crackers.
Human: It's a red cardboard box.

Figure 1: Overview. An image attribute prediction model is com-
bined with a language grounding model to resolve ambiguity
among multiple grounding candidates for an unknown object ref-
erence by eliciting descriptive attributes from the human.

Technical Approach

We first describe the visual attribute prediction model and
then discuss the language grounding model that enables
the robot to interpret unknown object references using the
learned visual attributes.

Multi-label Attribute Prediction

Given an image of an object extracted from the scene using
object segmentation, we seek a model that estimates how
well each attribute describes the object. The attribute predic-
tor produces probabilities for each of the fixed attributes in
Table 1. We collected training data from the Visual Genome
dense image annotation dataset (Krishna et al. 2016), that
contains human-generated descriptions and bounding boxes
of individual objects within images. We extracted matching
word annotations or synonymous for an attribute as wells as
the tight bounding box labeled with the attribute. Following
Sharif et al. (Sharif Razavian et al. 2014), we use learned
CaffeNet features from the last layer of a CaffeNet network
(Jia et al. 2014) pre-trained for object recognition on the Im-
ageNet dataset. These features are used for training the one-
vs-all logistic regression for multi-label classification.

Color red, blue, green, yellow, orange, purple, brown, black, white
Shape square, rectangular, cylindrical, round, flat, curved
Material | cardboard, metallic, cloth, glass, plastic, wooden

Table 1: Visual attributes learned by the model.

The robot moves to the



Grounding Instructions with Unknown Objects

We build on the Distributed Correspondence Graph (DCG)
model (Howard, Tellex, and Roy 2014) that associates an
input instruction A with semantic concepts or groundings T’
derived from the robot’s world model. Groundings include
objects, spatial regions as well as goals specifying future ac-
tions that the robot can take. The grounding process is me-
diated by a set of binary correspondences ® that express the
degree to which a phrase in the input instruction relates to a
candidate grounding. Hence, the grounding problem can be
posed as determining the most probable correspondences:

®* = argmax P(®|T, A). (1)
>

The world model consists of a set of detected objects with
their location and type as classified by the perception sys-
tem. Following (Tucker et al. 2017), an object is assigned the
unknown type in case the classification likelihood is unin-
formed (characterized using a margin or entropy based mea-
sure). The space of groundings I' is augmented with symbols
associated with unknown object detections I';, in addition to
grounding variables associated with known object types I'.
Assuming grounding variables to be independent given the
input instruction, the joint likelihood can be expressed as:

frnown funknown

®* = argmax P(®|A,T'y) P(®,|A,T,). 2)
?

Figure 2a illustrates the graphical model. The equation fac-
torizes further over phrases according to the parse structure
of the input instruction. Each factor is realized as a log-linear
model and trained using a language corpus aligned with sim-
ulated scenes. The model infers unknown groundings when
confronted with unknown phrase references and uses the lin-
guistic reference paired with observations to learn a ground-
ing model for the new object for future inferences. How-
ever, the model cannot resolve ambiguity in case there are
multiple unknown objects in the scene. We incorporate at-
tribute elicitation in the model by generating language query
Aq conditioned on the set of unknown grounding variables
expressed as the factor fquery. The language query requests
for additional visual attributes describing the intended ob-
ject incase there are multiple expressed unknown ground-
ings I',,, see Figure 2b. Phrases in the response labeled as
adjective (though part-of-speech tagging) constitute the ob-
served language variable )\, and is introduced in the model
in the factor f,4; shared with unknown grounding variables,
Figure 2c. This factor models the likelihood of the visual at-
tributes given the visual detection and is realized using the
multi-label attribute prediction model discussed previously.

The inclusion of the attribute prediction factor results in
an augmented model where the probable set of correspon-
dences are estimated as:

frnown funknown fatt

®* = argmaxg P(Pr|A;, Tk) P(®ulAi, Tw) P(PylXa, Tw). (3)

The additional descriptive attributes elicited by the human
enable the model to resolve ambiguity among multiple un-
known grounding candidates.

(a) (b) ©
Figure 2: Graphical models instantiated during the three inference
steps. (a) Grounding the initial instruction. An unknown grounding
is inferred for an unknown object reference in the input instruction.
(b) The factor fyuery determines whether to query. (c) If query was
asked, response adjectives A\, added an incorporated as a factor as-
sociated with unknown groundings. Groundings with false corre-
spondences (greyed out) are removed from the model at this stage.

Preliminary Evaluation and Expected Results

Figure 3 presents a preliminary demonstration of the pro-
posed model. using a Turtlebot mobile robot. The scene was
populated with objects from the YCB object dataset (Calli et
al. 2015) and imaged using a Kinect V1 camera. The Edge-
Boxes (Zitnick and Dollar 2014) toolbox was used for object
segmentation. The robot was presented with an instruction
to move towards an object in the scene. All objects are un-
known to the robot. The visual attributes described by the
human enable the robot to determine the correct grounding
as the coffee can among the multiple unknown groundings.
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"Go to the coffee can.”

"It's blue and cylindrical, and it says
‘Master Chef." It has a white lid."”

Figure 3: Preliminary demonstration. The correct grounding (cof-
fee can) is determined by incorporating the likelihood of visual at-
tributes elicited from the human.

Figure 4 presents the quantitative evaluation of the at-
tribute prediction model. Attributes such as color and tex-
ture showed higher prediction accuracy. However, attributes
such as flat or cloth-like showed lower accuracies.
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Figure 4: Area under ROC curve for attribute prediction model on
the withheld Visual Genome data set (80:20 test train split).

Our plan for future evaluation includes evaluation on
a larger data set, augmenting attribute prediction model
trained on Visual Genome data with imagery from realis-
tic robot workspaces and incorporating additional attributes
such as text and spatial context in the scene.
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