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Abstract

The U.S. National Institute of Standards and Technology
(NIST) is developing new metrology toward the evaluation
and assurance of collaborative robot performance in next-
generation manufacturing. A significant research thrust along
these lines involves the advancement of machine learning
(ML) and artificial intelligence (AI) to enable the intuitive
use and integration of collaborative robots in human-robot
and robot-robot teams. This paper discusses a manufacturing-
centric perspective of the evolution of human-robot interac-
tion, tools of interest for advancement, and outlines some of
NIST’s relevant efforts toward imbuing robotic systems with
ML and AI to improve operational performance, communi-
cation of task-relevant information, situation awareness, and
ease of integration.

Introduction
With the rapid advancement of machine learning (ML)
and automation technologies, small- and medium-size en-
terprises (SMEs) are realizing they must adopt “smart” au-
tomation technologies to remain competitive. Collaborative
robots have revolutionized the robotics market, and are ef-
fectively lowering the barrier to entry in bringing automa-
tion to otherwise manual processes. Advertised as being safe
to work with and around the human workforce, most col-
laborative robots are simply scaled-down versions of their
traditional robotic predecessors. As such, they may still be
difficult to integrate and use, re-task, and program to handle
operations in increasingly flexible work environments.

To be truly impactful, next generation collaborative robots
must not only be safe, but also intuitive to use, and respon-
sive to uncertainty in the workcell, processes, and personnel
with which they operate. In other words, they must be more
intelligent. This, to some, may be seen as being both positive
and negative. On one hand, increasingly intelligent systems
are capable of adapting to uncertainty, or even possibly an-
ticipating and preemptively steering away from it. Yet others
may view this intelligence as a threat, and the technology as
an usurper of the workforce.

This adaptability is not limitless, and at some point as-
sistance from a human operator will be requested. Due to a
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shift in industrial ethos toward increasingly lean and adap-
tive technologies, greater emphases are placed on efficiency
and effectiveness. The workforce is also evolving, and is in-
creasingly technologically savvy, but also less patient (e.g.,
(Gursoy, Maier, and Chi 2008)). As reliance on artificial in-
telligence (AI) and ML increases, the probability that the
experience-based, highly-tuned skills necessary to recog-
nize, assess, and correct issues will become a scarce com-
modity within the factory also increases. At some point, a
tipping point may be reached where even more advance-
ments in AI will be required to compensate and replace the
expertise of the workers long since disappeared. AI and col-
laborative robotics must be directed such that advancements
of both are structured to enable and support the skills and ca-
pabilities of the workforce, and not to be an ad hoc crutch to
promote productivity growth. The U.S. National Institute of
Standards and Technology (NIST) is developing test meth-
ods and metrics to assess and assure the performance of col-
laborative robotic systems as part of human-robot teams in
smart manufacturing environments. In this paper, we outline
potential areas to which the application of AI to collabo-
rative robotics would promote both workforce and industry
growth. Areas of research include natural human-robot inter-
action (HRI), adaptation to uncertainty in the work environ-
ment, sensor fusion for manufacturing situation awareness,
and intuitive integration of robot systems in smart manufac-
turing workcells.

Natural HRI
While sometimes considered a stop-gap solution bridging
purely manual processes with full automation, collabora-
tive operations are intended to leverage the strengths of both
robots and human operators to compensate for the limita-
tions of one another. The strength, precision, and repeatabil-
ity of robots are complemented with the adaptability, intu-
ition, and awareness of their human coworkers. The human-
machine interfaces (HMI) connecting humans and robots,
however, have been historically limited to hardware-focused
task functionality and programming flexibility. The opera-
tor’s abilities to command, program, and diagnose the sys-
tems have largely been secondary.

For the purposes of this paper we define “natural HRI”
as HRI enabled with controls and interfaces appealing to
intuitive mappings and mechanisms known already to hu-



Figure 1: In addition to providing alternative interfaces for
remote teleoperation and offline programming, technologies
such as virtual reality provide feedback mechanisms useful
for teach-by-demonstration interactions.

mans with limited training. This includes but is not limited
to methods of teach by demonstration, natural language con-
trol, and systems tailored to human senses and comprehen-
sion. These tools are designed to enhance interactions be-
tween human robot teams and improve overall system flexi-
bility. However the tools themselves are limited and the sys-
tems they are a part of can be improved with integrating
AI/ML.

Robot Learning by Demonstration (LbD) is a method for
training robots by manually demonstrating the task for the
robot. This can be done by either directly moving the robots
arms or with some other control system (fig.1), rather than
programming motion primitives. LbD uses ML algorithms
to learn specific tasks for the robot to accomplish. The task
flexibility desired by SMEs requires that many tasks are able
to be learned quickly. The resulting programs are not guar-
anteed to be optimal for long-term production efficiency or
quality, but are sufficient for short-term, high-turnover man-
ufacturing processes. ML applications capable of learning
more than one task very well would be able to accommo-
date these needs, but are not yet easily applied.

Natural language processing (NLP) is a mechanism by
which humans can intuitively interact with the environment
around them. A variety of NLP applications are already
present in daily life in mobile and smart-home technologies.
These tools are used as control systems interfacing with our
physical environment with Internet of Things enabled de-
vices, and are growing in popularity. These same NLP tech-
nologies have the potential to improve the cohesiveness of
human robot collaboration across a variety of fields, one
of the less recognizable being manufacturing. Notable and
thorough evaluation of NLP as an interface mechanism may
be necessary to justify the adoption of the technology by
manufacturers. This evaluation and uptake would be has-
tened by the advancement of integrated NLP systems capa-
ble of evaluating physical intent from casually-spoken sen-
tences.

To promote the development and advancement of HRI and
HMI, NIST is developing a framework for evaluating the ef-
fectiveness of human-robot collaborations in manufacturing
environments. Drawing from the established literature, the
framework seeks to address both the objectively quantita-

tive aspects of HRI/HMI, as well as the subjectively qual-
itative assessments of major stakeholders of manufacturing
processes. These metrics, in turn, drive design recommenda-
tions to optimize the utility of collaborative robots in human
teams.

Adaptation to Uncertainty
As manufacturing practices move away from the monolithic
infrastructures of rigid workcells and workflows, and adopt
more agile and lean paradigms where processes, products,
and logistics are constantly fluctuating, the need for intelli-
gent adaptability becomes increasingly paramount. To many
skilled workers, this flexibility is intuitive. Automation tech-
nology, however, is less amenable to change. In human-robot
teams, a certain percentage of this uncertainty originates
from the human operator, to which the robot must adapt on
a constant basis.

Minor position and orientation errors may be corrected
using motion compliance, but large deviations from pre-
planned trajectories will require the robot to parameterize
and adjust its plans dynamically. While process parameters
can be tuned with relative ease using statistical designs of
experiments, re-tuning is disruptive to the workflow, and
many optimized adjustments will be short-lived. Systems
must be able to not only identify when their current parame-
ters are no longer optimal, but also be able to automatically
initiate and complete the optimization process in real time to
maintain pace with their human coworkers.

Different forms of AI and ML may be applied to different
aspects of the optimization process. One potentially effec-
tive application of ML in self-optimization, for example, is
the automatic generation of models to characterize a sys-
tem’s performance. Such models may be used to capture,
and subsequently predict, the manufacturing performance
(e.g., assembly time, incurred forces, or the number of suc-
cessful/quality welds) resulting from different sets of param-
eters. This enables the system to reject parameters that don’t
perform well (Marvel et al. 2009), or may be hazardous to
human coworkers. Similar approaches are being explored by
NIST as metrology tools, where even being able to measure
performance in the face of uncertainty has significant im-
pacts on verification, validation, and system safety.

Intelligent Process Sensing
Any robot system must maintain self awareness to ensure
continued safe operations. System feedback in the form
of collision detection, proprioceptive feedback, and con-
trol responsiveness contribute to the robot’s physical state.
Purpose-driven robot systems also provide additional pro-
cess monitoring and feedback to ensure workcell function-
ality. In HRI, such monitoring will necessarily include the
human factor in which an observer system tracks opera-
tor poses, potential safety violations, the motions of work-
pieces, and state machine transitions such that the robot may
respond to the operator’s actions accordingly.

Training sensor-driven observer systems is long, difficult,
and expensive; more-so in flexible factory environments,
where parts are no longer fixtured or fully controlled. Com-



Figure 2: To simultaneously maintain safety and usability
robots in human-robot teams need to distinguish between
scenarios involving humans. Safety protocols are different
in times where the human is in proximity and intends to
interact (top), from times when the human is in proximity
without intention to interact(bottom).

mon systems like camera-based identification and localiza-
tion require nuanced expertise for adjusting lighting, cam-
era, lens, and presentation settings to maximize the likeli-
hood sensing with consistent quality. Given this difficulty,
commercial vision systems are typically limited to unstruc-
tured two-dimensional (2D) scenes, or, at best, structured 3D
scenes.

“Deep learning” techniques may be leveraged to automat-
ically compensate for the sensing challenges, and to produce
manipulation and control strategies with little knowledge of
the robot’s capabilities or kinematics (Levine et al. 2016).
Given the resources necessary to train these networks, such
approaches are impractical for a majority of manufactur-
ing tasks and environments, and all but impossible for most
SMEs. However, such research demonstrates the potential
for the technology. Paired with even basic image process-
ing algorithms (e.g., edge detection, color segmentation,
etc.), signal processing algorithms (e.g., independent com-
ponent analysis), and statistical estimations of noisy data
(e.g., Kalman filters), it is expected that black-box neural
network implementations could easily provide reasonable
performance for object detection, localization, acquisition,
and inspection.

Process sensing extends to the tracking and sensing of
humans for human-robot teams, and for non-collaborative
tasks in environments where humans are present. Operator
position and intent may be tracked for safety and interac-
tion purposes (fig.2). Here, the identification of “intent” may
be characterized as objects of attention, travel destinations,
and potential actions or tasks within an established manu-
facturing process. NIST is exploring the technologies and

applications to which process sensing contribute to situa-
tional awareness, and enhancing flexibility and process per-
formance within human robot teams.

Intuitively-Integrated Robots
With any sufficiently agile HRI application, some frequency
of reconfiguration and tuning may be expected. Installing,
removing, and re-tasking equipment should be simplified
to reduce the workload on the operator without compro-
mising the confidence in the technology performing in
human-occupied spaces. This burden encompasses not only
the difficulty of calibrating, registering, and reprogramming
robotic systems, but also necessarily includes an element of
safety, as a full risk assessment and reduction process would
be required to ensure no new hazards have been introduced.

Ultimately, humans operators must effectively use and
interact with these robots when working in collaborative
teams. If a robot cannot be easily integrated into the man-
ufacturing process or team, there is less rationale to do so.
Multi-robot teams with differing makes that are unable to
easily integrate, will not be adopted. And robots with lim-
ited safety and HRI capabilities will not be integrated into
human heavy workplaces like SMEs. To enable the adop-
tion of many of these robotic technologies, adaptive inter-
faces, capable of connecting both robot-robot and human-
robot teams, must be prioritized.

One challenge with integrating robots into existing work-
cells is the post hoc registration of the robots with machine
tools, fixtures, and other robots (Marvel et al. 2015). It has
been shown that using even simple, unsupervised ML al-
gorithms for localized registrations can provide striking re-
ductions in registration uncertainty (Van Wyk and Marvel
2017). Registration and calibration are only small parts of
the greater integration problem; integrated equipment must
be able to communicate and coordinate. By default, there
is little support across manufacturers for protocols for inter-
facing robots and systems from different companies. Open
interfaces and standards for industrial applications for com-
mand and feedback such as ROS-I (Robot Operating System
Industrial, (Edwards and Lewis 2012)) and MTConnect (Vi-
jayaraghavan et al. 2008), respectively, may be successfully
leveraged to bridge this gap and facilitate this flexibility.
Such systems, however, may prove challenging for novice
users, particularly when dealing with equipment with little
or no system support. An alternative approach is to provide
robot-agnostic high-level planning interfaces such as NIST’s
XML-based Canonical Robot Command Language (Proctor
et al. 2016).

Perhaps a more preferable take on the issue would lever-
age open technologies in adaptive virtual bridges that pro-
vide more transparent, plug-and-play functionality between
robots, programmable logic controllers, and machine tools.
NIST is currently investigating this potential by using sta-
tistical analysis of robot state messages (e.g., Cartesian pose
of the attached tooling, or joint values) paired with external
observer systems (as discussed in the previous section) in an
interface that attempts to identify, parse, and validate robot
states for process and system situation awareness. While the
information exchange is still effectively unidirectional, such



a system would also facilitate natural plug-and-play func-
tionality through the automatic detection of a priori defined
interfaces. Additionally, NIST is developing metrics for us-
ability evaluation of robotic systems and the ”intuitiveness”
of already integrated systems.

For any new technology to be adopted in manufactur-
ing, a repeatable level of performance assurance must be
given. Adopting new technology is an expensive and risky
venture, and prototype systems may only be given a sin-
gle opportunity to demonstrate their effectiveness. Experi-
mental technologies are rarely even given this chance. Time
spent training and retraining neural networks, exploring sub-
optimal parameters for assembly that result in wasted cycles,
or ML algorithms that result in damaged parts, tooling, or
robotic equipment are all examples of waste that may sig-
nal the premature demise of AI and ML in a given factory.
Once spent, such opportunities for AI may not be granted
again for several years. One possible mechanism to alle-
viate concern regarding the effectiveness (and appropriate-
ness) of applying AI/ML to an application is to provide cer-
tifications attesting to the instantiations’ performances. Cur-
rently, there are relatively few standards regarding the cer-
tification of software. Those standards that have been es-
tablished are focused primarily on the safety of mission-
critical platforms for military (e.g., (MIL-STD-882E 2000))
and medical (e.g., (IEC 62304 2006)) applications. There
are no general-purpose, safety-rated software standards, let
alone specifically for manufacturing. Providing standardized
test methods and metrics for ML/AI would leverage the rig-
orousness of the standardization process, and provide tools
for the assessment and assurance of system performance.
The result would increase confidence in AI/ML technolo-
gies, and may have the added benefit of alleviating concerns
regarding the dangers of AI (e.g., (Helbing et al. 2017)).

To assist with the certification of AI and ML, functional
unit tests (e.g., per (IEC 61508 2010) for safety applications)
that evaluate for fault tolerance would be required. How-
ever, it is not immediately clear what such unit tests would
be. Supervised learning-based systems are relatively easy to
evaluate for performance given known, targeted results in
a validation set. While such evaluations test only for accu-
racy, they would also benefit the response characterization
in complex environments by identifying performance out-
liers. Testing for system reliability, however, is significantly
more challenging. Most automated manufacturing applica-
tions require consistently good performance with ≥ 99.95%
uptime (i.e., less than one minute per day of lost productiv-
ity). An overwhelming majority of AI/ML systems are not
evaluated under continuous, uncertain operating conditions
long enough to even measure their reliability.

More importantly, there is reason for concern of operator
safety in any AI/ML-driven robot platform. AI is nondeter-
ministic, so overriding functions must be in place to ensure
that safety is the highest priority, possibly even so far as to
have the robot shut itself down. Although negatively impact-
ing process performance, such actions would help maintain
a safe operational environment.

Disclaimer
Certain commercial equipment, instruments, or materials are
identified in this paper to foster understanding. Such identi-
fication does not imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does
it imply that the materials or equipment identified are neces-
sarily the best available for the purpose.
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