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Abstract 

We describe an ongoing effort to capture and transfer hu-
man physical movements to inform robotic kinematic mod-
eling and learning. This concept is inspired by human neu-
ro-plasticity and the observed phenomenon of “Homuncular 
Flexibility”, a seemingly innate ability of humans to inhabit 
and adapt to control forms that do not directly map to exist-
ing physical embodiments. We describe its application for 
industrial robots such as thermal spray robotic arms, which 
features a different set of degrees of freedom and other 
physical constraints than a human arm. The goal of the ef-
fort is to digitize human “muscle memory” and expert 
knowledge in order to provide training data for robotic 
learning.  

 Background   

The current practice for programming industrial robots 

such as thermal spray robotic arms to process novel shapes 

involves a human expert creating an initial model of the 

path based on an initial best guess and adjusting the model 

based on the output. This can be extremely time consum-

ing.  The key challenge can be viewed as two separate 

learning processes; the mapping of human motions under 

human physiological constraints to robotic motions under 

robotic constraints, and the identification of rules and strat-

egies that shape expert movements.   One state of the art 

method to overcome this challenge is kinesthetic pro-

gramming by demonstration, where individuals physically 

move the robot, with the exerted forces measured. The 

robot can then imitate the trajectory and force recorded 

during the demonstration.  This method contains several 

limitations: 1) the machine can be large and difficult to 

manipulate physically, 2) the machine may have capabili-

ties that the human physically does not (e.g. extremely 

high speed), thus the machine is limited to the human’s 

demonstration, and 3) the adaptability of the robot is lim-

ited to what was recorded during the demonstration, so it 

may not readily scale or adapt to modifications or perturba-

tions in the environment. 

                                                 
Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

 

Expert humans can manually use thermal spray equipment 

to repair a part with ease, even for completely different 

shapes or parts, and within different environments. Their 

strategies may be considered tacit knowledge, much like 

the skill of catching a fastball or sinking a golf putt.  Often, 

the human expert may not be consciously aware and there-

fore may not be able to articulate his/her own strategies. 

The exact cues that lead to the human experts’ behaviors 

may not be consciously known. Therefore it often cannot 

be articulated or modelled.   Because this type of human 

intelligence cannot be formally characterized easily, it has 

been passed on in the same way for millennia, a combina-

tion of trial and error and using the master-apprentice 

model.  To enable machines to become an apprentice, we 

must address the limitation of digitizing tacit human 

knowledge.   Due to its unwieldy nature, this type of intel-

ligence is often dismissed by machine learning methods 

because of its need for computationally tractable models. 

By imposing the physical constraints of the robot onto the 

human, we utilize the human’s neuro-plasticity to create 

path planning data that is compatible with the robot’s de-

grees of freedom, thereby making it feasible to directly use 

machine learning to identify features of expert strategies. 

 

This neuro-plasticity is closely related to the phenomenon 

of homuncular flexibility that was first observed by Jaron 

Lanier (Lanier) and Tom Furness, pioneers in Virtual Real-

ity (VR) during the wave of wide spread enthusiasm in the 

medium in the 1980’s and 1990’s. Through a simple soft-

ware error, an avatar was created with an accidentally huge 

arm, but Lanier and Furness observed that human users 

were able to control it intuitively and with accuracy. They 

did not conduct scientific studies regarding further use of 

these "weird avatars", and further research subsided as 

public interest and funding in VR waned in the late 1990's 

and 2000s. Basic research in homuncular flexibility has 

been conducted by Steptoe et al (2013) at the University of 

Barcelona and Won et al., (2014, 2015) at Stanford, 

demonstrating the ability of novice operators to control 

non-human limbs such as a third arm.  This phenomenon 



 

 

has not been mentioned for manufacturing until very re-

cently, when Lipton et al. (2017) described it in a paper 

describing teleoperations for a manufacturing robot. Lipton 

et al. used the concept to inspire improvements in the map-

ping of robotic constraints in teleoperations.  

Method 

We are investigating the digitization of expert human mo-

tion data for integration with machine learning to increase 

the adaptability of robots within the same class of tasks, 

such as spraying differently shaped coupons using thermal 

spray.  The goal is to resolve a key supervised learning 

bottleneck; the need for large amounts of labeled and trust 

worthy training data.  Other efforts have evaluated the fea-

sibility of teaching robots to play a musical instrument, 

such as bow control for a violin (Percival et al., 2011). This 

is essentially the problem of controlling a non-linear dy-

namical system, with some physical models consisting of 

non-deterministic elements. Percival et al use humans to 

label the results of violin playing as training data, akin to 

using the human as an evaluator. The current project goes 

beyond the state of the art by capturing human motion for 

use directly as training data, akin to a master/apprentice 

model with the human as a master and a thermal spray ro-

bot as the apprentice. 
 

Because human physiology have a different set of con-

straints as the degrees of freedom of a robotic arm, human 

movement cannot be used directly to control and train the 

robot. Instead, human movement needs to be mapped to 

movements that the robot is capable of performing. In oth-

er words, the physical constraints of the robot must be in-

corporated into training data. To side step the need for 

formally modelling robotic constraints, we are using the 

phenomenon of homuncular flexibility, the innate human 

physiological ability to adapt and control non-human em-

bodiments.   

 

We have obtained and customized a Universal Robot De-

scription Format (URDF) model of a robotic arm platform 

that describes its mass, dimensions, and degrees of free-

dom, and successfully loaded the model into a physics 

simulator that provides support for the HTC Vive VR 

headset.  We have further customized a virtual environ-

ment that allows a human to control the robotic arm using 

the VR hand controllers. This represents the first building 

block for the envisioned pipeline.  

Future Work 

 

While the human has an innate sense of proprioception, i.e. 

the relative position of one’s body parts, center of gravity, 

movement and inertia, current cues for the evaluate of the 

virtual robot is limited to visual display of the position of 

the robotic parts and their physical constraints. This is 

quite limiting since the human operator tends to focus on 

the task at hand rather than actively managing propriocep-

tion. In a notional pick-and-place task where the operator is 

tasked with picking up an object and placing it within a 

target, the human tends to keep their eyes on the target of 

interest, rather than location of their hand.  Due to the cur-

rent restriction to visual feedback, anecdotally, operators 

easily lose track of when their physical movements are 

uncoupled with the virtual movements of the robot due to a 

violation of a physical constraint.  Further, there are cur-

rently no cues or feedback mechanism for the human oper-

ator on the center of gravity or forces and inertia related to 

movement. Thus, we are investigating the use of additional 

visual, audio, and haptic feedback to alert cou-

pling/decoupling of human and robot physical movements 

as well as other physical dimensions of interest. 

 

Lastly, we are in the process of implementing data collec-

tion mechanisms, evaluating a combination of motion cap-

ture, VR equipment location, and user behaviors such as 

button presses.  The collected data can then be used as 

training data to feed a deep learning neuro network so that 

a robot can rapidly plan a path for spraying a novel shape, 

mimicking human experts.  

Discussion 

VR based robot interfaces have existed since early 1980’s.  

NASA-Ames and JPL used VR for telerobotics of remotely 

deployed robots (Stark 1987). Takahashi et al (1992) pro-

posed a VR interface for the human operator to record ro-

botic assembly tasks using the VPL Dataglove so that the 

robot can later replicate the operator’s movements. Miner 

et al. (1994) added to this discipline by adding task level 

representations and voice commands using the software 

platform CimStation running on SGI workstations. The 

idea of utilizing a human within VR or Augmented Reality 

(AR) to control a robot is not new. However, it has only 

been applied to teleoperations and script-based program-

ming. It has not been applied for generating training data 

for machine learning to incorporate generalizable path 

planning strategies.  

 

We believe it is technically feasible because many compo-

nents necessary for this effort have been successfully de-

veloped in isolation. Recent developments in commercial 

off the shelf (COTS) VR hardware and software ecosys-

tem, Robot simulator platforms, physics engines, machine 



 

 

learning tools, and readily available robot descriptions 

within standardized formats are all enabling technologies 

that provide the ripe landscape to implement the described 

concepts. 
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