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Abstract

For robots to interact with natural language and handle real-
world situations, some ability to perform analogical and as-
sociational reasoning is desirable. Consider commands like
“Fetch the ball” vs. “Fetch the wagon”, the robot needs
to know that carrying a ball is (in the appropriate sense)
analogous to dragging a wagon. Without the ability to per-
form analogical reasoning, robots are incapable of gener-
alizing in the ways that true natural language understand-
ing requires. Inspired by implicit Verlet integration methods
for mass spring systems in physics simulations, we present
a novel knowledge-based embedding method in this paper,
where distributional word representations and semantic re-
lations derived from knowledge bases are incorporated. We
use some SAT-style analogy questions to demonstrate poten-
tial feasibility of our approach on the analogical reasoning
framework.

Introduction

Attempts at analogical reasoning using knowledge bases
have only been successful in very limited, carefully arranged
scenarios. Semantic vector representations, in contrast, have
shown a surprisingly sophisticated level of analogy forma-
tion. In a semantic vector space, concepts that are related to
each other in meaning have vectors that are nearby (in an
appropriate distance metric, such as cosine similarity). This
property directly gives rise to their ability to form analogies.
Consider the analogy sculptor:chisel::painter:paintbrush,
sculptor is related to other types of artist, and it is also
related to terms having to do with stone. The fact that it
must be near both these terms forces the word to be found
somewhere near the midpoint of a line connecting the vec-
tors for artist and stone: sculptor = (artist + stone)/2. In
the cosine similarity metric, division by a constant can be
neglected, so we can just write sculptor ~ artist + stone.
Performing a similar decomposition on the other terms and
neglecting some noise-like variation, we get the new anal-
ogy artist+stone : tool+stone :: artist+paint : tool+paint.
This new representation makes it easy to see that adding the
middle two terms and subtracting the first term: [fool+stone]
+ [artist+paint] - [artist+stone ] must equal the fourth term
[tool+paint]. Note that this isn’t the only decomposition we
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could have performed. A different analogy involving sculp-
tor might depend on the ability to decompose sculptor into
stonecarving+worker, or some other decomposition. Addi-
tionally, these analogical relations should hold from any vec-
tor representation where semantically similar entities have
similar vectors. This means that we could potentially use
vectors derived from weights in deep learning networks
trained on vision, depth, or other modalities, as well as lan-
guage.

Relational knowledge is commonly stored in knowledge
bases such as ConceptNet as triples of the form head, rela-
tion, tail. Knowledge extraction tools are also capable of ex-
tracting such triples directly from natural language sources.
The semantic arithmetic above can be restated as a geomet-
ric constraint: the vector connecting two terms that share a
particular relation should be approximately equal to the vec-
tor connecting two other terms that share the same relation.
This suggests a way of incorporating knowledge base triples
into a semantic vector space— match the knowledge base en-
tities to their corresponding vector representations, and en-
sure that the relation vector connecting the head entity to the
tail is similar for all examples of the relation. The method
we explore in this paper begins with a set of distributional
semantic vectors and attempts to modify these vectors such
that the constraint holds.

Related Work

Vector space models have a long, rich history in the field
of natural language processing, where each word is repre-
sented as a real-valued vector in a continuous vector space
and the relationships between words can be encoded by vec-
tor operations. There are mainly three families for learn-
ing word vectors: (1) global matrix factorization methods,
such as latent semantic analysis, which generates embed-
dings from term-document matrices by singular value de-
composition (Deerwester et al., 1990). (2) neural network
models, such as the skip-gram and continuous bag of words
models of (Mikolov et al., 2013a, 2013b), referred to as
word2vec, which learn embeddings by training a network
to predict neighboring words. Mikolov et al.(2013¢) demon-
strate that the embeddings created by a recursive neural
network encode not only attributional similarities between
words, but also similarities between pairs of words. (3)
knowledge graph embeddings: there are three main types of



models for knowledge graph embeddings. TransE (Bordes et
al., 2013) and its various improvements (Wang et al., 2014;
Linetal., 2014; Jietal., 2015; Jia et al., 2016; Nguyen et al.,
2016) learn vector embeddings of the entities and the rela-
tionships directly based on semantic relations in knowledge
bases. Other methods (Fried and Duh., 2014) use relational
knowledge as additional objectives when creating the dis-
tributional semantic vectors in the first place. A third set of
models (Faruqui et al., 2014; Mrksi¢ et al., 2016, and Speer
et al, 2017) begins with a set of distributional semantic vec-
tors and attempts to modify these vectors such that the rela-
tions in knowledge bases holds. The method we explore in
this paper falls into the third camp.

Algorithm

Modifying the vectors should be done in such a way that ex-
isting relationships between vectors are preserved as much
as possible, to take full advantage of the information already
implicitly contained in the geometry. Our approach is in-
spired by implicit Verlet integration methods for mass spring
systems in physics simulations (Baraff and Witkin, 1998).
We treat the vector space as if it were a warped soft body,
allowing it to gradually evolve towards a solution where the
difference between our objective and the vectors in the space
is minimized, while maintaining as much local structure as
possible. The iterative relaxation is intended to allow multi-
ple constraints on particular entities to balance out to a low-
est energy solution.

Algor ithm 1 Generating Knowledge-based Word Embeddings.

. Input: normalized word vectors based on the word2vec model.

. Ouput: knowledge-based word embeddings.

. // The point is to gradually move the vectors closer to having the same displacement vector for

each example of a relation.

. Procedure:

for n = 1o 100 do

/I For each pair, let b and ¢ be the head and tail vectors of a related pair, and d be the average

of all vectors sharing the same relation as b has with c.

f=1/(n+1);

find the midpoint m of the vector connecting b and c;

create a new point b’ =b*(1-f) + (m-d/2)*(f) and a new point ¢’ =c*(1-f)+(m+d/2)*(f)
assignb’ toband ¢’ to c.
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11: // Recalculate all of the averaged relation vectors (d)
12: end for

Analysis

Figure 1 shows the difference between word2vec-based
vectors (W2V) and our knowledge-based vectors (KB)
of 1000000 words. The z-axis of the figure denotes
”word count” from word2vec model and the y-axis de-
notes “L2-norm of the vector difference between normal-
ized W2V and KB”. The bi-dimensional histogram of data
gives an in-depth description of word distribution. We set
bins=[100,100] and the returned histogram describes the
word density. In our experiment, we compute the natural
logarithm of the number of words (i.e., log(Density)). From
this figure, we can see that in our collection the ranges
[2000000, 3000000] * [0, 1e-6] and [2000000, 3000000] *
[0.4, 0.7] have high word density.

We give two SAT questions in Table 1 and Table 2 to
demonstrate how our knowledge-based embeddings work.

For target words “petrified” and “doting” in the SAT ques-
tions, their L2-norms of vector difference between W2V and
KB are relatively large (0.445 and 0.548 respectively). For
each target pair, it has five option pairs. The pair with **
is annotated as correct answer. We compute the directional
similarity measure of each option’s relationship to the tar-
get’s relationship and select the option with the highest score
as a guess answer. For these two examples, our model can
recognize the correct answer while word2vec-based model
fails in its prediction.
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Figure 1 The difference between W2V and KB vectors

apprehensive:petrified | W2V Similarity | KB Similarity
happy:hostile -0.0138 0.002
elated:deaden 0.181 0.136
sincere:satisfied -0.063 -0.085
emotional:accord -0.008 -0.039
**cheerful:hilarious** 0.171 0.168

Table 1: w2v-based Similarity and KB-based Similarity on SAT question apprehen-
sive:petrified

fond:doting W2V Similarity | KB Similarity
polite:servile 0.059 0.059
whisper:scream -0.005 0.009
**grasping:needy** 0.032 0.066
abstinent:indulgent 0.078 0.057
no:choice 0.019 0.037

Table 2: w2v-based Similarity and KB-based Similarity on SAT question fond:doting

Conclusion and Future Work

In this work, we explore a novel knowledge-based embed-
ding method based on Verlet integration methods for mass
spring systems in physics simulation. Different from pre-
vious methods in the details of how the retrofitting is per-
formed, we are working with over a thousand relations de-
rived from ResearchCyc, ConceptNet, and WordNet com-
bined. We plan to continue improving our algorithm and
evaluating its performance on large datasets. Our eventual
goal is to incorporate the semantically embedded knowledge
base in analogical and associational reasoning of a robotic
system.
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