
Optimization, Programming Assignment #1

April 10, 2010

Description

In this assignment, you will experiment with gradient descent, conjugate gradient, BFGS and Newton's method.
The included archive contains partial matlab code, which you must complete. Areas that you will �ll in are marked
with �TODO� comments.

You should turn in an archive containing all of your source code, and a document containing all plots, and answers
to underlined questions.

Please remember to turn in a complete and readable document which contains your plots, and in which you answer
the questions (in particular, talk about what your plots mean)! Your grade will be based far more on this document
than on your source code.

This problem set draws heavily from the following text, although everything you need should also be present in
your class notes:

• Jorge Nocedal and Stephen Wright. �Numerical Optimization�. Springer, 1999.

1 Algorithms

The BFGS algorithm (algorithm 8.1 of Nocedal and Wright), and an �exact� line search (using the bisection method)
are implemented in �algorithm_bfgs.m� and �line_search_bisection.m�, respectively. You should understand the
contents of these �les (refer to your class notes on BFGS).

1.1 Backtracking line search

Complete the implementation of the backtracking line search in �line_search_backtracking.m�. This is algorithm
9.2 of Boyd and Vandenberghe.

1.2 Gradient descent and Newton's method

Complete the implementations of gradient descent and Newton's method in �algorithm_gd.m� and �algorithm_newton.m�.
Gradient descent is algorithm 9.3 of Boyd and Vandenberghe, and Newton's method is algorithm 9.5. Your imple-
mentation of gradient descent should terminate once ‖∇f (x)‖22 ≤ ε, and your implementation of Newton's method

should terminate once the squared Newton decrement λ2 (x) = (∇f (x))T (∇2f (x)
)−1 (∇f (x)) satis�es λ2 (x) ≤ ε.

1.3 Conjugate gradient

There are several di�erent ways in which the linear conjugate gradient algorithm can be modi�ed to work on a
non-quadratic function, all of which are equivalent for a quadratic objective. Algorithm 1 contains pseudocode for
the Fletcher-Reeves method. In your written assignment, you encountered the Polak-Ribière method, which di�ers

from Fletcher-Reeves in the calculation of β, where β
(k+1)
PR = (∇f(x(k+1)))T (∇f(x(k+1))−∇f(x(k)))

(∇f(x(k)))T∇f(x(k))
.

Pay special attention to lines 8 and 9. These lines �restart� the conjugate gradient algorithm every m steps (where
m is the dimension of the problem), since by setting βFR = 0, the search direction ∆x will be set to the negative

1



Algorithm 1 Pseudocode for the Fletcher-Reeves conjugate gradient method (algorithm 5.4 of Nocedal and Wright)

ConjugateGradient
(
x(0), ε

)
m← dim

(
x(0)

)
∆x(0) ← −∇f

(
x(0)

)
k ← 0
Loop

t(k) ← line_search
(
f, x(k),∆x(k)

)
x(k+1) ← x(k) + t(k)∆x(k)

If
∥∥∇f (x(k+1)

)∥∥
2
≤ ε then terminate

If k + 1 ≡ 0 mod m then

β
(k+1)
FR ← 0

Else

β
(k+1)
FR ← (∇f(x(k+1)))T∇f(x(k+1))

(∇f(x(k)))T∇f(x(k))

∆x(k+1) ← −∇f
(
x(k+1)

)
+ β

(k+1)
FR ∆x(k)

k ← k + 1

gradient on line 12, e�ectively causing the algorithm to start over from the current location. Nocedal and Wright
motiviate restarting with the following intuition: because the conjugate gradient method converges in m iterations
for a quadratic objective, if we assume that there is some neighborhood of the optimum in which the objective is
very close to being quadratic, then provided that we �start over� at some point once we've entered this region, we
will converge to the optimum m iterations later.

It is also worth noting that it is not obvious that ∆x will always be a descent direction. In fact, while it is possible
to guarantee this property by placing certain conditions (called the �strong Wolfe conditions�) on the line search,
backtracking line search does not satisfy them (algorithm 3.2 of Nocedal and Wright is an example of a line search
which does). In practice, at least on this homework, this is not an issue, but it's something to keep in mind.

Complete the implementation of the Fletcher-Reeves conjugate gradient method by �lling in �algorithm_cg.m�.

1.4 Quadratic objective

The matlab script �main_quadratic.m� creates a contour plot for the following objective (contained in �objec-
tive_quadratic.m�):

f (x) =
1
2
xTQx+ vTx

for:

Q =
[

1 0
0 30

]
v =

[
0
0

]
and overlays this contour plot with the iterates of each of our four algorithms, using exact line search, starting from:

x0 =
[

4
0.3

]
How many iterations does each algorithm take to converge?

Why do conjugate gradient, BFGS and Newton take this number of iterations?

What is the relationship between consecutive directions in gradient descent, conjugate gradient and BFGS?

Play around with di�erent values of Q and v, and explore the impact of various choices on the performance of
gradient descent. Describe your results.

2



1.5 Sum-exp objective

The matlab script �main_sum_exp.m� creates a contour plot for the following objective (contained in �objec-
tive_sum_exp.m�):

f (x) =
∑

i

exp
(
aT

i x+ bi
)

for ai and bi chosen as in equation 9.20 (pg 470) of Boyd and Vandenberghe. It then overlays this contour
plot with the iterates of each of our four algorithms, using backtracking line search with α = 0.4 and β = 0.9.
Describe the performance of the four algorithms (it may be helpful to zoom in on the region of the plot containing
the optimum).

2 Logistic regression

Suppose that we have a list of feature vectors xi ∈ Rn and corresponding class labels yi ∈ {−1, 1}. We will assume
that the log-odds of a sample being in each of the two classes are a linear function of X. That is, that:

log
P (Y = 1 | X)
P (Y = −1 | X)

= wTX (1)

This assumption, combined with the fact that probabilities must sum to one, gives that:

P (Y | X) =
eY wT X

1 + eY wT X

We will �nd a weight vector w which maximizes the log-likelihood of the data under the assumption that the labels
are conditionally independent given the features:

L (w | x, y) = log
n∏

i=1

P (Y = yi | X = xi)

=
n∑

i=1

(
yiw

Txi − log
(

1 + eyiw
T xi

))
(2)

You may wish to derive equation 2 from equation 1, but this is optional.

For more on logistic regression, refer to:

• Trevor Hastie, Robert Tibshirani and Jerome Friedman. �The Elements of Statistical Learning�. Springer,
2001.

2.1 Convexity, gradient and Hessian

Maximizing the log-likelihood in the logistic regression model is clearly equivalent to the following:

minimize :
n∑

i=1

(
−yiw

Txi + ln
(

1 + eyiw
T xi

))
Prove that this function is convex (hint: start out by proving that ln (1 + ez) is convex as a function of z, and then
use the results from section 3.2 of Boyd and Vandenberghe).

Calculate the gradient and Hessian (with respect to w) of this objective function.

Fill in �objective_logistic.m� with this objective function, and the gradient and Hessian which you just calculated.

3



2.2 Experiments

You are provided with two synthetic datasets for logistic regression: �logistic_small.csv�, which contains one thou-
sand 10-dimensional examples, and �logistic_large.csv�, which contains one thousand 50-dimensional examples. The
matlab script �main_logistic.m� loads one of these �les, and plots the log-suboptimality versus the elapsed runtime
for each of the four algorithms, using backtracking line search with α = 0.4 and β = 0.9. Plot the performance of
the algorithms for both datasets.

Which algorithms perform better on the low-dimensional dataset than on the high?

Can you explain this behavior?

Modify the script to plot the iteration number, rather than elapsed time, on the horizontal axis. Plot the performance
of the algorithms for both datasets.

What happens to the apparent relative performance of the algorithms?

Recall the de�nitions of linear and quadratic convergence. Imagine that we plot log-suboptimality against iteration
number for an �ideal� algorithm which exhibits linear convergence.

What should be the shape of the plot?

What about for quadratic convergence?

What does this tell you about the empirical rates of convergence of the four algorithms, on �logistic_large.csv�?

3 Play around (optional)

Experiment on these objectives (or any others you are interested in) with: di�erent settings of the line search
parameters, di�erent line search algorithms (algorithm 3.2 of Nocedal and Wright would be a good choice),
or di�erent variants of the nonlinear conjugate gradient algorithm (Polak-Ribière, for example). Try repeat-
ing problems 1.4 and 1.5 with di�erent choices of parameters (Q, v, ai and bi) for the objective functions.
Report your results and conclusions.

4


	Algorithms
	Backtracking line search
	Gradient descent and Newton's method
	Conjugate gradient
	Quadratic objective
	Sum-exp objective

	Logistic regression
	Convexity, gradient and Hessian
	Experiments

	Play around (optional)

