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Abstract— Today, there are many examples of humans and
robots regularly interacting in a variety of domains, such as
manufacturing, coordinated assembly, and rehabilitation. A
resulting demand for more generally accessible communication
interfaces has motivated several recent independent research
efforts focused on providing robotic systems with a robust
natural language interface. Natural language interfaces enable
intuitive interaction for untrained and non-expert users. How-
ever, achieving real-time performance is particularly challeng-
ing, yet essential, to enable flexible, efficient communication.
The length of the language input directly impacts the run-time
performance and quickly becomes a practical issue when the
input is a sequence of multiple sentences, or a monologue. In
this work, we propose a variant of a contemporary probabilistic
graphical model for language understanding that introduces
novel segmentation of the input into a sequence of sentences to
be labeled in order. We introduce the notion of a continuously
updated prior context that retains the meaning of previous
sentences as the inference process proceeds. This prior context
serves as evidence during future sentence evaluations. We
evaluate our model on two natural language corpora, and
demonstrate its utility on a Clearpath Husky A200 mobile
manipulator and a simulated Rethink Robotics Baxter Robot.

I. INTRODUCTION

Interaction between humans and robots has become an
integrated aspect of many daily tasks in manufacturing,
assistive rehabilitation, and agriculture, among others. Tra-
ditionally, this human-robot interaction has mostly occurred
through a joystick or complex graphical interface. Often,
learning how to safely and effectively use these systems
requires training and experience, which is both costly and
difficult to scale. As humans and robots continue to interact
more frequently, it is important to develop interfaces that are
efficient and intuitive.

Natural language interfaces for human-robot interaction
are a more generally accessible way for people to commu-
nicate with and work alongside robots. In addition to being
intuitive, natural language also provides a rich and highly
flexible means of communication, allowing for both low-
level (e.g. joint-level control) and high-level (e.g. implicit
task sequence) instructions.

Natural language understanding for robot instructions can
be formulated as a problem of associating a free-form utter-
ance with a set of semantic symbols, an instance of the “sym-
bol grounding” [7] problem. Early approaches to symbol
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Fig. 1. An illustration of the Rethink Robotics Baxter Research Robot in
an environment where it might receive the monologue command “Pick up
the blue cube. Drop it in the right box. Pick up the red cube. Drop it in the
left box.”

grounding for human-robot language understanding typically
treated language as a flat structure with deterministic se-
mantic associations. While effective for simple instructions,
this representation is difficult to generalize and does not
capture the meaning of more complex language structures,
such as nested clauses (e.g., “Pick up the blue block near the
bin on the right side of the table”). More recently, notable
progress has been made by posing the problem as inference
on a graphical model, demonstrating successful grounding
of instructions for robotic platforms such as autonomous
forklifts, UAVs, and autonomous wheelchairs [8, 12, 24].

A limitation of current approaches is the run-time cost of
inference, an important performance metric for realizing fluid
communication. Multiple factors can impact how quickly
models will interpret an instruction. Recent work has focused
on reducing the size of the search space. For example, the
Hierarchical Distributed Correspondence Graph (HDCG) [9]
learns a set of rules from language to exclude highly unlikely
symbols from the search space. An instruction such as “pick
up the block” would inform a set of rules excluding all
object symbols that are not associated with the word ‘block’.
Another example, the Adaptive Distributed Correspondence
Graph model (ADCG) [20] efficiently learns about groups of
environment constituents (e.g. “the row of blocks”) and their
associated properties (e.g. “the middle block of the row of
blocks”) by dynamically instantiating the space of groups as
conditioned on the expression of environment constituents.

Much less effort has focused on addressing the challenges
of interpreting long (e.g. multi-sentence) instructions, where
the length significantly contributes to the computational cost
of inference. Models like the Distributed Correspondence
Graph (DCG) [11] factorize the input across phrases (see



Figure II-B), representing each phrase as a set of factors in
the graph. Consequently, the number of factor evaluations in
the graph depends directly on the number of phrases. This
becomes particularly relevant when the input is a mono-
logue. The DCG represents monologues as a single parse
tree with an implicit root phrase to connect the individual
sentences. Therefore, the full monologue must be evaluated
before producing a solution. Additionally, some features of
language, such as anaphora, are difficult to label without
context from other phrases in the instruction. While there
exist linguistic approaches for resolving anaphora [15, 19],
our approach maintains the environmental context when
resolving meaning.

In this work, we present the Monologic Distributed Cor-
respondence Graph (MDCG), which segments monologues
into sequences of sentences to more efficiently assign mean-
ing to individual instructions. The model treats sentences
as individual parse trees labeled in order of occurrence.
We maintain the context of previously inferred groundings
from prior sentences for use when evaluating subsequent
factors. In this way, the semantic labels for anaphora and
other context-dependent linguistic features can be resolved
directly. The model also reduces the total number of factor
evaluations by eliminating the implicit phrases that the DCG
would need to represent the monologue as a single parse
tree. Perhaps most importantly, it allows the robot to begin
to execute the command once the first sentence is labeled,
rather than wait for a fully labeled tree. A faster response to
the instruction should help achieve a more fluid interaction.

We evaluate our model using two corpora consisting of
various simulation-based robot behaviors paired with natural
language commands collected using the Amazon Mechan-
ical Turk crowd-source platform. We also demonstrate the
method on a Clearpath Husky A200 mobile manipulator and
a simulated Rethink Robotics Baxter Research Robot.

II. GROUNDING NATURAL LANGUAGE INSTRUCTIONS

A. Problem Description

The problem of interpreting language-based instructions
can be formulated as the task of assigning semantic meaning
to language input according to the context of the robot’s
world representation and the space of possible robot be-
haviors. Probabilistic approaches treat this as an inference
problem for which the goal is to find the most likely robot
behavior (x∗(t)) as conditioned on both the natural language
instruction (Λ) and the robot’s representation of the relevant
physical environment (Υ), shown in Equation 1.

x∗(t) = arg max
x(t)∈x(t)

p(x(t)|Λ,Υ) (1)

With this representation, the environment is typically
composed of relevant information regarding environmental
elements, such as the pose of objects and their associated
semantics (e.g., color and type). The input instruction is
a set of linguistic constituents (Λ = {λ1, λ2, ..., λn}) ob-
tained from a parse of the text, where each constituent is
an individual language phrase. x(t) represents the set of

possible robot behaviors, x(t) = {x1(t), x2(t), ..., xm(t)},
where a behavior is a trajectory. Therefore, x∗(t) is the
optimal robot behavior given the stated conditions. This
problem is challenging for a couple of reasons. First, it is
not obvious how to model any of the individual variables.
For example, the required richness of the environment model
likely depends on nature of the instructions. Second, the
space of each of the variables is potentially massive (e.g.
unstructured language inputs, continuous robot action space,
cluttered environments), leading to high computational costs.

B. Technical Approach

Several modern approaches pose this problem as search
over a factor graph. Tellex et al. [24] proposed Generalized
Grounding Graphs (G3) that represent language understand-
ing with a factor graph and treat the labeling of each lin-
guistic constituent as conditionally independent given labels
of any child phrase. More recently, Howard et al. proposed
the Distributed Correspondence Graph (DCG) [11], which
introduces the assumption that the expressions of grounding
constituents for individual phrases are conditionally inde-
pendent. This allows the model to factorize the distribution
over these groundings constituents. Correspondence variables
(φij) represent the association between the ith phrase (λi)
and the jth grounding constituent of the ith phrase (γij).
The DCG structures inference as search over unknown corre-
spondences for factors with known linguistic and grounding
constituent random variables. Individual phrases must also
consider the set of correspondences produced by any child
phrases (Φci ). Additionally, the model represents the space
of robot actions as robot motion constraints for a planner, as
opposed to sampled state-action space trajectories, in order to
significantly reduce the size of the grounding space. Because
the number of expressible constraints is finite, the space
of groundings is therefore bounded, which makes search
over unknown correspondence variables possible without
sampling. The full DCG is shown in Equation 2.

Φ∗ = argmax
φij∈Φ

|N |∏
i=1

|Γ|∏
j=1

p(φij |γij , λi,Φci ,Υ) (2)

C. Monologues of Robot Instructions

When using language to communicate with robots, it is
desirable to allow people to use multiple uninterrupted sen-
tences, or a monologue. However, we observed that models
like DCG do not produce efficient structures when represent-
ing monologues. Consider the example monologue, “Pick the
blue cube up. Drop it in the right box”. By reasoning jointly
over the two sentences at their root phrases, it is possible to
infer the meaning of this instruction using the constituency
parse structure. But, there are two interesting implications of
this structure that have exploitable characteristics.

First, the second sentence in the monologue contains an
anaphora (i.e., “it”), and interpreting its meaning requires the
previous sentence as context. If the factors for the second
sentence were aware of the grounding context of the first
sentence, the semantic label for the anaphora “it” could
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Fig. 2. An illustration of the Distributed Correspondence Graph model for natural language understanding of the expression “Pick the blue cube up. Drop
it in the right bin.” Note that inference goes from left to right for the first sentence and right to left for the second sentence, before meeting up at the
center to interpret the meaning of the full utterance.

be resolved immediately. It is important to note that there
exist linguistic solutions for resolving anaphora [1, 19], but
our approach allows for direct environmental consideration
during this resolution.

Second, it is not necessary to infer the meaning of both
sentences in order to begin following the command. Instead,
it is possible to interpret and execute the first sentence
while concurrently grounding the meaning of the second
sentence. However, this isn’t possible with the DCG due
to its inherent structure and the need to reason over the
full monologue. More generally, while it is possible to treat
sentences individually with the DCG model, it is not obvious
how to determine that a user has finished expressing the
current instruction. In a case where the model has grounded
a sentence, but the user then provides an appending sentence
to the monologue, the DCG would need to regenerate the full
monologic parse tree and perform inference in its entirety.

These observations are jointly exploitable. By introducing
a mechanism that provides factor evaluations for the second
sentence with contextual awareness of the first sentence, we
can eliminate the implicit root phrase that connects the two
sentences. Additionally, an improved model of the meaning
of the monologue allows incremental grounding. In the fol-
lowing section, we propose the Monologic Distributed Corre-
spondence Graph (MDCG) that introduces novel extensions
to the DCG in order to represent the accumulated context of
the monologue input. In doing so, we eliminate the necessity
of implicit language phrases and therefore introduce the
potential for a more efficient and fluid interaction. We also
introduce a hierarchical version of MDCG, called HMDCG,
as a monologue extension to the HDCG.

D. Monologic Distributed Correspondence Graphs

We begin by describing the modification to the graph
structure that is viable as a consequence of providing ap-
propriate contextual awareness.

The DCG treats monologues similarly to single sentence
instructions in that Λ does not change to reflect the notion
of sentences. In order to represent sentences in our graph
structure, we instead define the language input as a sequence
of sentences, where each sentence is composed of phrases

(Λ = [λ11, , ..., λ1|N1|, λ21, ..., λn|Nn|]). In this new notation,
λij is the jth phrase of the ith sentence, and the root phrase
of the ith sentence can be represented as λi|Ni|, where |Ni|
is the number of phrases in the ith sentence. We update the
notation for the other variables as well. γijk refers to the kth

grounding constituent for the jth phrase of the ith sentence.
Similarly, φijk refers to the mapping between the jth phrase
of the ith sentence and the kth grounding constituent for
the jth phrase of the ith sentence. Finally, Φcij refers to
the set of child correspondences of the jth phrase of the ith

sentence.
At this point, the graphical structure no longer has the

required connections to resolve context-dependent phrases.
It is necessary to provide the factor evaluations for current
and future sentences with the appropriate contextual evidence
from sentences that have already been grounded. We in-
troduce a random variable that represents the contextually
relevant set of correspondences from prior sentences, shown
in equation 3 and 4 where G(·) is the accumulation function.

ΦC
i = G(ΦC

(i−1),Φ(i−1)|Ni−1|) (3)

ΦC
i = G(G(· · ·(G(ΦC

1 ,Φ1|N1|), · · ·),Φ(i−1)|Ni−1|) (4)

Consider the context for each sentence of the monologic
instruction, “Pick up the red block. Nevermind. Pick up the
blue block.” The first sentence has an empty set for the
context variable. The context for the second sentence is the
inferred action from the previous sentence, namely to pick up
the red block. Given this evidence, the inferred groundings
for the second sentence would be to not perform the first
action. If the accumulation of prior context (G(·)) was simpy
treated as a union operation, the context for the final sentence
would therefore be composed of the union of labels that mean
to both pick up the red block and not pick up the red block.
This is not likely to be useful because of the contradictory
nature of the evidence. Instead, it makes more sense to have
empty context for the final sentence; this implies G(·) should
merge the information in a way that is not commutative.

Given these variable definitions, the Monologic Dis-
tributed Correspondence Graph model is describable and can



be seen in Equation 5. Note that |Γij | is the total number of
grounding constituents for the jth phrase of the ith sentence,
and K is the likelihood evaluation for all factors.

K =

|S|∏
i=1

|Ni|∏
j=1

|Γij |∏
k=1

p(φijk|γijk, λij ,Φcij ,Φ
C
i ,Υ) (5a)

Φ∗ = argmax
φijk∈Φ

K (5b)

Each factor in this evaluation is represented by a log-
linear model using binary features; the goal is to eval-
uate the likelihood of a correspondence variable given a
known language input and grounding consitituent, shown
in Equation 6. Feature weights are learned offline during
training by maximizing the likelihood of correspondences
via the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm [26]. The model is trained on an aligned corpus
of parse-trees of user example instructions collected from
Amazon Mechanical Turk [4] and the associated per-phrase
ground truth labels assigned by experts. These corpora are
typically specific to and representative of the desired domain
(e.g. navigation vs. manipulation commands).

H =

|S|∏
i=1

|Ni|∏
j=1

|Γij |∏
k=1

Ψ(φijk, γijk, λij ,Φcij ,Φ
C
i ,Υ) (6a)

Φ∗ = argmax
φijk∈Φ

H (6b)

Ψ(φijk, γijk, λij ,Φcij ,Φ
C
i ,Υ) =

exp(
∑
l µlfl(φijk, γijk, λij ,Φcij ,Φ

C
i ,Υ))∑

q exp(
∑
l µlfl(φijk|γijk, λij ,Φcij ,Φ

C
i ,Υ))

(7)

As mentioned in Section I, Hierarchical Distributed Cor-
respondence Graphs (HDCG) are a variant of DCG that
improves the scalability of search as the complexity of
the environment increases. The HDCG treats the space
of groundings for natural language as a function of the
utterance. This model introduces a set of rules (P ∈ P),
where each rule in P (ρ ∈ P ) allows the admittance of
a certain subset of grounding constituents. In this way, the
space of possible grounding symbols is a function of the rules
(Γ(P )) and is therefore dynamically defined. DCG is initially
evaluated in the space of rules P, resulting in an inferred
distribution of rule correspondences (Φρ) conditioned on the
utterance and the robot’s environment model. The DCG is
then evaluated using the distribution of reduced grounding
spaces (Γ(P )) to infer the most likely set of correspondences
(Φ∗) for the most likely set of groundings (Γ∗). The first
pass of the DCG is represented as a latent random variable in
Equation 2, which can be marginalized as shown in Equation
8.

Φ∗ = argmax
φij∈Φ

∑
Φρ∈Φρ

|N |∏
i=1

|Γi|∏
j=1

p(φij |γ(P )ij , λi,Φci ,Υ)

×p(Φρ|P,Λ,Φρc , Pc,Υ)

(8)

The monologic modifications made to DCG are easily
incorporated in HDCG because it is essentially a two-pass
DCG model. Since the space of rules dictates the possible
expressed groundings, we need to ensure the rules are
conditioned on the context variables. We call this model
Hierarchical Monologic Distributed Correspondence Graphs
(HMDCG).

P = p(φijk|γ(P )ijk, λij ,Φcij ,Φ
C
i ,Υ) (9)

Φ∗ = argmax
φijk∈Φ

∑
Φρ∈Φρ

|S|∏
i=1

|Ni|∏
j=1

|Γij |∏
k=1

P×

p(Φρ|P,Λ,Φρc , Pc,ΦC
i ,Υ)

(10)

III. RESULTS

In this section we describe two applications of the
MDCG/HMDCG for understanding multi-sentence natural
language instructions on a pair of different platforms and
symbolic representations. In both, the most appropriate
evaluation metrics are accuracy (the ability to accurately
reproduce the symbols of an instruction) and runtime (the
time required to run probabilistic inference). All tests were
run on a 2.2GHz Intel Core i7 processor with 16 GB of
DDR3 RAM running Mac OS X 10.11 (x86-64) architecture.

A. Monologue Comprehension of Tactical Behavior Specifi-
cation

The first evaluation considers the problem of instructions
for the intelligence architecture that Barber et al. [2] describe.
The symbolic language for this architecture is called the Tac-
tical Behavior Specification (TBS), which describes actions,
spatial relations, and objects that a robot must reason over
in order to successfully complete a given task. Each TBS is
composed of fields that include actions, modes, goals, goal
constraints, and motion constraints. Spatial relations, such
as “front”, “left”, or “right” describe regions in reference
to some object described by an object type (e.g., “cone”,
“building”, “person”) and object color (e.g., “red”, “white”,
“blue”). In this experiment, we trained a model composed
of 49 annotated natural language instructions that produces
13,332 rule grounding training examples and 1, 523, 172
symbol grounding training examples for factors of HMDCG.
Using a beam search width of 2, both the HDCG and
HMDCG were able to accurately reproduce all 49 examples
with average and maximum inference times of 0.087 seconds
and 0.813 seconds respectively.

1) Model Evaluation: The run-time performance of the
second sentence of six monologue instructions is seen below
in Table I. Run-times are separated for parsing and inference
for each experiment. For comparison, we also ran the parse
and inference times for each sentence and each context
individually of each sentence in the monologue. The results
of these are illustrated in Table II.

The results provide two interesting observations. First, the
run-times associated with several of the simpler instructions
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Fig. 3. The MDCG model.

run-time (sec)
sentence context parse inference

“walk to the white barrel.” “walk to the red cone.” 0.001 0.019
“go near the blue building’.’ “walk to the red cone.”, “walk to the white barrel.” 0.001 0.043
“stay near the white barrel.” “walk to the cone.” 0.001 0.093
“stay near the building.” “walk quickly to the barrel.” 0.001 0.030
“keep behind the white person.” “walk to the door.” 0.001 0.085
“navigate to the car that is near the building.” “keep behind the barrel.” 0.003 0.635

TABLE I
PARSE AND MODEL INFERENCE PERFORMANCE OF THE MONOLOGUE INSTRUCTIONS.

run-time (sec)
sentence parse inference

‘walk to the red cone.” 0.001 0.009
“walk to the white barrel.” 0.001 0.008
“walk to the cone.” 0.001 0.007
“walk quickly to the barrel.” 0.001 0.014
“walk to the door.” 0.001 0.007
“keep behind the barrel.” 0.001 0.012
“go near the blue building.” 0.001 0.011
“stay near the white barrel.” 0.001 0.037
“stay near the building.” 0.001 0.013
“keep behind the white person.” 0.001 0.037
“navigate to the car that is near the building.” 0.002 0.098

TABLE II
PARSE AND MODEL INFERENCE PERFORMANCE OF THE CONTEXT OF

THE MONOLOGUE INSTRUCTIONS.

are approximately equal to the run-times for the two indi-
vidual models without accounting for the additional layer
that would be required to ground the meaning of the two
sequential instructions. Second, the run-time of the last, more
complex instruction is much less for the monologue model,
which means that the interleaving of the two sentences is
much more expensive in this example than the others. To
further investigate this, we also ran the inference times for
each multi-sentence parse tree for each monologue instruc-
tion. The results of these are illustrated in Table III.

In each case, the run-time of the monologue model is less
than that of the single parse tree representation. In addition to
having fewer phrases for evaluation, this is expected for two
other reasons. First, the HDCG filters out symbols top-down,

in that if a symbol might appear at the root of the sentence
from the utterance or the context, it should be permitted for
the entire graphical model. This slows down the search for
both sentences (instead of just the second sentence), since
each now has a larger symbolic representation. Second, we
have already inferred a distribution (or maximum likelihood
value) for the utterances that make up the context, so the
size of the monologue HDCG is inherently smaller.

B. Monologue Comprehension of Linear Temporal Logic
Groundings

Previous work extends the DCG model, the V-DCG model
[3], by expanding the symbolic representation to include
Linear Temporal Logic (LTL) symbols. LTL is a modal
temporal logical formalism that is defined using Boolean
prepositions and operators over an infinite discrete time
series. In robotics, the GR(1) fragment of LTL has been used
to define task specifications [21]. GR(1) LTL specifications
describe the robot interacting in its environment as an
assume-guarantee set of formulae, and can be synthesized
into correct-by-construction controllers that guarantee the
robot’s behavior under the assumptions [13]. Conversely, if
synthesis is unsuccessful, it can reveal problems in the task
specification [23]. The V-DCG model produces groundings
that contain both physical groundings and LTL formulae that
are then synthesized into grounded controllers.

The LTL fomulae grounded from language are inferred
using a symbol hierarchy refined from the original V-DCG
symbol hierarchy. Object symbols are extended with two
new symbols representing individual attributes (i.e. type
and color), allowing for partially-defined sub-phrases to



sentence run-time (sec)
“walk to the white barrel. walk to the red cone.” 0.029
“go near the blue building. walk to the red cone. walk to the white barrel.” 0.098
“stay near the white barrel. walk to the cone.” 0.170
“stay near the building. walk quickly to the barrel.” 0.077
“keep behind the white person. walk to the door.” 0.175
“navigate to the car that is near the building. keep behind the barrel.” 0.805

TABLE III
MODEL INFERENCE PERFORMANCE OF THE CONTEXT OF THE MONOLOGUE INSTRUCTIONS. SINCE OUR PARSER DOES NOT SUPPORT

MULTI-SENTENCE PARSES AT THIS TIME, THE PARSE TREES FOR THIS COMPARISON WERE GIVEN TO THE MODEL.

contribute information that is disambiguated at a higher level
in the tree. We also use Spatial Relation symbols such as
near, left and right, as well as Region symbols associated
with the locative prepositions “in” and “into,” which are
designed to allow better spatial representations of relative
object location. Lastly, the definition of an LTL scope symbol
has been expanded to allow multiple sensor prepositions
within a given scope.

We use two corpora of natural language instructions
collected using crowdsourcing [3] for two different tasks
using a simulated Baxter Research Robot. The first is a
binary sorting task: cubes of two different colors are sorted
into their respective bins (Figure 1). The second is a block
stacking task: cubes of three different colors are rearranged
to produce different stacks of blocks. The combined dataset
consists of 22 monologue instructions composed of 60 sep-
arate sentences where each monologue was collected as a
single response from a user. The combined corpus produces
1,132,710 symbol grounding training examples for MDCG.
Using a beam width of 2, two MDCGs trained separately
on one of the two corpora (sorting or stacking) were able to
accurately and fully infer 19/21 individual stacking sentences
and 28/39 individual sorting sentences; this exactly matches
the accuracy results produced by the baseline V-DCG (no
context). We also trained a single MDCG model for all
22 monologues that fully reproduced 17 of the stacking
task sentences and 25 of the sorting task sentences, again
matching the performance of the baseline V-DCG model.
The results in Tables IV and V show that the run-time of the
monologue-based model can be distributed across multiple
queries.

Since our model interprets a monologue in a sequential
manner, the inferred LTL formulae from prior sentences
are carried over as new sentences are interpreted. Finally,
a single specification is created and synthesized using the
same method as shown by Boteanu et al. [3].

IV. PHYSICAL EXPERIMENT

The HMDCG was demonstrated using a Clearpath
Robotics Husky A200 mobile manipulator (Figure 4). The
groundings from the HMDCG produced goal states that were
processed by the navigation system.

The software architecture used in the system demonstra-
tion included three processes: a speech-to-text process, a
natural language understanding process using the HMDCG

model, and a robot navigation process to control the robot’s
behavior based on the inferred TBS sequence. In this ex-
periment, natural language instructions that referenced one
of four objects (represented by traffic cones) using assigned
semantic object labels (“building”, “cone”, “traffic barrel”,
and “car”) were executed by the mobile robot. The natural
language process maintained the context of the previous
utterances until navigation goals were reached, at which point
the completed action symbol was removed from context. For
example, if the sequence was ”go to the cone”, ”go to the
building”, and ”go to the car” the system would eliminate the
symbol for ”go to the cone” once it successfully navigated to
that location. This enabled the robot to execute a variety of
different behaviors using instructions that were provided by
the human operator at different times. The traffic cones were
positioned ahead, behind, left and right of the robot’s origin.
Each label corresponded to a known goal configuration in
the vicinity of its representative object that was received by
the navigation system.

Fig. 4. An illustration of the experimental setup for the modified Clearpath
Robotics Husky A200 mobile robot. Each of the four cones represented an
object with the semantic tags “Building”, “Traffic Cone”, “Traffic Barrel”,
and “Car”.

The navigation system consisted of both a motion planner
and path following controller module. For path planning,
the robot utilized a state lattice motion planner with a
control set composed of three forward actions in a three-
dimensional state space of position and heading with a
known world model [22]. Each control set edge consisted of
a parameterized action generated using a model predictive
trajectory generator [10]. Completion of the goal state was
sent to the HMDCG module.

V. RELATED WORK

Providing robots with the ability to understand spoken
instructions has been a goal of general research interest for



sentence monologue order run-time (sec)
“pick up the blue cube with your right hand and drop it in the right bin.” 1 1 0.696
“pick up the rightmost red cube and drop it in the left bin.” 1 2 0.483
“pick up the remaining red cube and drop it in the left bin.” 1 3 0.473
“pick up the blue cube with your right hand and pick up the red cube with your left hand.” 2 1 0.380
“put the blue cube in the right bin and put the red cube in the left bin.” 2 2 0.378
“pick the blue cube up.” 3 1 0.124
“drop it in the right box.” 3 2 0.144
“pick the red cube up.” 3 3 0.127
“drop it in the left box.” 3 4 0.150

TABLE IV
MODEL INFERENCE PERFORMANCE OF THE CONTEXT OF THE LTL GROUNDING MONOLOGUE INSTRUCTIONS.

sentence monologue run-time (sec)
“pick up the blue cube with your right hand and drop it in the right bin. pick up the rightmost red cube
and drop it in the left bin. pick up the remaining red cube and drop it in the left bin.”

1 1.899

“pick up the blue cube with your right hand and pick up the red cube with your left hand. put the blue
cube in the right bin and put the red cube in the left bin.”

2 0.825

“pick the blue cube up. drop it in the right box. pick the red cube up. drop it in the left box.” 3 0.765

TABLE V
MODEL INFERENCE PERFORMANCE OF THE CONTEXT OF THE LTL GROUNDING MULTI-SENTENCE MONOLOGUE INSTRUCTIONS.

some time. Earlier approaches tended to focus on parsing
natural language into a formal structure [6, 14, 17]. Typ-
ically, a set of fixed control algorithms would handle the
execution of actions from a limited, pre-specified set. The
main limitation of these approaches is that, while they can
handle limited variation in language input, they are not robust
to the diverse possibility of input that non-expert users might
provide.

More recent research efforts have focused on training
probabilistic models to learn the associations between lan-
guage and actions or paths. These models learn from ex-
amples collected from human users. One example, Vogel
and Jurafsky [25], utilizes reinforcement learning theory to
optimize a behavior policy that closely follows a referenced
route. Addressing a similar domain, Matuscek et al [18]
learned to translate from natural language to a map that
is automatically labeled; this approach takes advantage of
physical constraints imposed by the map, providing some
robustness to uncertainty in the language and map. A main
difference between these approaches and the work presented
in this paper is the produced output; the related works
produce actions, policies, maps, or controllers whereas our
approach generates a description of the problem that can
then be solved by planning algorithms or automatic controller
synthesizers. While some of the discussed systems would be
able to demonstrate accurate grounding of monologic route
instructions, our approach is able to do so while maintaining
the advantages of DCG.

Some promise can be found in closely related research
that pose the problem of understanding robot instructions as
inference over a probabilistic graphical model, similar to the
work presented in this paper. Our approach builds on the
ideas presented by Tellex et al [24] and Howard et al [11].
While these models utilize a similar algorithm, we modify

the structure of the graph to incorporate the notion of sen-
tences and prior context; this eliminates the need for factor
evaluations connecting a given monologue’s sentences’ root-
phrases and allows for chunked action execution, thereby
improving the run-time performance while maintaining total
training recall.

In this paper, we address ambiguities of natural language
that naturally arise in monologues. Text-based methods have
been extensively studied to solve problems such as anaphora
and coreference resolution [15, 19]. Dependency parsing can
further identify potential causal relations between sentences
in monologues [1]. However, as early research has indicated,
these problems require knowledge about the referenced enti-
ties in order to be solved [5]. Additionally, context has been
shown to be critical in resolving anaphoras [16]. In the case
of situated robot interaction, the physical environment pro-
vides the context of interpretation. Our monologue grounding
method resolves anaphoras by leveraging groundings estab-
lished by preceding instructions.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel probabilistic model that ad-
dresses the problem of understanding natural language mono-
logues of robot instructions. The model exploits correspon-
dence and grounding variables that represent the meaning
of previous instructions when interpreting the intent of the
current utterance. This model permits algorithms that are
inherently more efficient than is possible with existing mod-
els because it does not require that we repeatedly perform
probabilistic inference on components of the model that we
have previously explored, and the MDCG can be run in
parallel with the speech recognition process for the next
utterance without the need to backtrack. We compared our
model against the state-of-the-art DCG and HDCG models



and showed that the MDCG and HMDCG enable better
computational efficiency while preserving accuracy.

We also demonstrated the MDCG/HMDCG on a Clearpath
Husky A200 mobile manipulator that was able to interpret
and execute multiple instructions. As part of future work,
we intend to further demonstrate the MDCG/HMDCG on a
Rethink Robotics Baxter Research Robot for both the bin
sorting and block stacking tasks. In addition to future user
studies that explore the benefits of expressing instructions
through short monologues, we are interested in incorporating
dependency parsing into our framework to better model the
meaning of complex instructions and bi-directional commu-
nication (dialogue). We also seek to develop a joint model of
context and action, which will enable the model to infer the
impact of a robot’s behavior or an environment’s dynamics
on the content of the context over time.
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