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Abstract

The goal of this article is to enable robots to perform robust task execution following human instructions in partially

observable environments. A robot’s ability to interpret and execute commands is fundamentally tied to its semantic world

knowledge. Commonly, robots use exteroceptive sensors, such as cameras or LiDAR, to detect entities in the workspace

and infer their visual properties and spatial relationships. However, semantic world properties are often visually imper-

ceptible. We posit the use of non-exteroceptive modalities including physical proprioception, factual descriptions, and

domain knowledge as mechanisms for inferring semantic properties of objects. We introduce a probabilistic model that

fuses linguistic knowledge with visual and haptic observations into a cumulative belief over latent world attributes to infer

the meaning of instructions and execute the instructed tasks in a manner robust to erroneous, noisy, or contradictory evi-

dence. In addition, we provide a method that allows the robot to communicate knowledge dissonance back to the human

as a means of correcting errors in the operator’s world model. Finally, we propose an efficient framework that anticipates

possible linguistic interactions and infers the associated groundings for the current world state, thereby bootstrapping

both language understanding and generation. We present experiments on manipulators for tasks that require inference

over partially observed semantic properties, and evaluate our framework’s ability to exploit expressed information and

knowledge bases to facilitate convergence, and generate statements to correct declared facts that were observed to be

inconsistent with the robot’s estimate of object properties.

Keywords

Human–robot collaboration, semantic state estimation, Bayesian modeling, multimodal interaction, natural lan-
guage understanding

1. Introduction

Our goal is to enable a robot to understand and robustly

execute high-level commands from a human in partially

known workspaces. Communication is integral to effective

coordination and collaboration among human–robot teams.

In human teams, perceptual and auditory descriptions are

often used to understand the environment and communicate

intent about the task and/or environment that may not other-

wise be directly observable. Similarly, robots that primarily

rely on visual sensors cannot directly observe all attributes

of objects in which some attributes may be necessary for ref-

erence resolution or task execution. For example, as shown

in Figure 1, the knowledge of whether an object can be

pushed or moved by a robot manipulator, or whether it is

heavier in comparison with another object, may be relevant

for manipulation tasks but difficult to estimate from vision
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alone. The lack of knowledge of non-visual properties may

make it impossible to synthesize plans or lead to unantici-

pated failures during plan execution.

In this work, we address the problem of inferring seman-

tic properties of the world that may not be observable from

exteroceptive modalities such as visual or LiDAR sensors.

We incorporate three information sources for estimating the

latent world properties. First, we use factual, task-relevant

knowledge that is implicit or explicit in the natural language

communication between the robot and its human partner.

For example, the utterance ‘‘the nearest barrel is empty’’

provides factual knowledge about a property of the indicated

object. Second, we leverage the robot’s ability to directly

interact with the world to inform its belief over the latent

attributes of the environment. Force and torque observations

and other end-effector measurements provide cues about

physical properties of an object, such as whether it can be

pushed or lifted, or whether it is pliable. Third, we utilize

commonsense knowledge about particular object types (e.g.,

that plastic containers are typically lighter and less rigid than

their metal counterparts) present in crowdsourced corpora,

such as the VerbPhysics dataset (Forbes and Choi, 2017),

derived from human judgement annotations.

We present a probabilistic model and inference algorithm

that estimate semantic knowledge about the workspace

through natural language communication, physical interac-

tion measurements, and background knowledge sources.

This is a challenging estimation problem as it involves distil-

ling high-level semantic knowledge from low-level measure-

ments arising from physical interactions or highly complex

and varied sources such as human language utterances and

relational data stores. We present a probabilistic model that

fuses measurements from multiple modalities into a

probabilistic belief over the latent semantic knowledge about

world entities. We factor the inference task into one of esti-

mating the presence of semantic properties from each mod-

ality and of temporally fusing the semantic observations into

a probabilistic belief that is robust to erroneous or contradic-

tory evidence. We show how the robot can use this model to

plan exploratory actions to improve its belief over latent

semantic properties of its world model. The ability to infer

missing semantic aspects of the world allows robots to fol-

low instructions while remaining resilient to incomplete or

inaccurate workspace knowledge.

Further, we observe that effective human–robot teaming

requires seamless communication as well as transparent

ways to provide feedback in case of observed discrepancies

between the mental model of the human and that of the

robot. We describe how a robot can learn to synthesize lin-

guistic feedback to the human operator when the robot’s

direct observations differ from the inferred model of the

human. Finally, we address the problem of reducing latency

in instruction interpretation and feedback generation that

arises while evaluating possible associations between lan-

guage utterances and semantic entities in the world, particu-

larly in large environments. We propose an approach that

anticipates future language interactions based on changes

in the environmental context and the robot’s environmental

knowledge. This allows the robot to pre-compute associa-

tions, thereby reducing the latency of future command

interpretation and language generation tasks.

We demonstrate the model’s effectiveness in real-world

scenarios in which fixed or mobile manipulation platforms

follow natural language instructions in environments that

are only partially known. By fusing declarative knowledge

provided by natural language with observations made

Fig. 1. Bi-directional communication for human–robot teams: (a) a Husky with a UR5 arm, understanding language utterances in a

partially known environment; (b) multimodal semantic knowledge estimation followed by linguistic feedback generation to the human

operator. A human operator can share his mental model of an object with a robot by stating declaratively that ‘‘the barrel on the right is

full.’’ However, the shared world knowledge can be inaccurate in partially observable environments. Upon updating the world

knowledge state via physical estimation, the robot reports back a declarative statement in order to correct the operator’s mental model.
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during physical interactions, our method successfully

infers the latent object attributes necessary for task execu-

tion. We show that the proactive approach to language

understanding and feedback generation improves the run-

time performance. The proposed model builds on the fol-

lowing lines of work: (i) efficient language grounding in

large semantic spaces (Paul et al., 2018), where the

approximation of the complete model is fundamental to

efficient inference; (ii) acquiring factual knowledge (Paul

et al., 2017) over a temporally extended visual and linguis-

tic interaction; (iii) learning an informed belief from back-

ground knowledge corpora; and (iv) improved efficient

communication by proactively searching for and inferring

the meaning of likely phrases given the interaction history

and current state of the world (Arkin and Howard, 2018).

Contemporary approaches that incorporate declarative

knowledge (Kollar et al., 2013b; Matuszek et al., 2012a;

Paul et al., 2017) assume that such information is correct

and sufficient for task execution and, thus, are not robust

to situations in which the declared knowledge is incor-

rectly understood by the robot or factually inaccurate.

Approaches such as those of Walter et al. (2013), Walter

et al. (2014b), Hemachandra et al. (2015), and Duvallet

et al. (2014) incorporate language in semantic mapping in

partially known environments in order to simultaneously

infer a metric map and semantic labels for regions from

visual or range-based observations. Similarly, Daniele et al.

(2017a) used language to learn kinematic models of articu-

lated objects. Our work expands the scope of semantic

properties from region types alone to fine-grained physical

and abstract properties of objects and further incorporates

active interaction and high-level commonsense knowledge

for making predictions.

This article expands significantly on an earlier confer-

ence paper describing this framework (Arkin et al., 2018).

We present a thorough exposition of the proposed model

with additional technical details, an expanded background

and problem formulation, and a more thorough description

of related work. We extend the core technical contribu-

tions in the following ways. First, we incorporate a data-

driven model to estimate an informed prior over object

attributes derived from background commonsense knowl-

edge corpora. Second, we extend the model to provide lin-

guistic feedback to the human in the event that there is

disagreement between the human’s inferred model of the

environment and the robot’s internal estimate derived from

physical interaction. Third, we include new experimental

results and additional field demonstrations.

This article is organized as follows. We present the

background material and problem formulation in Section

2. Section 3 presents the model for representing semantic

knowledge and details the process of fusing multiple mod-

alities into a probabilistic belief over the correctness of

semantic aspects of the world model. Section 4 approaches

the problem of command following in a manner that takes

into account uncertainty in the acquired knowledge of

entities in the scene. In Section 5, we present an approach

for providing feedback to the human operator when discre-

pancies are detected between the human’s inferred model

of the environment and that of the robot. Section 6 tackles

the crucial issue of reducing latency in command under-

standing as well as linguistic feedback generation. The

experimental evaluation and results are described in detail

in Section 7. Section 8 is devoted to reviewing related

efforts. Finally, Section 9 concludes the article and lays

out avenues for future research.

2. Problem formulation

2.1. Robot and workspace model

We consider a robot manipulator operating in a workspace

populated with a set of rigid bodies O. Let Yt denote the

metric state of the world at time t that includes the pose of

the robot and other entities in the scene, typically popu-

lated by a perception system. A human operator communi-

cates with the robot through a natural language interface.

Let Lt denote the language utterance received by the robot

at time t. We assume that the human either instructs the

robot to perform high-level tasks, such as ‘‘clearing,’’

‘‘packing,’’ ‘‘inspection,’’ etc. or provides factual descrip-

tions, such as ‘‘the barrel on the left is empty.’’

The robot’s goal is to derive a plan that affects the world

state in order to satisfy the human’s command. We model the

plan mt as a sequence of actions that change the state of the

world, such as ‘‘grasping,’’ ‘‘moving,’’ ‘‘placing,’’ ‘‘pushing,’’

or ‘‘poking’’ an object. We assume that the robot makes pro-

prioceptive measurements of the world through physical inter-

action with its surroundings. Let Zt = fzt0 , zt1 . . . , ztng denote

a proprioceptive observation recorded at time t that consists

of a sequence of force/torque measurements and manipulator

poses observed during interaction.
1

The robot’s decision-making and planning requires

semantic knowledge about the world. We present a repre-

sentation and a framework for estimating semantic aspects

of the world in the next section.

2.2. Semantic attributes and knowledge

Let G denote the space of concepts or ‘‘groundings’’ that

express semantic properties of the world. Groundings

model semantic attributes associated with entities (e.g.,

class types and factual knowledge) as well as relationships

between entities (e.g., spatial relations and relative orienta-

tions). We represent concepts as a set of discrete symbols

using the predicate-role representation (Russell and

Norvig, 2016). Each predicate represents a semantic prop-

erty or a relationship s 2 S that is expressed for a certain

set of entities in the robot’s world model o � O. The

space of grounding symbols G can be expressed as

G= f(s, o)js 2 S, o � Og ð1Þ

A class of grounding symbols models Boolean object

categories such as IsBlock(o), IsBarrel(o), and IsBox(o),

Arkin et al. 3



where o 2 O is an object instance in the world model. A

second category of symbols expresses physical object

properties, such as IsMovable(o), IsHeavy(o), or

IsPushable(o). A third class of symbols models spatial

relationships, such as Front(oi, oj), Left(oi, oj) or

Inside(oi, oj), between object instances oi and oj in O. In

this work, we assume the predicates S and the class of

grounding symbols are known and fixed ahead of time but

that the object instances O are not known. Finally, we

introduce a symbolic abstraction over the continuous

actions that the robot can take. Following Howard et al.

(2014b), actions are modeled as a set of symbols that rep-

resent the goals or objectives of the robot’s motion. For

example, the symbol Grasp(o) represents motions that

result in a force closure of an object of interest. Similarly,

we introduce other symbolic actions such as picking an

object, Pick(o), or moving an object o to a goal location r,

Move(o, r).
A robot’s ability to follow commands is fundamentally

tied to its knowledge about the world. The robot’s seman-

tic knowledge about the world is typically informed via

sensors that are noisy and error-prone. Hence, we intro-

duce a representation to model the robot’s belief over

semantic knowledge of the world. Let Kt denote the

knowledge state that consists of semantic attributes (e.g.,

‘‘pushable,’’ ‘‘movable,’’ and ‘‘rigid’’) associated with

individual object instances, and semantic relationships

(e.g., ‘‘relative strength’’ and ‘‘relative weight’’) associ-

ated with pairs of objects. Let kt 2 Kt represent a single

semantic attribute or a relationship. We model the uncer-

tainty over semantic knowledge using a probabilistic

belief over the knowledge state p(Kt),

p(Kt)=
Y
kt2K

p(kt =True) ð2Þ

Here, we assume that the distributions over each seman-

tic property are independent. For example, if the work-

space contains a ‘‘cup’’ and a ‘‘box,’’ the knowledge state

Kt is represented as a set of independent binary random

variables: p(IsFull(cup)=True), p(IsMovable(box)
=True), etc. In this work, we focus on estimating the

aforementioned physical properties of objects (restricted to

unary attributes and binary relationships). The robot’s

belief over semantic world knowledge informs the robot’s

decision-making and planning process. Next, we formalize

the task of interpreting and executing an instruction in the

context of acquired knowledge about the world.

2.3. Following instructions under semantic

knowledge uncertainty

The robot’s goal is to interpret and act according to the

human’s instruction in the context of its current knowledge

about the world. A planning model that reasons over which

actions are applicable requires some knowledge about the

objects the robot can potentially interact with. Note that

we consider planning domains that may only be partially

known. In particular, the robot may lack relevant semantic

knowledge that is required for planning manipulation inter-

actions. For example, manipulation tasks may require

knowledge of the intrinsic object attributes that cannot be

determined from visual observations alone. Consider

executing the instruction ‘‘clear away the cups on the

table,’’ in which empty cups should go in the trash and full

cups should be put aside. This task requires knowledge of

the internal states of the cups (full or empty) to decide how

each cup should be treated. We consider three sources of

non-exteroceptive knowledge for ‘‘filling in’’ knowledge

about latent aspects of the world model: linguistic commu-

nication from the human, direct physical interaction by the

robot, and commonsense knowledge corpora.

Formally, the robot is assumed to be primed with a

background knowledge corpus B0. The robot receives lan-

guage utterances from the human L0:t and acquires inter-

action measurements Z0:t. At time t + 1, the robot is

provided a language instruction Lt + 1 and must synthesize

a plan mt + 1 in the context of prior observations

fL0:t,Z0:tg, the metric world state Yt, and background

knowledge B0. The estimation of the most likely plan

m̂t + 1 as per the human’s instruction in the context of the

world model can be formulated as

m̂t + 1 = argmax
mt + 1

p(mt + 1jLt + 1,Yt,L0:t,Z0:t,B0,G) ð3Þ

Equation (3) involves deriving actions from past linguistic

and physical interaction measurements. This inference

problem is intractable due to the large space of language

and intrinsic force measurements. We introduce the explicit

representation of semantic world knowledge Kt at time t

that factors the estimation task into more tractable learning

tasks:

p(mt + 1jLt + 1,Yt,L0:t,Z0:t,B0,G)

=

Z
Kt

p(mt + 1jLt + 1,Yt,Kt,G)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Instruction following

p(KtjL0:t,Z0:t,B0,G)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Knowledge estimation

ð4Þ

Here, learning the factor p(KtjL0:t,Z0:t,B0,G) involves

acquiring semantic knowledge about the world from obser-

vations and background knowledge.

Section 3 presents a probabilistic model of the belief

over latent semantic properties informed by observations

and prior knowledge. The factor p(mt + 1jLt + 1,Yt,Kt,G)
in Equation (4) models plan inference conditioned on the

robot’s cumulative estimate of its world knowledge. We

detail this factor in Section 4 and show how the robot can

maintain this distribution over semantic knowledge by

actively interacting with the world before synthesizing a

plan. Section 6 addresses the task of providing realtime

feedback when a discrepancy is observed between the

robot’s knowledge and the inferred model of the human

operator.

4 The International Journal of Robotics Research 00(0)



3. Bayesian multimodal semantic knowledge

estimation

This section addresses the problem of estimating latent

semantic attributes associated with objects in the world

model from multimodal observations and background

knowledge corpora. We first introduce a probabilistic rep-

resentation of semantic knowledge and then present a

Bayesian formulation for incremental online estimation

using past language descriptions, direct physical interac-

tion, and background knowledge corpora.

3.1. Probabilistic knowledge

The knowledge state Kt consists of discrete random vari-

ables kt, each modeling a latent object property. We model

semantic attributes kt as Bernoulli random variables with

parameter uk
t . We introduce a conjugate beta distribution

prior with hyper-parameter ak
t over the Bernoulli distribu-

tion parameter uk
t as

p(kt);Bernoulli(uk
t ) ð5aÞ

uk
t ;Beta(ak

t ) ð5bÞ

The distribution over kt is parameterized by uk
t and, in

turn, ak
t and models the current belief over the true likeli-

hood of a symbolic attribute and consists the shape para-

meters (ak
t , b

k
t ) characterizing the beta distribution. The

likelihood over the semantic attribute variable kt given the

beta distribution parameter ak
t can be expressed as

p(ktjak
t )=

Z
u

p(ktjuk
t )p(u

k
t jak

t ) ð6Þ

where the beta -distributed random variable uk
t is margina-

lized out.
2

For a detailed exposition on conjugate distribu-

tions, we refer the reader to Bishop (2006).

Our goal is to infer the knowledge state given past

observations that arise from language and physical interac-

tion fL0:t,Z0:tg, as well as a priori knowledge from back-

ground sources B0, p(KtjL0:t,Z0:t,B0,G). Following the

treatment above, we assume that the likelihood over the

state Kt is Bernoulli distribution with parameter at. We

use a Bayesian filter to recursively maintain the knowledge

state distribution over time given new observations Zt,

p(KtjL0:t,Z0:t,B0,G)=Z
a

p(KtjLt, Zt,at�1,G)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Updated knowledge state at time t

p(at�1jL0:t�1,Z0:t�1,B0,G)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Belief over knowledge state at time t�1 ð7Þ

Here, the beta distribution parameter at�1 represents the

belief over the knowledge state Kt�1 at the previous time

step t � 1 as p(Kt�1jat�1). This belief is informed by

observations fL0:t�1,Z0:t�1g until time t � 1 and back-

ground knowledge B0. Hence, the factor

p(at�1jL0:t�1,Z0:t�1,B0,G) can be viewed as the predic-

tive posterior over the knowledge state at t � 1, i.e., the

belief that integrates past evidence until time t � 1, before

incorporating the current set of observations fLt, Ztg. The

second factor p(KtjLt, Zt,at�1,G) updates the predictive

posterior using the current set of observations fLt, Ztg.
The result is the posterior over the knowledge state at time

t, which is propagated to the next time step.

Note that the factorization in Equation (7) assumes that,

given the prior and current observation, the knowledge

state is independent of the previous observations and back-

ground knowledge. Formally, the belief over the knowl-

edge state at�1 at the previous time step t � 1 decouples

the estimation of the belief over the next knowledge state

Kt from past observations L0:t�1,Z0:t�1 and the prior

knowledge corpus B0 given the current set of observations

fLt, Ztg.
Now, we turn our attention to initializing the dynamic

Bayesian network at time t0. The initial prior over the

knowledge state be represented by the beta distribution

with parameter a0. We assume the presence of a back-

ground commonsense corpus B0 that informs the initial

belief over the knowledge state before the robot acquires

any observations. We model this estimation at time t0 by

the factor p(a0jB0,G). Introducing the parameter a0 in

Equation (7) leads to the following formulation:

p(KtjL0:t,Z0:t,B0,G)=Z
a

( p(KtjLt, Zt,at�1,G)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Updated knowledge state at time t

p(at�1jL0:t�1,Z0:t�1,G,a0)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Belief over knowledge state at time t�1

p(a0jB0,G)
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Prior from background knowledge

)

ð8Þ

where the parameters a0 and at�1 are marginalized out. In

practice, we approximate Equation (8) with a maximum

likelihood estimate over the knowledge prior ba0:

p(KtjL0:t,Z0:t,B0,G)=Z
a

( p(KtjLt, Zt,at�1,G)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Knowledge update at time t

p(at�1jL0:t�1,Z0:t�1,G, ba0)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Cumulative belief until time t�1

)

ð9Þ

Figure 2 illustrates the overall probabilistic model. The

remainder of this section is organized as follows. Section

3.2 describes the inference procedure at each step in the

temporal model, specifically the updates to the distribution

to account for language utterances and direct physical

interaction. Section 3.3 addresses the problem of learning

an informed prior over semantic knowledge from back-

ground commonsense corpora. Finally, Section 3.4

shows how semantic observations from multiple modal-

ities can be fused into a probabilistic belief over world

knowledge.
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3.2. Estimating semantic observations from

multimodal percepts

This section details the estimation of the knowledge state

Kt at time t expressed in the factor p(KtjLt, Zt,at�1,G) in

Equation (8). The knowledge estimate is derived from the

input language utterance Lt, the physical interaction mea-

surement Zt, and the cumulative belief over the knowledge

state, represented by at�1, until time t � 1. This inference

involves learning an association between the set of high-

level semantic attributes and the language and low-level

interaction observations. Learning such an association is

challenging as the joint space of multimodal percepts and

semantic properties can be combinatorially large. The prob-

lem can be factored by first inferring likely semantic attri-

butes from each modality and then fusing the discrete

observations into a cumulative belief over the latent knowl-

edge state.

Following earlier work on probabilistic language

grounding (Howard et al., 2014a,b; Liang et al., 2013; Paul

et al., 2018, 2017; Tellex et al., 2011b), we employ a binary

correspondence variable Ft that models the association

between semantic attributes and the language and interac-

tion measurements. For example, we express the correspon-

dence between the language phrase ‘‘the empty cup’’ and

the semantic grounding IsEmpty(cup) as the conditional

likelihood p(F =TruejIsEmpty(cup), the empty cup).
Fundamentally, this turns the problem of learning the joint

distribution between language and percepts into a

discriminative problem of learning true or false associations

between language and candidate meanings. This signifi-

cantly improves the tractability of training and inference.

We extend the use of correspondence variables to asso-

ciate physical interaction-based observations with the

latent semantic object attributes. For example, a slowly

increasing force profile while poking a barrel object is

indicative of the object being pushable. Alternatively, if

the force profile saturates rapidly, the robot can infer that

the object is likely to be less pliable during manipulation.

The introduction of the correspondence variable allows

us to factorize the distribution over the knowledge state as

p(KtjLt, Zt,at�1,G)=

X
Ft

p(KtjFt,at�1,G)
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Knowledge belief update

p(FtjLt, Zt,G)
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Language & interaction groundings ð10Þ

Here, the factor p(FtjLt, Zt,G) models the likelihood

of the correspondences between the semantic attributes

and percepts Lt, Zt. We use the term semantic observa-

tions to denote semantic attributes indicated by the most

likely set of true correspondence variables. The factor

p(KtjFt,at�1,G) fuses the estimated semantic observa-

tions into the belief over the latent semantic attribute.

Note that Equation (10) involves directly fusing obser-

vations derived from multiple modalities into a belief over

semantic attributes. Learning in the joint space of multiple

Fig. 2. A probabilistic model for robot command following with learned semantic knowledge about world model entities. The

model estimates a belief over the knowledge state Kt from background knowledge B0 and observations received until time t, which

includes language utterances from the human L0:t and proprioceptive measurements from physical interaction Z0:t. This estimation is

posed as inference on a dynamic Bayesian network that evolves temporally with novel observations. The learned knowledge is used

to follow instructions by generating an appropriate plan of actions. The model consists of three components which are indicated via

gray, blue, and red boxes and are described in Sections 3, 4, and 6. Gray: The likelihood over the knowledge state is initialized as

parameter a0 learned from background commonsense knowledge sources B0. Blue: At each time step, a correspondence Ft is

estimated between percepts fLt,Ztg and semantic attributes contained in G. True correspondences indicate semantic observations

that serve as evidence for updating the belief over the latent knowledge state p(Ktjat). Red: At time instant t + 1, the robot interprets

an instruction Lt + 1 given its current belief over the knowledge Kt state parameterized by at. The robot synthesizes a plan mt + 1 to

accomplish the stated goal state or takes information gathering actions to resolve uncertainty in the semantic state. Here, Yt denotes

the metric world state. Natural language feedback is generated in case discrepancies are observed between the robot’s and the

human’s mental model. The model shown in the illustration evolves from left to right.
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modalities is likely to be tractable with a small number of

modes. Further, we observe that language descriptions and

force interactions arise from independent sources and may

arrive at different instances in time. Language descriptions

arrive opportunistically from the human, while force inter-

actions are likely to arise from planned and controlled

interactions by the robot. Hence, we assume conditional

independence between observations arising from differ-

ent modalities, which enables Equation (10) to be

expressed as

p(KtjLt,Zt,at�1,G)=

X
FL

t ,F
z
t

fp(KtjfFL
t ,FZ

t g,at�1,G)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Knowledge belief update

p(FL
t jLt,G)

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Language grounding

p(FZ
t jZt,G)

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Interaction grounding

g
ð11Þ

where FL
t and FZ

t represent correspondence variables

derived from language Lt and force measurements Zt,

respectively, at the current time step t. Figure 3 presents

the corresponding factor graph representation.

Next, we discuss methods for deriving semantic obser-

vations from language and physical interactions. We then

detail the belief update over the latent object attribute given

the inferred semantic observations from each modality.

3.2.1. Estimating groundings from declarative

language. We now consider the problem of interpreting

factual knowledge about the world present in natural lan-

guage utterances from the human. As an example, we aim

to ground the declarative language utterance ‘‘the cup on

the table is empty’’ to the predicate IsEmpty(cup), where

the ‘‘cup’’ object is located on the table.

The factor p(FL
t jLt,G) in Equation (11) models the

factual knowledge inherent in declarative language utter-

ances. Inference involves reasoning over the correspon-

dence FL
t between a language instruction Lt and semantic

aspects of world entities modeled as G.

We incorporate a contemporary approach to grounding

factual knowledge from natural language utterances

(Howard et al., 2014b; Paul et al., 2017). The approach

exploits the linguistic parse structure of the utterance to fac-

tor the grounding problem into separate terms for each con-

stituent phrase. This factorization permits inference over

individual phrases rather than joint inference over the entire

utterance, improving scalability. For example, the model

learns a grounding for the utterance ‘‘the nearest cup’’ as

the ‘‘cup’’-type object nearest to the speaker. We represent

the association between individual linguistic elements and

semantic concepts using a log-linear model that expresses

the likelihood of the linguistic features in each parsed con-

stituent phrase and the corresponding ‘‘grounded’’ attri-

butes of the world model. We train the model using an

aligned corpus of utterances and known groundings in the

context of a physical world model. The model leverages

the inherent compositional structure in language and learns

to assign meaning to simpler constituent phrases and struc-

ture them together to infer the meaning of an instruction

received at runtime (Howard et al., 2014b).

Further, the model uses linguistic structure and part-of-

speech information to partition the sentence (Paul et al.,

Fig. 3. Probabilistic model for knowledge acquisition over latent object attributes from descriptive language utterances and physical

interaction measurements instantiated at each time step t in the dynamic Bayesian network. (a) Joint model. Semantic observations

are derived jointly from physical interaction measurement Zt and factual knowledge from language description Lt. The combined

factor estimates true correspondences Ft between low-level measurements fZt,Ltg and high-level semantic properties represented

by G. The semantic property associated with true correspondences serves as a semantic observation. The inferred observation

updates the prior belief over the latent knowledge state p(Ktjat) to a posterior belief p(Kt + 1jat + 1) propagated to the next time step

t + 1. (b) The factored model assumes independence between semantic observations derived from language description and those

derived from physical interaction. Hence, the correspondence variables are factored as FZ
t and FL

t associating physical interaction Zt

and language Lt with semantic concepts G. The estimated groundings from both visual and linguistic modalities are fused to inform

a posterior distribution over the latent knowledge state.
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2017) into (i) phrases that can be associated with physical

aspects of the world (e.g., detected objects and spatial rela-

tions) and (ii) phrases that convey facts about the world

(e.g., knowledge about the latent state of objects). The

inferred factual knowledge conveyed in language provides

positive or negative evidence for the underlying knowl-

edge state of the entities described in the utterance. The

ability to infer factual knowledge derived from language

descriptions is particularly useful if the expressed facts

relate to unobserved aspects of the world state. For exam-

ple, the phrase, ‘‘the nearest cup is empty,’’ conveys infor-

mation that is otherwise unobservable unless the robot

interacts with the cup, i.e., IsEmpty(cup).
We assume that the user’s utterances convey factual

knowledge that they believe to be true according to their

internal model of the world. In practice, we store each cor-

respondence FL
t that we infer to be true along with the

associated semantic properties G (Figure 3(b)) for future

reference. This allows the robot to maintain a model of

what the human believes to be true of the world and engage

in bidirectional communication to correct human beliefs

that are inconsistent with evidence that the robot gathers.

The estimation of semantic attributes from the human’s

utterance can be viewed as a declarative top-down infer-

ence over semantic world knowledge. Next, we address

the problem of deriving semantic observations from pro-

prioceptive measurements that arise as the robot physically

interacts with the world.

3.2.2. Estimating semantic properties from physical

interaction. The estimation of object attributes from phys-

ical interaction is an extensively explored area

(Bhattacharjee et al., 2013; Chitta et al., 2011; Chu et al.,

2015). The ability to infer certain sementic properties of

objects from physical interaction helps to determine an

appropriate plan in visually unobservable environment. In

this work, we perform offline classification of object attri-

butes (e.g., IsFull or IsMovable) given noisy time-series

physical interaction measurements during a stereotyped

motion with a manipulator, such as lifting or poking. To

model the noisy time-series signals, we use a hidden

Markov model (HMM) that is a state-based method in

which a hidden state is a latent representation of current

measurements depending on the previous state. The state

transition enables to model or test time-series data with

variable length. In particular, we use a multivariate

Gaussian HMM
3

and model the emission distribution

p(Ztjst) as a Gaussian with a full covariance matrix that

models the correlation between force and pose measure-

ments (Park et al., 2018).

The factor p(FZ
t jZt,G) in Equation (11) relates seman-

tic properties (i.e., object attributes) to measurements

acquired through physical interaction. Each interaction-

based measurement Zt consists of a sequence of three -axis

end-effector force and arm-pose measurements recorded

during physical interaction with an object. We identify the

correspondence FZ
t via maximum a posteriori inference.

This estimation can be viewed as a bottom-up source of

symbolic knowledge derived from grounding raw posi-

tional and force measurements.

We use HMMs to define an object attribute estimator fk
that is the predictive model of the factor p(FZ

t jZt,G) given

interaction experience of the semantic attribute k. Let

mk
True and mk

False denote the HMM models trained for the

True and False of an object attribute kt. The two HMMs

determine the observation likelihoods p(Ztjmk
True) and

p(Ztjmk
False) conditioned for the presence or absence of the

object attribute, respectively. The physical interaction

measurement acquired online is associated with an object

state by comparing the model evidence for the presence or

absence of object attributes kt 2 Kt as

fk(Zt,m
k
True,m

k
False)= p(Ztjmk

True)=p(Ztjmk
False) ð12Þ

We threshold the above likelihood ratio to arrive at a

binary classification, and thus FZ
t .

The HMM model m consists of state transition probabil-

ity, emission probability, and initial state distribution: us

from (A,B,p), where A 2 R
n× n, B 2 R

n× d , and p 2 R
n.

Let n and d denote the number of hidden states (i.e., 20 or

30 in this work) and the number of modalities (i.e., 2),

respectively. In particular, we use a left-to-right HMM that

does not allow backward state transitions from a higher-

numbered state to a lower-numbered state in A. We also

set the first element of initial state distribution p is 1 and

other are zero to make the HMM always starts from the

first state. These A and p help to model the temporal pro-

cesses of physical measurements during the stereotyped

motions. To use multivariate Gaussian HMMs, we repre-

sents the emission probability B as a set of observation

mean vector and its covariance matrix. We then train each

HMM by iteratively searching its model mk that maxi-

mizes p(Ztrjmk) using an expectation–minimization (EM)

algorithm (Rabiner, 1989). Here Ztr 2 R
nd × d × l is a set of

pre-processed interaction traces with varied object states

and configurations, where nd and l are the number of train-

ing data (i.e., 20 or 30 per the presence or absence of the

object property) and the length of a trace (i.e., 50–200),

respectively. The pre-processing step includes smoothing,

time-alignment, and scaling. However, after training, the

estimation does not require smoothing and time alignment.

3.3. Learning informed priors over semantic

knowledge from commonsense corpora

In this section, we focus on the problem of inferring an

informed prior over world knowledge derived from a noisy

commonsense corpus. In the absence of any background

domain knowledge, the initial prior of the model introduced

in Section 3.1 can be left uninformed and as more observa-

tions and interactions are received, the model gradually con-

verges to the true object attributes. However, estimating the

latent object attributes can be hastened if we have an
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informed prior that is guided by experience. A source of

experience can be found in commonsense corpora derived

from human judgement tasks (Forbes and Choi, 2017;

Rashkin et al., 2018; Vedantam et al., 2015; Yatskar et al.,

2016). Such corpora contain crowdsourced human annota-

tions indicating whether an attribute or a relationship is true

for certain object types. For example, human judgements

about the relative rigidness of plastic and metal containers

would result in relational facts indicating that containers

made of plastic are less rigid compared with metal

containers.

Learning an informed prior over semantic knowledge

K0 from a commonsense corpus B0 at time t0 can be posed

as estimating the conditional distribution p(K0jB0,a0,G).
The model is initialized at time t0 with an uninformed beta

hyper-prior a0.
4

We treat the factual knowledge present in

the commonsense corpus as stochastic observations of the

true latent semantic attributes. Following the approach in

the previous section, we introduce correspondence vari-

ables FB0 that indicate the set of semantic properties asso-

ciated with a true prior found before robot interaction. The

introduction of the correspondence variables allows the

conditional likelihood p(K0jB0,a0,G) to be expressed as

p(K0jB0,a0,G)=
X
FB0

p(K0jFB0 ,a0,G)
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Informed knowledge prior

p(FB0 jB0,G)
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Facts from corpus

ð13Þ

The factor p(FB0 jB0,G) represents the predictive model

that estimates the likelihood that a semantic attribute is

true in the world given the evidence in the commonsense

corpus. The predicted semantic observations are fused into

the latent belief expressed by the factor p(K0jFB0 ,a0,G),
resulting in the informed prior at the start of the mission.

We now discuss the model for predicting semantic proper-

ties given a background knowledge corpus and delegate

the fusion of the semantic properties into a probabilistic

belief to the next section.

Learning the factor p(FB0 jB0,G) involves estimating the

correctness of a semantic attribute k0 2 K0 relating object

instances in O. The problem of predicting attributes

between semantic entities has received recent attention in

the context of knowledge represented as databases, graphs,

or other structured networks (Socher et al., 2013; Wang

et al., 2015; Yang et al., 2014; Zhang and Chen, 2018).

We adopt a contemporary approach (Yang et al., 2014)

and learn a function fB that models the association between

a semantic attribute k0 and the object types t associated

with object instances in O. In this work, we restrict our-

selves to binary relations and, hence, estimate the function:

fB(t(oi), t(oj), k0)=
“greater than” score
“less than” score

� �
ð14Þ

where t(oi) and t(oj) represent object types for object

instances foi, ojg 2 O. We use the above scores to define

the factor p(FB0 jB0,G) by normalizing it.

The aforementioned function fB is realized using a

neural architecture. We first encode the object types

using Glove word embeddings (Pennington et al., 2014)

that represent semantic or conceptual affinities between

words, resulting in the vector embeddings gt(oi) 2 R
300

and gt(oj) 2 R
300. We introduce a single-layer feedforward

neural network q with rectified linear unit (ReLU)

activation functions that outputs task-specific word

embeddings yoi
2 R

300 and yoj
2 R

300: yoi
= qw(gt(oi)) and

yoj
= qw(gt(oj)), where w are the parameters of the net-

work. We define a function fB(yoi
, yoj

, k0) that models the

association between the task-specific vector and the

object attribute k0 under consideration. We explored

the following scoring functions to realize the function

fB(yoi
, yoj

, k0):

� TransE (Bordes et al., 2013)

� 2
Vk

�Vk

� �T
yoi

yoj

� �
� 2yT

oi
yoj

+ jjVk jj22

 !
ð15Þ

� Bilinear

yT
oi

Mkyoj
ð16Þ

� Bilinear-diag, same as Bilinear with the additional

condition that Mk is constrained to be a diagonal

matrix.

In the above definitions, Vk and Mk are neural network

parameters learned from data. In this work, we use the

VerbPhysics dataset (Forbes and Choi, 2017) that contains

relative physical knowledge of object pairs encoded as

relational tuples, each consisting of relationship and entity

attributes. The dataset contains approximately 2500 object

pairs annotated with their relative comparisons in terms of

‘‘size,’’ ‘‘weight,’’ ‘‘strength,’’ and ‘‘rigidness.’’ The

model is trained to predict object attributes (e.g., ‘‘size,’’

‘‘weight,’’ ‘‘strength,’’ and ‘‘rigidity’’) of types (e.g.,

‘‘greater than,’’ ‘‘less than,’’ ‘‘equal,’’ and ‘‘unknown’’).

The training objective minimizes a marking-based ranking

loss that encourages the scores of positively expressed

semantic relationships to be higher than negatively

expressed relationships (Yang et al., 2014).

The learned function provides the prior distribution

over knowledge state incorporated in Equation (8). Note

that the learned relational model predicts the presence of

relative physical properties from abstract object-type data

before fusing observations. Online, the model is condi-

tioned on the world model to obtain a distribution over

semantic attributes that are relevant for the world model.

Next, we turn our attention to the problem of fusing

semantic observations derived from multiple modalities

into a cumulative belief over latent semantic knowledge.
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3.4. Estimating belief over knowledge from

multimodal semantic observations

The set of semantic observations of the world state derived

from language and physical interaction must be fused into

the robot’s belief over semantic knowledge. The current

observation Ft allows the robot to update its previous

knowledge estimate parameterized by the beta parameter

at�1 to yield the updated belief over Kt. This estimation is

represented by the factor p(KtjFt,at�1,G) in Equation

(11). The application of Bayes’ rule allows the posterior

distribution over Kt to be expressed as

p(KtjFt,at�1,G)
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Posterior over knowledge

} p(FtjKt�1,G)
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Observation likelihood

p(Kt�1jat�1)
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Prior

ð17Þ

As the beta distribution serves as a conjugate prior for

the Bernoulli likelihood, the posterior distribution over

the knowledge state is also beta distributed (Bishop, 2006;

Blei et al., 2003). The posterior distribution parameters are

obtained using closed-form updates to the prior distribu-

tion parameters informed by the current set of observa-

tions. A true correspondence variable serves as a positive

observation of the associated semantic property and incre-

ment to the beta distribution parameter:

p(KtjFt,at�1,G) ; Beta(at)

; Beta(at�1 + Ft)
ð18Þ

Here, the notation at�1 + Ft indicates an update of the

beta distribution parameter at�1 with the semantic obser-

vation indicated by the correspondence variable Ft. Fusing

a true observation of a semantic property biases the beta

distribution parameters towards favoring a Bernoulli dis-

tribution with a higher true belief over the semantic prop-

erty, and vice versa for a negative observation. Partitioning

the set of semantic properties into those derived from lan-

guage descriptions and those derived from force interac-

tions enables Equation (18) to be factorized as

p(KtjfFL
t ,F

Z
t g,at�1,G) ; Beta(at�1+fFL

t +FZ
t g) ð19Þ

The posterior distribution over the latent knowledge vari-

able evolves incrementally with each observation. The

current beta distribution parameters after fusing current

observation L0t, Ztg with the last estimate at�1 can be

expressed as

at = fat, btg= fat�1 + (n1
L + n1

Z), bt�1 + (n0
L + n0

Z)g ð20Þ

Here, fn1
L, n

0
Lg and fn1

Z , n0
Zg denote the number of

true and false observations derived from language FL
t

and interaction groundings FZ
t , respectively. Parameters

fat, btg constitute the parameter tuple for the beta para-

meter at and fat�1, bt�1g denotes the parameter tuple for

the last estimate at�1. Note that Equation (20) shows that

the true and false observations derived from multiple mod-

alities bias the beta distribution parameters appropriately.

Finally, we turn our attention to representing the

informed prior belief over K0 from commonsense corpora

initializing the model at time t0. Again, leveraging the

conjugacy property of the Beta� Bernoulli distributions

we can represent the belief as

p(K0jFB0 ,a0,G) ; Beta(a0 + FB0 ) ð21Þ

Recall, that prior knowledge derived from commonsense

corpora serve as noisy observations of the latent semantic

knowledge. As indicated in Equation (21), possibly noisy

semantic assertions from background knowledge serve as

pseudo-measurements and bias the beta distribution para-

meters before incorporating physical measurements.

Finally, we make a few remarks on the modeling

choices in our probabilistic model. The model presented

in this section allows the estimation and propagation of

the belief over knowledge states derived from multiple

and diverse sources. The ability to model uncertainty over

latent state and to efficiently fuse multiple modalities pro-

vides robustness to noisy and possibly contradictory mea-

surements. Our approach leverages conjugate priors over

the likelihood over the correctness of semantic properties

in the world model, enabling tractable and efficient poster-

ior updates using observations collected online. The prob-

abilistic formulation can be viewed as a form of semantic

state estimation. Note that we perform inference over a

restricted set of symbolic aspects of the world model. This

approach can be considered a special case of more general

models that represent beliefs over more complex logical

rules (Zettlemoyer et al., 2008). The approach presented is

also closely related to histogram filtering, which has been

employed effectively for robot mapping and tracking

applications (Thrun et al., 2005). The measurement

updates in a histogram filter require empirically estimating

sensor-specific detector rates. On the other hand, the

Bayesian approach uses less-prescriptive uninformed

priors that are updated with new evidence and is expected

to be more robust to noise and erroneous measurements.

4. Instruction-following by introspecting

knowledge uncertainty

Recall that our goal is to enable a robot to follow instruc-

tions in partially known domains where some object attri-

butes necessary for synthesizing a plan are unobserved.

For example, following the instruction ‘‘clear the cups on

the table’ requires knowledge of the internal states of the

cups to decide their appropriate destinations in the clear-

ing task (i.e., empty cups should go in the trash and full

cups should be put aside). Given the probabilistic model

laid out in the previous section, the robot can form a belief

over the unobserved semantic properties of the world

model by integrating past observations and any available

prior domain knowledge. We now consider the task of

synthesizing a plan as per the human’s command in the

context of the acquired knowledge about the world.

10 The International Journal of Robotics Research 00(0)



Formally, the robot determines a plan mt + 1 to satisfy

the language instruction Lt + 1 received at time t + 1, tak-

ing into account the metric world state Yt + 1 and the

robot’s current world knowledge p(Kt�1jat�1):

p(mt + 1jLt + 1,Yt + 1,at,G)=Z
Kt

p(Ktjat)
zfflfflfflffl}|fflfflfflffl{Current knowledge belief

p(mt + 1jLt + 1,Yt + 1,Kt,G)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Instruction-following ð22Þ

The instruction-following task, represented as

p(mt + 1jLt + 1,Yt + 1,at,G), can be factored as follows.

First, the robot infers the goals or objectives from the natu-

ral language command based on its current knowledge

about the world. This is followed by reasoning about the

sequence of actions resulting in the intended goal state.

This factorization allows Equation (22) to be formulated as

p(mt + 1jLt + 1,Yt + 1,at,G)=
Z

Kt

X
FL

t + 1

p(Ktjat)
zfflfflfflffl}|fflfflfflffl{Current knowledge belief

p(mt + 1jFL
t + 1,Yt + 1,Kt,G)

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Action generation

p(FL
t + 1jLt + 1,Yt + 1,G)

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Instruction understanding

ð23Þ

Using the maximum likelihood estimates for the knowl-

edge state K̂t and the grounding for the input instruction

FL
t + 1 approximates Equation (23) as

F̂L
t + 1 = argmax

F

p(FL
t + 1jLt + 1,Yt + 1,G) ð24aÞ

K̂t = argmax
K

p(Ktjat) ð24bÞ

m̂t + 1 = argmax
m

p(mt + 1jYt + 1, F̂
L
t + 1, K̂t) ð24cÞ

Here, the maximum likelihood estimate indicating the

presence of a semantic property K̂t is obtained by sam-

pling the Bernoulli distribution from the current beta prior

p(Ktjat). Further, we use a contemporary language inter-

pretation model for estimating intended manipulation

goals from an input instruction (Paul et al., 2017) in the

context of the robot’s current semantic knowledge.
5

In this

work, we use a set of predefined actions such as ‘‘clear-

ing,’’ ‘‘packing,’’ ‘‘inspection,’’ etc. Each action is a

sequence of motion primitives including ‘‘grasping,’’

‘‘moving,’’ ‘‘placing,’’ ‘‘pushing,’’ or ‘‘poking,’’ etc. Each

primitive is a sequence of joint values or end-effector

poses. We sequence primitives by transforming and scal-

ing each with respect to a goal.

The robot’s action generation takes into account the

degree of uncertainty in the robot’s knowledge about the

semantic properties of objects relevant to the input instruc-

tion. We compute the normalized entropy of the latent

belief over semantic properties as a confidence measure

for quantifying the robot’s uncertainty over semantic

aspects of the world (Grimmett et al., 2016; Paul et al.,

2013; Triebel et al., 2016). The presence of significant

uncertainty in the robot’s knowledge belief (as indicated

by high entropy of the belief distribution) allows the robot

to take information gathering actions such as lifting, push-

ing, poking, or sliding. The new set of observations are

used to update the robot’s belief over the latent object

states. The robot continues to interact until the latent belief

is sufficiently likely that the robot can execute the final

action to complete a task described in the language instruc-

tion Lt + 1 with high confidence of success. The robot halts

plan inference and plan execution when the normalized

entropy of the latent belief over semantic properties is

lower than an empirically determined threshold. Finally,

the estimated high-level plan is handed to a low-level

motion planner that generates joint trajectories to achieve

an assigned action via the decision-making process.

5. Knowledge-state feedback to the human

Humans working in teams often share world knowledge to

help accomplish tasks, such as letting a teammate know

that a box is exceptionally heavy. When a teammate

observes that the shared knowledge is not true, it is useful

to share the corrected information, improving the entire

team’s world model. One limitation of the system pre-

sented in Arkin et al. (2018) is the lack of a mechanism to

provide direct feedback to the human teammate. Providing

robots with the capacity to generate linguistic feedback is

of particular use for cases in which the robot makes pro-

prioceptive observations during object interaction that

contradict world knowledge provided by the human. If we

assume that the human teammate only shares world

knowledge that they believe is true, then the robot has an

opportunity to provide corrective feedback regarding the

contradictory observations that should be useful for the

human. Such feedback can help the human make better

decisions in the future and can help prevent miscommuni-

cations owing to incompatible world models.

One approach to providing such feedback via a lan-

guage interface is to store both the imperative phrase used

by the human to reference the object of interest and the

declarative phrase used to convey the specific world

knowledge. By keeping track of knowledge that was pro-

vided by the human (as opposed to other sources of knowl-

edge, e.g., from a commonsense database), the robot can

trigger a feedback response upon making a contradictory

observation. The linguistic feedback can be composed of

the stored imperative and declarative phrases to indicate

which object and associated semantic property were differ-

ent than expected. This approach has the advantage of

being computationally inexpensive in that the feedback

can be generated by executing a simple lookup for the

phrases stored previously. However, this mechanism is

brittle to changes in the world that invalidate the stored

reference phrase. For example, if the robot has moved

close to an object in order to interact with it, what once
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may have best been described as ‘‘the barrel on the left’’

may now better be referred to as ‘‘the barrel directly in

front’’ or ‘‘the nearest barrel.’’ As such, a declarative

phrase such as ‘‘the barrel on the left is heavy’’ might best

be corrected with linguistic feedback such as ‘‘the barrel

nearest to me was not heavy.’’

In order to address this brittleness, we pursue an alter-

native approach by inverting the learned language under-

standing model to generate phrases associated with the

symbolic representation for both the object and hidden

semantic state of interest as conditioned on the current

spatial configuration of objects in the world. While this

does make the feedback robust to changes in the world, it

trades off the relatively low computational cost of looking

up stored phrases for a significantly higher computational

burden of searching over language phrases for one that

sufficiently expresses the meaning intended by the sym-

bolic representation. This section details the process for

generating linguistic feedback via inverting a language

understanding model.

5.1. Communicating knowledge-dissonance to the

human

Consider a scenario in which a human teammate says,

‘‘the cup on the table is empty.’’ The robot will ground

this declared knowledge and update its belief over the hid-

den state of the cup’s fullness. Unless the human is inten-

tionally giving false information, the robot can also note

that the human’s model of the world includes the confident

belief that the cup on the table is empty. Suppose the robot

then interacts with the cup and makes an observation indi-

cating that the cup is actually full. In this case, it would be

useful for the robot to be able to express this disagreement

back to the human, thereby providing a correction to the

human’s world model and allowing them to make more

informed decisions in the future.

We are interested in a mechanism that facilitates pro-

viding this kind of feedback via a natural language inter-

face, namely generating sentences to convey observations

that contradict human-provided knowledge. By inverting

the learned language understanding model used to ground

declarative knowledge, the robot can effectively search for

the most likely phrases that map to the set of groundings

representing the object of interest and its semantic state. In

related work (Tellex et al., 2014), this problem has been

referred to as inverse semantics. Here, forward semantics

refers to the process of taking language and finding associ-

ated entities or concepts in the physical world, and while

inverse semantics refers to the process of takings aspects

of the world and finding language to describe them. The

problem formulation and subsequent factorization is

inspired by Tellex et al. (2014). The main difference

between their approach and what is being done in this

work lies in the language understanding model. Tellex

et al. (2014) used generalized grounding graphs (Tellex

et al., 2011a) as the underlying language understanding

model, whereas the work presented here uses distributed

correspondence graphs (Howard et al., 2014b). Using a

different underlying language understanding model has

important implications for the subsequent model formula-

tion and factorization. The main advantage in this case is

the improved runtime performance, the results of which

are presented in Howard et al. (2014b).

The problem of inverse semantics for generating feed-

back can be formulated as search for the most likely sen-

tence corresponding to the intended meaning in the context

of the robot’s knowledge about its world. Formally, we esti-

mate a feedback language utterance L
f �
t + 1 given the known

set of groundings G, the knowledge state Kt, and metric

information about entities in the world Yt as follows:

L
f �
t + 1 = argmax

L
f

t + 1
2L

p(Lf
t + 1jKt,G,Yt + 1) ð25Þ

The space of possible sentences L is generated via a

grammar G that specifies linguistic tokens and production

rules for constructing the associated parse tree. This grammar

is constructed by scraping the language model’s training cor-

pus for both the tokens and rules. In order to prevent recursive

construction of an infinite space of language, the generation

process is constrained by the depth of a parse tree.

As we have done for language understanding, we can

model this inference process as a correspondence problem

wherein the value of a correspondence variable FL
t indi-

cates the association between language and a symbol.

Because the desired groundings are already known, it is

also known which correspondence variables are true.

These true correspondences are indicated by FL
t , and

modify Equation (25) as follows:

L
f �
t + 1 = argmax

L
f

t + 1
2L

p(FL
t + 1jL

f
t + 1,Kt,G,Yt + 1) ð26Þ

In practice, the inverse semantics process is a series of

forward semantics evaluations in which the choice of lan-

guage is an element from L. The main concern with this

search process is computational cost and, in turn, its

impact on the real-time performance of the system. If we

could further improve the runtime performance of the for-

ward semantics model, there would necessarily be a corre-

sponding improvement in our inverse semantics

implementation. The next section describes a mechanism

to effectively bootstrap the language grounding process

with solutions computed in advance of an utterance

expressed by a human teammate.

6. Improving runtime performance of

language understanding and generation

When designing language interfaces, it is important to

consider how long the system takes to react or take an

action after receiving an utterance from the human. In the
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proposed system, the runtime performance of the inference

process is the main computational bottleneck that contri-

butes to this latency. Interfaces to robotic systems should

aim to achieve real-time responsiveness in order to main-

tain their effectiveness, as motivated in Section 1 with

respect to mission tempo. While the work presented thus

far leverages prior research on model approximations for

fast inference, language grounding is treated as a reactive

process. We propose further addressing this latency prob-

lem by precomputing language and grounding solutions for

a given environmental context, a process we refer to as

proactive symbol grounding. By instead proactively infer-

ring the meaning of utterances a human teammate might

say (in the context of the current state of the environment),

the system has the possibility of receiving a new utterance

with the solution already in-hand.

6.1. Proactive symbol grounding for language

understanding

In our model, the language grounding factor acts as a com-

putational bottleneck as it involves a search over a large

space of interpretations for an input instruction. Rather than

reactively interpreting a full instruction, which introduces

an interaction latency as previously described, we instead

proactively compute groundings for phrases that are likely

to be relevant for future instructions. This improves the

inference runtime by boot-strapping a novel utterance with

estimated groundings (true correspondences) from the set

of proactively grounded phrases possessing a similar parse

structure. For example, consider the novel instruction ‘‘put

the empty cup in the trash can.’’ If the robot has already

proactively grounded the constituent phrase ‘‘the trash

can’’ for the current state of the world, then the reactive

inference process can simply insert the solution for ‘‘the

trash can’’ and move on to other phrases in the parse tree.

Formally, the set of proactive correspondences F
psg
t + 1 is

determined as a function of the current environment state

Yt + 1. The space of possible language utterances is gener-

ated via a grammar G that specifies linguistic tokens and

production rules and is determined by scraping the rules

present within a training corpus. As conditional indepen-

dence is assumed across both individual phrases within the

parse tree and individual groundings within the full space

of semantic concepts, any given phrase with the same envi-

ronment state Yt + 1 will always ground to the same set of

symbols, regardless of parent phrases in the parse tree.

Relating back to the example above, ‘‘the trash can’’ maps

to the same set of symbols whether it appears in the utter-

ance ‘‘put the empty cup in the trash can,’’ ‘‘put the full

cup in the trash can,’’ or even just the simplest form of

‘‘the trash can.’’ Once the symbols that correspond to a

simple phrase have been found, they can be reused within

more complex phrases as long as changes in the environ-

ment do not alter their meaning. We leverage the hierarchi-

cal and compositional structure of language to construct

proactive grounding sets in a bottom-up manner.

Recall that the command-following task can be formu-

lated as Equation (23) defined in Section 4. Interpreting the

instruction requires computing the groundings for the full

instruction, i.e., for each phrase in the parse tree. A proac-

tive approach precomputes a set of candidate correspon-

dences for likely phrases as denoted as F
psg
t + 1. Conditioned

on these proactively grounded solutions F
psg
t + 1, we reac-

tively only compute correspondences Fnew
t + 1 for novel

phrases in the instruction Lt + 1 while performing a constant

time retrieval for the precomputed solutions. The proactive

grounding approach reformulates Equation (23) as

p(mt + 1jLt + 1,Yt + 1,at,G)=Z
Kt

X
Fnew

t + 1

p(Ktjat)
zfflfflfflffl}|fflfflfflffl{Knowledge belief

p(mt + 1jYt + 1,Kt, fFnew
t + 1,F

psg
t + 1,Gg)

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Generating actions

p(Fnew
t + 1jLt + 1,Yt + 1,F

psg
t + 1,G)

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Proactive language grounding
ð27Þ

Note that the factor p(Fnew
t + 1jLt + 1,Yt + 1,F

psg
t + 1,G) only

estimates the correspondences for new solutions. If we

indicate the set of novel phrases in the instruction as

Ls
t + 1, then jLs

t + 1jł jLt + 1j. The model only reactively

computes correspondences for novel phrases Fnew
t + 1, which

are fewer than the full set of candidate solutions Ft + 1 for

the instruction. As a result, the proactive approach leads to

runtime improvements in online instruction interpretation.

6.2. Proactive symbol grounding for feedback

generation

One of the main limitations of the approach introduced in

Section 5 is the runtime performance. Finding the sentence

that maximizes the probability of the known set of ground-

ings can be thought of as a series of forward passes through

the learned language understanding model. As a result, the

time it takes to finish the search process depends on the

runtime of each forward pass. Depending on the size of the

search space, this can be prohibitively long. Fortunately,

the set of proactively grounded phrases Lpsg generated for

addressing the latency problem of reactive language under-

standing can similarly bootstrap this inverse semantics pro-

cess by effectively providing solutions for a subset of

sentences at the cost of a constant-time lookup. As a result,

the set of sentences that inverse semantics needs to com-

pute reactively Lnew is now smaller than the full set L.

The reformulated model from Equation (26) is

L
f �
t + 1 = argmax

L
f

t + 1
2Lnew[Lpsg

p(FL
t + 1jL

f
t + 1,Kt,G,Yt + 1) ð28Þ

By effectively bootstrapping the search over language

with a subset of already-grounded sentences, the reactive
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language generation process has fewer computations. In

the best case, the proactive language grounding process

will have already exhausted L and, thus, the search pro-

cess consists of finding the highest value in a list. In the

worst case, Lpsg is empty and inverse semantics is equiva-

lent to Equation (26). We evaluate the runtime perfor-

mance both with and without the use of proactively

grounded phrases and report those results in Section 7.

7. Experiments and results

In order to validate the performance of the proposed sys-

tem and its components, we designed independent qualita-

tive and quantitative experiments.

7.1. Qualitative evaluation

The first experiment aims to show knowledge acquisition

over latent object attributes from declarative knowledge and

physical interaction. We used a Baxter Research Robot in a

tabletop setup populated with household objects as shown in

Figure 4. In the first scenario, the robot’s workspace con-

tained two coffee cups (with closed lids), a tray and a trash

can; the internal state of the cups was hidden with one cup

being empty and the other full. We assume that the robot

possesses learned background knowledge that empty cups

are to be discarded in the trash and full cups are to be placed

on the tray. As discussed in Section 3.2, the robot also pos-

sesses trained HMMs for classifying signatures from physi-

cal interaction with the cups. A plot of the different z-axis

force measurements for a full and an empty cup can be seen

in Figure 5(a). The robot did not have access to the internal

state of the cups. The robot was instructed to ‘‘clear away

the cups on the table’’ resulting in a grounded solution

referencing the two coffee cups. The grounding model esti-

mated the probable grounding of the sentence as the two

cups on the table. The robot picked up each, updating the

belief over the latent attributes according to force/torque sen-

sing. This knowledge allowed the robot to estimate the cor-

rect location to discard the empty cups in the trash and place

the filled cups on the tray.

In a subsequent scenario, the human declared ‘‘the cups

on the table are empty’’ before instructing the robot to

‘‘clear away the cups.’’ Contradictory to the initial state-

ment, the actual state of one of the cups is filled and should

not be discarded. The robot determined the true state of the

cups during interaction, correctly updating its prior belief

from force/torque sensing and choosing the correct actions.

Figure 6 shows the resulting changes to both the beta dis-

tribution and the expected likelihood of the expressed fact as

the robot interacts with one of the cups in the first scenario.

The robot first receives a declarative fact from language

expressed as ‘‘the cups on the table are empty,’’ leading to a

posterior update to the Beta hyper-prior for the likelihood

using the estimated grounding IsFull(cup)=True. Upon

engaging in a time-series of physically interactions with the

cup whose hidden attribute is actually IsFull(cup)=False,
the robot successively updates the latent belief over the sym-

bolic state. The robot interacts with the object until the nor-

malized entropy of the latent distribution is sufficiently

informative (set via a likelihood threshold). The estimation of

the correct belief allows the robot to correctly follow the

instruction of clearing the empty cups despite initially receiv-

ing an incorrect fact from the human.

In the second experimental evaluation, we tested an

integrated system that incorporates both the proactive

symbol grounding process for fast inference and the joint

use of declarative knowledge and force sensing for

Fig. 4. Experiment evaluating knowledge acquisition over latent object attributes from declarative knowledge and physical

interaction. The Baxter robot was instructed to ‘‘clear away the cups on the table.’’ Top: The robot attempts to pick up each cup in

turn and infers the latent attribute of the cups from the time series of interactions. Once the belief is sufficiently confident, the robot

discards the empty cup in the trash bin and puts the filled cup on the tray. Bottom: The human informs the robot that ‘‘the cups on

the table are empty’’ a fact that is true only for only one of the cups. The robot’s physical interaction results in a posterior belief

correcting the prior that resulted from the incorrectly stated fact. The posterior allows the robot to correctly accomplish the task of

clearing in correct locations.
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updating beliefs about objects’ attributes. The goal of this

qualitative experiment was twofold: (1) to demonstrate a

scenario in which faster task completion can be achieved

by incorporating human-declared knowledge about the

world as compared with relying on physical interaction

observations alone, and (2) to demonstrate robust task exe-

cution when provided incorrect world knowledge by a

human. For this second experiment, we used a Clearpath

Husky A200 mounted with a Universal Robots UR5

manipulator in a mobile manipulation setting composed of

two Pelican cases, as shown in Figure 7; the internal state

of the Pelican cases was hidden. The Pelican case on the

robot’s left was full and heavy, and the Pelican case on

the right was empty and light. We executed three different

types of scenarios in this experiment: (i) no declarative

knowledge, (ii) accurate declarative knowledge describing

the state of the two Pelican cases, and (iii) inaccurate

declarative knowledge. In one case of (i), the Husky was

instructed to ‘‘pick up the heavy case,’’ resulting in an

ambiguous grounded reference solution. The robot picked

up the left case, updating the belief that it was heavy; a

second interaction made the robot confident enough to

complete the action. In one case of (ii), the human accu-

rately declared ‘‘the case on the left is heavy,’’ followed

by ‘‘pick up the heavy case.’’ The robot picked up the left

case, updating its belief, which reinforced the human’s

(a)

(b)

Fig. 5. Distribution of physical interaction time-series measurement during manipulation. (a) Lifting distance and z-axis force

measurements over time for both full (red) and empty (blue) cups in Figure 4. (b) Approaching distance and z-axis force

measurements over time for both full (red) and empty (blue) barrels in Figure 8. The time-series force measurements for the ‘‘full’’

and ‘‘empty’’ object states. The patterns of force measurements over distances are modeled by two HMMs that are then leveraged

during log-likelihood-based binary classification to infer an object’s attribute.
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provided fact. A single force/torque interaction and the

accurate declared fact made the robot sufficiently confi-

dent to complete the action; the fact reduced the number

of required interactions. In one case of (iii), the human

declared ‘‘the case on the right is heavy,’’ followed by

‘‘pick up the heavy case.’’ The robot picked up the case

on the right, updating its belief in contradiction to the

human’s provided fact. The robot then lifted the left case

twice to be sufficiently confident and complete the action.

The third experiment, illustrated in Figure 8, was a part

of a field test held in a mock village marketplace at an

undisclosed testing facility. Deployed on a separate Husky

with a UR5 manipulator, we demonstrated an integrated

system that incorporated both previously evaluated com-

ponents and declarative knowledge feedback. Similar to

previous experiments, we trained an IsFull semantic prop-

erty estimator from 39 physical interaction data. In the

scenario, the robot first localized itself using multimodal

sensor fusion with Velodyne LiDAR, inertial measurement

unit (IMU), and Intel RealSense camera data. It then con-

structed the world model by recognizing objects using

Mask R-CNN (Massa and Girshick, 2018). Notably, the

internal states of the two barrels were unobservable; in

actuality, the blue barrel was empty and the other barrel

was full. Via a multimodal interface (MMI) described by

Barber et al. (2016), a human teammate initially shared

Fig. 6. The temporal evolution of belief over factual knowledge informed by language and interaction. The beta distribution at time

t for the Bernoulli likelihood over factual groundings is plotted in the top row. The maximum likelihood for a predicate state appears

below. Temporal evaluation from left to right. The initials ‘‘Lang.’’ and ‘‘Obs.’’ denote estimated groundings obtained from

language and time-series interaction data, respectively. The estimation of the correct belief allows the robot to correctly follow the

instruction of clearing the empty cups to the trash and placing the fill cup on the tray.

(a) (b) (c) (d)

Fig. 7. An experiment incorporating both proactive symbol grounding and updates to beliefs about objects’ attributes via declarative

knowledge and force/torque sensing. (a) Initial state of the right case is heavy. (b) Updated belief is uncertain about heavy case. (c)

Interaction with the other case. (d) Updated belief that the left case is heavy. The Husky robot with a mounted robot arm was

inaccurately told ‘‘the case on the right is heavy’’ before receiving the instruction ‘‘pick up the heavy case.’’
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their mental model of the objects by stating declaratively

that both ‘‘the rightmost barrel is full’’ and ‘‘the leftmost

barrel is full.’’ As mentioned, the true state of the right-

most barrel was empty, and thus the human’s shared

knowledge contained an inaccuracy. The robot was then

instructed to ‘‘push the rightmost barrel.’’ Upon doing so,

it updated its belief over the internal states according to

observations from force/torque sensing, which were in

contradiction to the human’s shared world knowledge. As

such, the robot reported back a declarative statement in

order to correct the human’s mental model of the barrel.

This was done by populating a template with the stored

phrase that the human used to initially provide world

knowledge about the barrel. With this updated informa-

tion, the user then instructed the robot to ‘‘push the full

barrel,’’ an instruction that previously would have been

ambiguous. Owing to the updated shared world model, the

robot was able to navigate to and push the barrel on the

left as per the user’s instruction.

Videos for all qualitative evaluations are submitted as a

multimedia Extensions 1–3.

7.2. Quantitative evaluation

The first statistical evaluation targets the impact of both

the PSG component and use of the commonsense knowl-

edge base informed priors on the latency of generating lin-

guistic knowledge-state feedback. In particular, this

evaluation seeks to quantify the change in feedback gener-

ation time (i.e., from the time the utterance is received to

the time a response is generated) as a result of including

one or both of these system components. The forward

semantics model was trained on a corpus of 807 annotated

examples composed of a variety of symbolic concepts

including objects in the world, object categories, physical

object properties, spatial relationships, regions, and sym-

bolic actions (see Section 2). By leveraging idle system

time while the robot physically interacted with an object,

the PSG process was able to precompute the solutions for

a subset of 550 different language phrases that could

describe the object. When the robot identifies an incorrect

fact, it searches over six possible fact templates that are

populated using the most likely phrase describing the

object of interest, where this phrase is found via the

inverse semantics process described in Section 5. The

baseline case allowed no time for PSG to run, instead

requiring the process to trigger reactively. In the best case,

it was able to exhaust the full set of language phrases and

provide fast feedback. As can be seen in Table 1, proac-

tive symbol grounding contributed a significant reduction

in the latency of feedback generation. Because the use of

an informed prior can reduce the number of physical

Fig. 8. Experiment demonstrating the declarative knowledge feedback and latent attribute update by declarative language utterance

and physical interaction. The Husky robot with a UR5 arm is placed in a outdoor test site filled with doors, windows, barrels,

bicycles, among other objects. A user verbally provided wrong and right declarative knowledge for empty and full barrels,

respectively. The robot then estimates and reports the latent attribute to the user by pushing each.

Table 1. Language generation latency from making a

contradictory observation to producing linguistic knowledge-

state feedback. The results show the performance with and

without both the use of proactive symbol grounding (PSG) and

the informed prior. The proactive approach leads to significant

reduction in latency in both cases.

Informed Prior No Prior

PSG 2.445 6 2.423 s 0.169 6 0.003 s
No PSG 94.761 6 0.806 s 94.834 6 0.646 s

Arkin et al. 17



interactions necessary for the robot to become sufficiently

confident about a contradictory observation, it conse-

quently limits the idle system time that can be used for

PSG.

A second statistical evaluation targets the proactive

symbol grounding component for natural language symbol

grounding in simulation and quantitatively compares the

inference runtime to a reactive baseline. This experiment

is designed to address the question of how the amount of

idle system time impacts the contribution of PSG on

improved runtime performance of the inference process.

For this experiment, we assumed a sufficiently expressive

symbolic representation (Paul et al., 2018), a grammar,

and a corpus of annotated examples used for training. To

quantify performance, we trialed different durations of

proactive grounding time, increasing from 0 seconds to 8

seconds in 2 second intervals, during which the process

grounded candidate phases, illustrated in Table 2 as ‘‘PSG

duration’’ (proactive symbol grounding duration) and

‘‘Number of grounded phrases,’’ respectively. The row

‘‘NLSG inference time’’ (natural language symbol ground-

ing time) reports the runtime for a novel utterance; as

expected, the runtime decreases as a function of the PSG

duration owing to the process generating more matches to

phrases in the novel utterance’s parse tree and, thus, reduc-

ing the number of phrases to be computed at inference

time. We include a trial with 0 seconds of proactive

grounding time to establish a baseline of performance for

the natural language symbol grounding process without

any bootstrapping by the proactive grounding module.

Next, we evaluated the accuracy of predicting semantic

properties using the model trained from commonsense cor-

pora. We evaluated the performance of three scoring func-

tions that were introduced in Section 3.3. We trained the

model using the aforementioned scoring functions with the

VerbPhysics dataset containing 2,500 object pairs anno-

tated with relative physical properties. The goal of the

classifiers is to predict one of the four classes (greater,

less, equal, or unknown) given an object pair and a physi-

cal property as input. The corpus was split into training,

development and test set in the ratio 80 : 10 : 10. The clas-

sifiers were trained to minimize negative log likelihood of

the data. We trained for 50 epochs with Adam optimiza-

tion. The model was tested at the end of each epoch on the

development set and that with the best average perfor-

mance was selected to get the accuracy on the test set.

Table 3 shows the performance of the models on the test

set. The model based on the Bilinear-diag function outper-

forms other methods.
6

For the rest of the experiments, we

use the Bilinear-diag model.

We also quantitatively evaluated the impact of using an

informed prior on the accuracy and rate of convergence of

the belief to the correct estimate of a semantic property as

the robot interacts with an object. We selected six objects

for our environment: a box, a basket, a chair, a case, a

fridge and a cabinet (see the images in Table 4). For each

object, we focus on estimating whether each of the objects

is heavy or light for the purposes of manipulation using a

UR5 manipulator. The robot interacted with each object

30 times by randomly positioning the object in the manip-

ulation region of the robot, pushing the object with the

end effector and recording the force measurements and

end-effector pose of the UR5 arm. The resulting physical

interaction dataset was randomly permuted resulting in a

total of 1,000 different manipulator interaction sequences

for each object. Prior probabilities were estimated using

the model laid out in Section 3.3 using the Bilinear-diag

function, which was empirically found to be best perform-

ing (see Table 3).

Next, we estimated the heavy/light semantic property

using the physical interactions alone and subsequently

incorporated the informed priors along with the physical

interactions. In each trial, we recorded the number of

interaction attempts necessary to infer the property of the

object. If we inferred the wrong attribute or we were not

able to infer the correct property even after incorporating

the entire sequence, the number of attempts was set to 30,

the maximum length of the interaction sequence.

Figure 9(b) demonstrates that the informed prior enabled

faster convergence to the true estimate in comparison to

using an uninformed prior represented as no prior (e.g.,

0:5 for both :Heavy and Heavy). The figure empirically

demonstrates the learned priors are informative and hasten

convergence to the true latent attribute. Further, the accu-

racy of predictions at convergence was found to be equiv-

alent for the runs with the informed priors and the

uninformed priors (see Figure 9(a)). As an example, infer-

ring the latent attribute for the basket object required at

least five interaction tries with an uninformed. The

informed prior (i.e., 0:2 for :Heavy) decreased the

Table 2. Runtimes showing the impact of incrementally

increasing durations of proactive symbol grounding (PSG) on

natural language symbol grounding (NLSG) for a single

instruction. The leftmost column reports the baseline of NLSG,

which is effectively 0 seconds of PSG duration. The proactive

approach allows a significant reduction in latency.

PSG duration (s) — 2.0 4.0 6.0 8.0
Number of grounded
phrases

0 31 62 102 146

NLSG inference time (s) 0.21 0.18 0.14 0.13 0.09

Table 3. A comparison of accuracy (%) in predicting semantic

physical properties from commonsense corpus. The table

compares the TransE, Bilinear, and Bilinear-diag similarity

functions.

Function Size Weight Strength Rigidity

TransE 92.04 92.77 85.96 83.96
Bilinear 92.96 91.97 87.39 84.07
Bilinear-diag 93.78 93.07 89.8 83.52
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Table 4. Real objects (6) used in the third experimental evaluation for showing how an informed prior from background knowledge

can assist in rapid estimation of latent semantic attributes. We recorded force/torque and end-effector positional information during

180 robot–object interaction sequences.

Fig. 9. Comparison of latent-attribute estimation results with or without informed prior over three likelihood thresholds,

(0:75, 0:8, 0:85). (a) The accuracy of estimating the latent semantic attribute. Acc. shows the fraction of sequences in which we could

infer the correct property for the object. (b) The average number of interaction tries (with standard errors) for estimating the latent

semantic attribute. Avg. Tries is the average number of interaction attempts needed to estimate whether an object is heavy or not.
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necessary tries by two interactions without decreasing the

accuracy, where the likelihood threshold was 0:85 in this

experiment.

Finally, we evaluated a fully integrated system that

incorporated previously evaluated components, PSG, and

linguistic feedback generation. As shown in Figure 10, we

placed a Husky with a UR5 manipulator in a partially

observable environment with a ‘‘full’’ semantic attribute

of a Pelican case. In the scenario, the robot first recognized

the Pelican case by using a RealSense camera mounted on

the rear sensor arch. A human operator then provided a

declarative fact, ‘‘the case is full’’ or ‘‘the case is empty.’’

Otherwise, the operator did not provide any fact. The robot

was then commanded to infer the Pelican case’s latent

attribute through physical interactions with or without

informed prior. Once the belief over any latent attribute is

higher than a threshold (i.e., 0.9) via Bayesian update, the

robot reported the inference result. The robot performed

five experiments per each scenario (total six scenarios),

correctly estimated the true attribute (i.e., ‘‘full’’), and

recorded the number of required physical interactions with

belief changes per each. Figure 11 shows both informed

prior and correct factual knowledge are helpful to mini-

mize the number of required physical interactions. It shows

the Bayesian semantic knowledge estimator successfully

propagated the belief over semantic world properties from

multiple and diverse sources, and also presents the prob-

abilistic model corrected inaccurate knowledge, ‘‘empty’’

or no prior, online.

Note that the commonsense corpora derived from

human annotations might contain erroneous facts resulting

in incorrectly informed priors. Either incorrect utterance or

incorrectly informed priors may lead to incorrect linguistic

feedback, which is not observed in our experiments.

8. Related work

Significant attention has been paid to the problem of

endowing robots to interpret natural language instructions.

Contemporary statistical approaches to language under-

standing been developed that enable robots to follow

complex free-form instructions that involving object

manipulation (Misra et al., 2016; Paul et al., 2018;

Shridhar and Hsu, 2018; Thomason et al., 2016), naviga-

tion (Howard et al., 2014b; Kollar et al., 2010; Matuszek

et al., 2010, 2012b; Thomason et al., 2015), and mobile

manipulation (Tellex et al., 2011b; Walter et al., 2014a).

Such approaches commonly formulate language under-

standing as a problem of learning a model that associates

(i.e., ‘‘grounds’’) each word in a free-form utterance to its

corresponding referent in the robot’s model of its state and

action space (Harnad, 1990; Howard et al., 2014a,b;

Tellex et al., 2011b). Most existing methods assume that

the robot’s model of the environment (the ‘‘world

model’’) is known a priori, typically in the form of a map

that expresses the semantic and metric properties of

objects and locations necessary to interpret the command.

Instead, we have proposed and evaluated a probabilistic

framework that enables robots to exploit multimodal

observations, including linguistic, visual, and haptic mea-

surements, to infer latent properties of its environment

necessary for human–robot collaboration in partially

observed settings. Earlier work in this area includes that of

Duvallet et al. (2013), which learns to follow navigational

instructions in unknown environments based upon human

demonstrations, as well as recent work on language-based

visual navigation in novel environments (Anderson et al.,

2018; Mei et al., 2016a). More closely related to our

framework are methods that leverage metric and semantic

information implicit or explicit in the command to learn a

distribution over world models that facilitates natural lan-

guage understanding in a priori unknown environments

(Duvallet et al., 2014; Hemachandra et al., 2015; Oh et al.,

2016; Walter et al., 2014b). We address a different ele-

ment of ‘‘partial observability’’ by inferring the state of

Fig. 10. Semantic latent-attribute estimation experiment. The

Husky robot with a UR5 manipulator detects a Pelican case

using a RealSense camera and attempts to touch it to infer a

latent attribute that is not visually observable.
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Fig. 11. Comparison of semantic latent-attribute estimation with

or without informed prior over declarative knowledge. The Husky

robot with a UR5 manipulator attempted to touch a Pelican case

(see Figure 10) and infers its latent attribute (i.e., full). Once the

belief over any attribute is higher than the 0.9 threshold via

Bayesian update, the manipulator finishes the estimation.
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object attributes as opposed to hypothesized locations of

objects or landmarks that exist beyond the robot’s field of

view or its internal map of the explored world. We also

incorporate a novel knowledge state variable in our gra-

phical model and incrementally update a distribution over

that knowledge state rather than reason over a distribution

of maps.

Meanwhile, recent methods similarly exploit multimo-

dal observations to learn object attributes. Of this body of

work, some approaches incorporate human gestures as an

input modality to learn object and relation classifiers, as

well as attributes such as color (Kollar et al., 2013a;

Matuszek et al., 2014; Whitney et al., 2016). Others incor-

porate audio and haptic measurements as sensing modal-

ities to learn attributes that are not visually observable

(Chu et al., 2015), such as whether a container is full or

not based on the sounds produced while picking up and

shaking (Sinapov and Stoytchev, 2009). Related, some

methods directly learn behavior- or sensorimotor-grounded

classifications (Hogman et al., 2013), such as the work of

Sinapov et al. (2014) that uses vision, proprioception, and

audio to learn semantic labels for objects while the robot

interactions with them.

Relevant to the goals of this work are methods that con-

sider the problem of understanding instructions that are

ambiguous in the context of the robot’s model of its state

and action space. Among these methods are those that

employ inverse groundings (Gong and Zhang, 2018;

Tellex et al., 2014) as a means of asking targeted questions

that are believed to be most informative in an estimation-

theoretic sense (Tellex et al., 2012). Related, a number of

techniques have been proposed to learn a priori unknown

grounding models by exploring models that relate novel

linguistic predicates to the robot’s world model or directly

to its percepts (She and Chai, 2017; Thomason et al., 2018,

2016; Tucker et al., 2017). Our work differs in that we

assume that the concepts are known, but that the instantia-

tion of these concepts in the robot’s environment are

unknown.

Our contribution leverages language as a source of

information about latent object states by grounding

declarative statements from user utterances. Other natural

language symbol grounding approaches that incorporate

declarative knowledge (Kollar et al., 2013b; Matuszek

et al., 2012a; Paul et al., 2017; Perera and Allen, 2013;

Thomason et al., 2016) assume that such information is

correct and sufficient for task execution. In contrast, our

model incrementally fuses information from language and

force/torque interactions, making task execution more

robust to inaccurate or incorrectly understood declarations.

In the event that the robot identifies discrepancies

between the declared knowledge and its observation of the

environment, our framework conveys this disagreement to

the user via generated language. Our approach is related

to recent work on inverse symbol grounding (Tellex et al.,

2014), which is typically considered in the context of

engaging the user in dialog to resolve ambiguities in the

task (Deits et al., 2013; Hemachandra and Walter, 2015;

Raman et al., 2013; Tellex et al., 2012). With this

approach, we invert our learned language understanding

model to identify the set of phrases that are most likely to

correspond to the particular properties of the environment

of interest. Unlike Tellex et al. (2014), who used general-

ized grounding graphs (Tellex et al., 2011b), we use the

distributed correspondence graph language model

(Howard et al., 2014a), which affords more efficient infer-

ence. We also identify phrases by explicitly optimizing

over their likelihood rather than maximizing over a scor-

ing function.

Highly relevant is work on referring expression genera-

tion, which is concerned with producing a textual descrip-

tion that allows a human to correctly identify a target

object or other entity that is known only to the generator.

In the computer vision and natural language processing

communities, the task typically involves conveying infor-

mation about objects or locations within an image

(Kazemzadeh et al., 2014; Luo and Shakhnarovich, 2017;

Mao et al., 2016; Yu et al., 2016). Contemporary

approaches to this problem employ neural network archi-

tectures for language generation, and thus require access

to large datasets for training, which are typically not avail-

able for robotics or other embodied domains. In robotic

applications, referring expression problems often involve

reasoning over spatially extended 3D environments (e.g.,

at the room, floor, or building level). Consequently, gener-

ation algorithms (Fang et al., 2015; Kelleher and Kruijff,

2006; Zender et al., 2009) must provide enough informa-

tion for the listener, whose context will often be limited.

Related, other researchers have endowed robots with

language generation capabilities as a means of conveying

task information to their human partners (Andrist et al.,

2013; Dzindolet et al., 2003; Wang et al., 2016). Among

these are methods that consider the problem of producing

free-form instructions that allow humans to perform a

task, such as navigation (Curry et al., 2015; Goeddel and

Olson, 2012; Oswald et al., 2014). Traditionally, solutions

to this problem have relied upon hand-crafted rules that

are designed to mimic the way in which humans generate

instructions (e.g., via a set of composition rules and lan-

guage templates). Much like language understanding,

recent work employs statistical and learned models

(Cuayáhuitl et al., 2010; Daniele et al., 2017b; Oswald

et al., 2014) that can be trained from natural language cor-

pora, and are thus able to produce utterances that are eas-

ier for people to follow.

Significant effort in the natural language processing

community has focused on the problem of generation.

This includes work on selective generation, which consid-

ers the problem of producing a natural language utterance

that effectively expresses the content of a rich database.

Selective generation has traditionally been formulated as

two separate problems: content selection (Barzilay and

Lapata, 2005; Barzilay and Lee, 2004), which reasons

over what to talk about, and surface realization (Liang
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et al., 2009; Walker et al., 2001), which decides how to

convey the selected content via natural language. Relevant

to our inverse semantics approach, Wong and Mooney

(2007) effectively inverted a semantic parser to generate

natural language text from formal meaning representations

using synchronous context-free grammars.

Recent work performs selective generation via a single

framework (Angeli et al., 2010; Chen and Mooney, 2008;

Kim and Mooney, 2010; Konstas and Lapata, 2012; Mei

et al., 2016b), rather than treating it as two separate sub-

problems. Angeli et al. (2010) formulate content selection

and surface realization as local decision problems via log-

linear models, and employ templates for generation. Mei

et al. (2016b) proposed a recurrent neural network enco-

der–aligner–decoder model that jointly learns to perform

content selection and surface realization from database–

text pairs, thereby treating the selective generation as an

end-to-end learning problem.

9. Discussion and conclusion

We have introduced a probabilistic model for inferring the

latent semantic properties of the world to correctly follow

high-level human instructions in partially observable

environments. We have demonstrated how both linguistic

descriptions from a human and signatures derived from

the robot’s physical interaction can be used to infer the

latent semantic properties of the environment required for

task execution. Further, we have leveraged background

commonsense knowledge corpora to learn an informed

prior when initializing the model for efficient subsequent

inference.

We have also presented an approach for generating lin-

guistic feedback to the human in the case where discrepan-

cies are observed between the robot’s and the human’s

semantic knowledge about the world. Finally, we have

addressed the issue of reducing latency in both instruction

interpretation and feedback generation that stems from the

computation complexity of associating language with

semantic entities in the world. We have introduced a

proactive grounding approach that predicts future utter-

ances and selectively computes candidate interpretations

from incremental observations of the world. We have

demonstrated the approach on fixed and mobile manipula-

tors executing high-level tasks by ‘‘filling in’’ semantic

knowledge about world entities from both declarative

knowledge sources as well as physical interactions.

The experiments in this work contribute towards brid-

ging the gap between higher-order inputs such as language

from the human and low-level representation such as

interaction forces for the robot via grounded learning of

semantic concepts by fusing acquired semantic knowl-

edge. The experimental evaluations on multiple platforms

and the field deployment test contribute toward validating

the reproducibility and robustness in the presence of

uncertain environment conditions. Further, the ability to

provide online linguistic feedback for resolving differ-

ences in the robot’s and the human’s mental models con-

tributes to addressing the transparency and op-tempo

communication requirements of real-world human–robot

teaming scenarios.

There are several avenues for future work that emerge

from the current investigation. Our current approach for

deciding and taking information gathering actions is myo-

pic because we only utilize a one-step look ahead. The

decision is also based on the entropy of the underlying dis-

tribution but does not explicitly compute the information

gain associated with actions. There is scope to integrate

multistep planning to gain information about uncertain

semantic properties. Further, we considered semantic attri-

butes associated with an object to be independent while

fusing knowledge from multiple sources. Often, physical

properties are correlated. For example, heavy objects are

often difficult to slide. Hence, future work will explore

Bayesian priors that preserve correlations. There is scope

to leveraging similar work in correlated topics modeling

(Blei and Lafferty, 2006).
7

Similarly, there is scope to use

a correlated measurement model that accounts for corre-

lated observations. For example, observing items such as

cups and tables are highly predictive of the presence of

humans in a building.

The current model assumes that the space of semantic

concepts is fixed a priori, thereby making the overall sys-

tem less robust for situations in which the plan execution

requires knowledge of a novel semantic property that was

not seen during training. This limitation can be addressed

in two ways. First, we can incorporate non-parametric

Bayesian models that expand with data complexity (Blei

and Jordan, 2006). Second, we may explore ways to detect

the presence of a new concept and acquire new recogni-

tion models online with limited interaction (Tucker et al.,

2017), thereby allowing our model to grow its space of

semantic concepts in an online fashion. Our experiments

so far have focused on the robot interacting with the world

to improve its understanding. There is further scope to

acquire semantic knowledge by observing the behavior of

other agents, either during an intentional demonstration or

via happenstance while executing a collaborative task. As

an example, if the robot observes a person struggle to lift

a box, it can incorporate that observation as evidence

about the box’s heaviness.

The present formulation incorporated binary predicate sym-

bols to represent symbolic states. The model can be extended

in case of ternary or multi-ary properties as well by incorporat-

ing a multi-dimensional conjugate distribution. For example,

we can extend the Beta-Bernoulli prior to a Dirichlet-multino-

mial prior to incorporate multi-ary properties.

This work has explored the use of natural language to

inform the latent properties of objects in the robot’s world

model that were corroborated or corrected by the haptic

modality. However, unlike touch, language utterances are

often ambiguous and may only implicitly communicate

information. For example, the a language instruction may
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be ambiguous in terms of which objects are referenced.

Consider the utterance, ‘‘the barrel on the left is empty’’

when there are two barrels on the left side of the robot.

Such ambiguity can be addressed by engaging in dialog

with the operator. The natural language generation system

presented in this work can be extended and used to gener-

ate disambiguation queries to resolve the ambiguity. Now,

we turn our attention to the problem of implicit knowledge

that we did not consider in this work. Consider the sce-

nario where the operator informs the robot that ‘‘all the oil

in the barrel was removed today.’’ Common sense reason-

ing informs us that the barrel is now empty. However, the

presented system would not use such knowledge as it can-

not reason about implicit knowledge. The problem can be

addressed by incorporating (learning) common sense

knowledge and performing a form of logical inference or

logical state estimation to determine the implicit states

from the explicitly stated knowledge. Exploration in this

direction remains part of future extensions.

Further, the current model assumes that the linguistic,

haptic, and knowledge-based priors are equally weighted.

In practical contexts, one modality may be more informa-

tive than others. Learning per-modality sensor models and

context-specific weightings remains part of future work.

Finally, we seek to expand the scope of language feedback

to also include explanations (Parkash and Parikh, 2012;

Selvaraju et al., 2017). We envision that the robot should be

able to communicate not only that a piece of factual knowl-

edge is incorrect, but describe how it arrived at such a conclu-

sion, for example, by interacting with it. We intend to explore

richer multimodal communication as part of future research.
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Notes

1. Our technical exposition uses two time scales. The subscript

t denotes the time scale at which the language utterances,

visual observations, and interaction measurements are used

to update the robot’s world model We assume a finer discre-

tization of this update time instant t into n time steps

t0, . . . , tn in which the robot executes a low-level motion

plan and receives measurements that are collectively used to

update knowledge about the world.

2. Note that the beta distribution models the distribution over

the true likelihood of the Bernoulli distribution. Each sample

from the beta distribution forms a histogram over truth value

of a semantic property.

3. We implement the HMMs using the general hidden Markov

model library (GHMM) (Schliep et al., 2004).

4. We used a0 = (2, 2) to initialize a symmetric beta distribution

acting as a diffuse uninformed prior over K0 at model initiali-

zation at time t0.

5. Note that the same language understanding model (Paul

et al., 2017) was used in Section 3 to infer declarative facts

from language utterances. In this section, we use the model

to infer grounded actions based on knowledge acquired from

past observations and prior knowledge.

6. The higher performance of the Bilinear-diag similarity func-

tion corroborates findings by Yang et al. (2014) in link pre-

diction tasks.

7. Correlated topic models (Blei and Lafferty, 2006) use a logis-

tic normal prior instead of Dirichlet priors to model correla-

tions between discrete word expression.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media
type

Description

1 Video Demonstration of physical interaction
with closed cases for inferring hidden
states via a Clearpath Husky A200
with a Universal Robotics UR5
manipulator.

2 Video Demonstration of physical interaction
with barrels to estimate their pliability/
pushability via a Husky with a UR5
manipulator.

3 Video Demonstration of physical interaction
with cups in a tabletop domain to
estimate their internal state as empty
or full on a Rethink Robotics Baxter
Research Platform. The determination
of latent states allows completion of a
tabletop clearing task.
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