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Abstract

One of the most basic lower bounds in machine
learning is that in nearly any nontrivial setting, it
takes at least 1/ϵ samples to learn to error ϵ (and
more, if the classifier being learned is complex).
However, suppose that data points are agents who
have the ability to improve by a small amount if
doing so will allow them to receive a (desired)
positive classification. In that case, we may ac-
tually be able to achieve zero error by just being
“close enough”. For example, imagine a hiring test
used to measure an agent’s skill at some job such
that for some threshold θ, agents who score above
θ will be successful and those who score below
θ will not (i.e., learning a threshold on the line).
Suppose also that by putting in effort, agents can
improve their skill level by some small amount r.
In that case, if we learn an approximation θ̂ of θ
such that θ ≤ θ̂ ≤ θ + r and use it for hiring, we
can actually achieve error zero, in the sense that
(a) any agent classified as positive is truly quali-
fied, and (b) any agent who truly is qualified can
be classified as positive by putting in effort. Thus,
the ability for agents to improve has the potential
to allow for a goal one could not hope to achieve
in standard models, namely zero error.

In this paper, we explore this phenomenon more
broadly, giving general results and examining un-
der what conditions the ability of agents to im-
prove can allow for a reduction in the sample
complexity of learning, or alternatively, can make
learning harder. We also examine both theoreti-
cally and empirically what kinds of improvement-
aware algorithms can take into account agents
who have the ability to improve to a limited ex-
tent when it is in their interest to do so.
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1. Introduction
There has been growing interest in recent years in machine
learning settings where a deployed classifier will influence
the behavior of the entities it is aiming to classify. For exam-
ple, a classifier that maps loan applicants to credit scores and
then uses a particular cutoff θ̂ to determine whether an appli-
cant should receive a loan will induce those below the cutoff
value to take actions to improve their score. This setting is
called strategic classification (Hardt et al., 2016) or measure
management (Bloomfield, 2016) when the actions taken do
not truly improve the agent’s quality, and performative pre-
diction (Perdomo et al., 2020) more generally. In this work,
our focus is on the case that the improvements are real e.g.,
paying off high-interest credit card debt, taking a money
management class, etc. for genuinely improving one’s loan
application. That is, the agent responds to the classifier in
order to potentially improve their classification (Kleinberg
& Raghavan, 2020; Miller et al., 2020), changing its true fea-
tures in the process. The classifier must take this “strategic
improvement” response into account.

Unlike previous works on strategic improvement that fo-
cus extensively on efficiently incentivizing and maximizing
agent improvement (e.g., (Miller et al., 2020; Kleinberg &
Raghavan, 2020; Haghtalab et al., 2020; Shavit et al., 2020),
among others), we aim to understand how an agent’s capac-
ity for improvement impacts learnability, sample complex-
ity, and algorithm design for accurate classification. One
high-level take-away from our theoretical analysis and em-
pirical results is that the ability of agents to improve favors
algorithms that are more “conservative” in their decisions.
This is both due to the reduced concern over false-negative
errors (since agents in those regions may still be able to im-
prove to be classified as positive) and the increased concern
over false-positive errors (which may cause individuals to
“improve” incorrectly).

To illustrate the potential reduction in sample complexity
that result from agents’ ability to improve, one of the most
basic lower bounds in machine learning is that in nearly any
nontrivial setting, it takes at least 1/ϵ samples to learn to
error ϵ (and more, if the classifier being learned is complex).
However, if agents have the ability to improve by a small
amount, we may actually be able to achieve zero error by just
being “close enough”. To the best of our knowledge, this has
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not been previously observed in the strategic improvement
literature. Returning to the loan example above, suppose
that by putting in effort, agents can improve their credit
score by some small amount r, and suppose we are in the
realizable case that there is some true threshold θ such that
agents with credit score above θ will be good customers and
those who score below θ will not. In that case, if we learn
an approximation θ̂ of θ such that θ ≤ θ̂ ≤ θ + r and use it
as a cutoff to determine who should receive a loan, we can
actually achieve zero error in that (a) any agent classified
as positive is truly qualified, and (b) any agent who truly is
qualified can get classified as positive by putting in effort.
Thus, the ability for agents to improve can potentially allow
for a goal one could not hope to achieve otherwise.

We also observe fundamental differences in the inherent
learnability of concept classes, compared to both standard
PAC learning where the agents cannot respond to the classi-
fier, as well as the strategic PAC setting where the agent tries
to deceive the classifier to obtain a more favorable classifi-
cation. Somewhat surprisingly, learning with improvements
can sometimes be easier than the standard PAC setting, and
it can sometimes be harder than strategic classification. We
show that proper learnability with improvements in the re-
alizable setting is closely linked to the concept class being
intersection-closed.

Concretely, our contributions are as follows:

• In Section 3, we show a separation between the standard
PAC model and our model of PAC learning with improve-
ments. Specifically, we show that a finite VC dimension
is neither necessary nor sufficient for PAC learnability
with improvements. We further show a similar separation
from the more recently studied PAC model for strategic
classification (Hardt et al., 2016; Sundaram et al., 2023).

• In Section 4, we study learnability of geometric concepts
in Rd. We show that any intersection-closed concept
class is learnable under our model, and show that the
generalization error can be smaller than the standard
PAC setting for interesting cases including thresholds
and high-dimensional rectangles. We also show that the
intersection-closed property is essentially necessary for
proper learnability in our setting.

• In Section 5, we study a graph model in which each node
represents an agent and the improvement set of an agent
is the set of its neighbors in the graph. We establish near-
tight bounds on the number of labeled points the learner
needs to see to learn a hypothesis which achieves zero
error with high probability, given the ability to learn the
labels of uniformly random nodes. We further show that it
is possible to learn a “fairer” hypothesis that also enables
improvement whenever it leads to a better classification
for an agent. We also study a teaching setting where the
teacher aims to find the smallest set of labels needed to

ensure that a risk-averse student achieves zero-error, and
show that providing the labels for the dominating set of
the positive subgraph (induced by the true positive nodes)
is sufficient.

• In Section 6, we conduct experiments on three real-
world and one fully synthetic binary classification tab-
ular datasets to investigate how the error rate of a model
function (h) decreases when test-set agents that it initially
classified as negative improve. Our results indicate that
while risk-averse models may start with higher error rates,
their errors rapidly drop as the negatively classified test
agents improve and the improvement budget (r) increases.

A stricter penalty for false positives typically leads to
more accurate positive classifications, resulting in greater
gains from agent improvements. In most cases, test er-
rors decline sharply, sometimes reaching zero (e.g., in
Figure 10g).

Related Work. Learning in the presence of strategic
(“gaming”), utility-maximizing agents has gained increasing
attention in recent years ((Hu et al., 2019; Milli et al., 2019;
Braverman & Garg, 2020; Ahmadi et al., 2021; Haghtalab
et al., 2020), among others). Early research framed this
problem as a Stackelberg competition (Hardt et al., 2016;
Brückner & Scheffer, 2011), where negatively classified
agents manipulate their features to obtain more favorable
outcomes if the benefits outweigh the costs. Kleinberg &
Raghavan (Kleinberg & Raghavan, 2020) extend this model
by considering agents who can both manipulate and gen-
uinely improve their features, proposing a mechanism that
incentivizes authentic improvement. This model has been
studied under a causal lens, where the learner may not a pri-
ori know which features correspond to manipulation or im-
provement. Strategic learning from observable data requires
solving a causal inference problem in this setting (Miller
et al., 2020), and the ability to test different decision rules
can be helpful (Shavit et al., 2020). Ahmadi et al. (Ahmadi
et al., 2022) consider a similar setting and propose classifi-
cation models that balance maximizing true positives with
minimizing false positives.

We extend this line of work by analyzing the inherent learn-
ability of classes, the sample complexity of learning, and
the ability to achieve zero-error classification, when agents
can truly improve. Inherent learnability of concepts has
been studied in the strategic manipulation setting (Sundaram
et al., 2023; Cohen et al., 2024; Lechner & Urner, 2022),
but not in the strategic improvement setting. In Section B.2,
we show how our improvement setting differs from strate-
gic manipulation with respect to learnability. The sample
complexity of learning in the presence of purely improv-
ing agents has been studied by Haghtalab et al. (Haghtalab
et al., 2020), but from a social welfare perspective where
the goal is to maximize the true positives after improvement.
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In contrast, our primary focus is classification error, which
is more sensitive to false positives. In Section 5.2, we show
that these two objectives need not be in conflict and may be
simultaneously optimized. Finally, the ability of a learner to
achieve zero-error for non-trivial concept classes and distri-
butions has not been previously observed in any strategic or
non-strategic setting.

Our work also relates to research in reliable machine learn-
ing (Rivest & Sloan, 1988; El-Yaniv & Wiener, 2010),
where a learner may abstain from classification to avoid
mistakes, balancing coverage (the proportion of classified
points) against error. In contrast, we strive for a zero false
positive rate and minimal false negative rate, aligning with
learning under one-sided error (Natarajan, 1987; Kalai et al.,
2012). We include a more detailed discussion of the related
work in Appendix A.

2. Formal Setting: PAC Learning with
Improvements

Let X denote the instance space consisting of agents with
the ability to improve, as defined below. We restrict our
attention to the case of binary classification, i.e., the label
space is {0, 1}. Without loss of generality, we refer to label
0 as the negative class and label 1 as the positive class.
Let ∆ : X → 2X denote the improvement function that
maps each point (agent) x ∈ X to a set of points ∆(x) (the
improvement set) to which x can potentially improve itself
in order to be classified positively. For example, if X is a
metric space, we can define ∆(x) as the ℓp-ball centered at
x. Let H ⊆ {0, 1}X denote the concept space, that is, the
set of candidate classifiers. We will focus on the realizable
setting, i.e. we assume the existence of an unknown (to
the learner) target concept f∗ : X → {0, 1} that correctly
labels all points in X and satisfies f∗ ∈ H.

The intuition behind the model is as follows. The learner
first publishes a classifier h : X → {0, 1} (potentially based
on some data sample labeled according to f∗). Each agent
then reacts to h (Zrnic et al., 2021; Hardt et al., 2016)—if it
was classified negatively by h, the agent attempts to find a
point in its improvement set that is positively classified by
h and moves to it. Note that the agents do not know the true
function f∗ and as a result cannot react with respect to the
ground truth, only based on h.

We formalize this as the reaction set with respect to h,

∆h(x) =

{ {x} if h(x) = 1,
{x} if {x′ ∈ ∆(x) | h(x′) = 1} = ∅,
{x′ ∈ ∆(x) : h(x′) = 1} otherwise.

In other words, if h classifies x as positive, the agent x stays
in place and does not attempt to improve. If h classifies x
as negative, there are two types of reactions. Either, there is
no point in its improvement set that can improve the agent’s

classification according to h and the agent again stays put.
Otherwise, the agent reacts and moves to be predicted pos-
itive by h. This corresponds to utility-maximizing agents
that have a utility of 1 for being classified as positive, a
utility of 0 for being classified as negative, and that incur a
cost for moving, where ∆(x) corresponds to the points that
x can move to at a cost less than 1.

We say that a test point x has been misclassified if there
exists a point in the reaction set of x where h disagrees with
f∗, formally,

LOSS(x;h, f∗) = max
x′∈∆h(x)

I [h (x′) ̸= f∗ (x′)] . (1)

Remark 2.1. The formulation of the loss function in (1)
allows for scenarios where an input x initially satisfies
f∗(x) = 1 and h(x) = 0, but under ∆h(x), it may transi-
tion to a setting where f∗(x′) = 0 and h(x′) = 1 for some
x′ ∈ ∆h(x). Think of an example where there are two
features such that improving one often comes at the expense
of the other. For instance, consider the trade-off between
strength and endurance in athletics. Let f∗(x) represent a
person’s endurance (e.g., marathon running capability), and
h(x) represent their strength (e.g., sprinting power). Focus-
ing on increasing h(x) through strength training enhances
power, but this often comes at the expense of endurance,
thus reducing f∗(x). This reflects the natural conflict be-
tween optimizing for one feature while sacrificing the other.

In words, this corresponds to an assumption that agents will
improve to a point in their reaction set while breaking ties ad-
versarially, or equivalently, that they will break ties in favor
of points x′ for which f∗(x′) = 0. This assumption is natu-
ral if we want our positive results to be robust to unknown
tie-breaking mechanisms, and would also hold if improving
to points x′ ∈ ∆h(x) whose true label according to f∗ is
negative is less effort than improving such points whose true
label is positive. Note that this loss function favors classi-
fiers that label uncertain points as negative rather than pos-
itive. For example, if {x | h(x) = 1} ⊆ {x | f∗(x) = 1}
then h may still have zero loss if all points x in the differ-
ence have at least one point x′ ∈ ∆(x) for which h(x′) = 1.
The fact that true positives might need to put in effort to
improve in order to be classified as positive (or that some
negative points are not able to improve themselves to be
classified as positive by h even if they would have been able
to do so with respect to f∗) does not count as an error in our
setting.

See Section 4.1 for a concrete example.

Analogous to standard PAC learning, we assume the learner
has access to a finite set of samples S ∈ Xm drawn ran-
domly according to some fixed but unknown distribution D
over X , and labeled by f∗. The learner’s population loss is
given by LOSSD(h, f

∗) = Px∼D [LOSS(x;h, f∗)]. This is
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formalized in the following.

Definition 2.2 (PAC Learning with improvements). Algo-
rithm A PAC-learns with improvements a hypothesis class
H with respect to improvement function ∆ and data distri-
bution D using sample size M := M(ϵ, δ,∆,H,D)1, if for
any f∗ ∈ H, any ϵ > 0 and δ > 0, the following holds.
Algorithm A, with access to a sample S

i.i.d.∼ DM labeled
according to f∗, produces with probability at least 1 − δ
a hypothesis h with LOSSD(h, f

∗) ≤ ϵ. We further say
that A learns H w.r.t. ∆ and D with zero-error with sample
size M if for any δ > 0, given S

i.i.d.∼ DM labeled by f∗, it
returns h with LOSSD(h, f

∗) = 0 with probability at least
1− δ. We will also consider distribution-independent learn-
ing, where the guarantee should hold for all distributions D
and proper learning where we require h ∈ H.

Note that in our learning with improvements setting zero-
error can be achieved by learning (with high probability)
from a finite sample in several interesting cases, which is
impossible to achieve in the standard PAC model.

3. Separating PAC Learning with
Improvements and the Standard PAC Model

In this section, we prove that learning with improvements
diverges from the traditional behavior of the standard PAC
model for binary classification. In the PAC model, the learn-
ability of a concept class is equivalent to the class having a
finite VC dimension. However, in our setting, where agents
can improve, this condition is neither necessary nor suffi-
cient for learnability. Concretely, we demonstrate that a
class with an infinite VC dimension can still be learnable
with improvements. We also provide examples of hypoth-
esis classes with finite VC dimensions and corresponding
improvement sets that cannot be learned in our framework.

Theorem 3.1. Finite VC dimension is neither necessary nor
sufficient for PAC learnability with improvements.

Proof. The proof is in Examples 1 and 2 below.

Example 1 (Finite VC dimension is not necessary for learn-
ability with improvements). Consider any class H of in-
finite VC-dimension, and define ∆(x) = X for all ex-
amples x ∈ X . We can learn this class H with respect
to this improvement function ∆ with sample complexity
M(ϵ, δ) = 1

ϵ ln(
1
δ ) for any data distribution D as follows.

First, draw a sample S of size M(ϵ, δ). Next, if all examples
in S are negative, then output the “all-negative” classifier;
otherwise, select any positive example x∗ ∈ S and output
the classifier h(x) = I[x = x∗]. Note that in the latter
case, the hypothesis h has error zero, because all agents will
improve to x∗. Therefore, if Px∼D[f

∗(x) = 1] > ϵ, then h

1We say the sample complexity of A is the smallest such M .

will have zero error with probability at least 1− δ, whereas
if Px∼D[f

∗(x) = 1] ≤ ϵ, then h will have error at most ϵ
with probability 1.

Example 2 (Finite VC dimension is not sufficient for learn-
ability with improvements). Let the instance space X be
[0, 1], let H = {habcd : habcd(x) = 1 iff x ∈ [a, b)∪(c, d]}
(i.e., H is the class of unions of two intervals, where to make
the example easier, we define the intervals to be half-open),
and let D be the uniform distribution over [0, 1]. We define
∆ as follows. For x ∈ [0, 1/4) ∪ (3/4, 1] let ∆(x) = [0, 1];
for x ∈ [1/4, 3/4], let ∆(x) = {x}.

We claim that no algorithm with finite training data can
guarantee an expected error of less than 1/4, even though
the class is easily PAC-learnable without improvements.

Consider a target function defined as the union of two inter-
vals [1/4, b) ∪ (b, 3/4] where the number b was randomly
chosen in [1/4, 3/4]. With probability 1, the learner will
not see the point b in its training data, so it learns nothing
from its training data about the location of b. Finally, if the
learner outputs a classifier whose positive region has proba-
bility mass ≤ 1/4, then its error rate is at least 1/4 because
the positive examples cannot move so at least half of their
probability mass will get misclassified. On the other hand,
if the learner outputs a classifier whose positive region has
probability mass greater than 1/4, then it has at least a 50%
chance of including a negative point in its positive region (it
will surely include a negative point if it is not contained in
[1/4, 3/4] and has at least a 50% chance of doing so other-
wise, since b was uniformly chosen from [1/4, 3/4]). If the
classifier has a negative point in its positive region, then it
will have an error rate at least 50%, because all the negatives
in [0, 1/4) and (3/4, 1] will move to a false positive (here
we use that agents break ties adversarially). So, either way,
its expected error is 25%.

Union of two intervals is arguably the simplest class that is
not intersection-closed (Definition 4.3). Indeed, we show
in Section 4.2 that such an example could not be possible
for intersection-closed classes. As another example of the
separation of our model from the standard PAC setting,
we show there exists cases where the target function f∗

is realizable by H in the standard PAC setting, but it is
impossible to avoid a constant error rate when learning the
same target with improvements using the same hypothesis
space H.

Theorem 3.2. Consider a hypothesis class H and target
function f∗ ̸∈ H, where d(f∗,H) denotes the error of the
best classifier in H w.r.t. the target f∗. It is possible to
have d(f∗,H) = 0 in the standard PAC setting (there exists
h ∈ H that achieves error 0) but d(f∗,H) = 1/2 for PAC
learning with improvements (i.e., all h ∈ H have error at
least 1/2).
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Proof. See Example 3 in Appendix B.1.

4. PAC Learning of Geometric Concepts
In this section, we first demonstrate the gain of the learner
when agents can improve for the natural class of thresholds
on the real line, where agents can move by a distance of
at most r. We then study intersection-closed classes. In
particular, we derive sample complexity bounds for the class
of axis-aligned hyperrectangles, where the improvement
sets are the ℓ∞ balls. We further establish negative results
for proper learners in the absence of the intersection-closed
property. Lastly, we study the class of homogeneous
halfspaces under the uniform distribution over the unit
ball, where agents can improve by adjusting their angle.
Complete proofs for this section are located in Appendix C.

We will use (a)+ to denote max{a, 0}.

4.1. Warm-up: Zero Error for Learning Thresholds

Let H = {ht : t ∈ R} be the class of one-sided threshold
functions, where ht(x) = I{x ≥ t}. The improvement set
of x is simply the closed ball centered at x with radius r, i.e.,
∆(x) = {x′ | |x− x′| ≤ r}. Suppose the data distribution
D is uniform over [0, 1], and labels are generated according
to a target threshold ht∗ ∈ H for some t∗ ∈ [0, 1]. Let
S = {(xi, yi)}mi=1 be the set of training samples, where
xi

i.i.d.∼ D and yi = ht∗(xi).

There are several options for choosing a threshold that
achieves zero empirical error on S, as shown by the shaded
area in Figure 1. Due to the asymmetry of the loss function
(Eqn. 1), we choose the rightmost threshold consistent with
S. This is the most “conservative” option, as any x that im-
proves up to this threshold is guaranteed to be positive with
respect to the unknown ground-truth ht∗ . This is a property
that would not necessarily hold for lower thresholds. We
define this threshold with respect to S as follows,

tS+ =

{
min(S+), if S+ ̸= ∅,
1, if S+ = ∅,

where S+ = {xi ∈ S : yi = 1} is the set of posi-
tive examples in S. The hypothesis hS+ is defined as
hS+ = I{x ≥ tS+}. Notice that using classifier hS+ will
induce agents (at test time) x ∈ [tS+ − r, tS+) to improve
to be classified as positive by hS+ , which will be a correct
classification since tS+ ≥ t∗.

Theorem 4.1 (Thresholds, uniform distribution). Let the
improvement set ∆ be the closed ball with radius r, ∆(x) =
{x′ | |x − x′| ≤ r}. Let D be the uniform distribution on
[0, 1]. For any ϵ, δ ∈ (0, 1/2), with probability 1− δ,

LOSSD(hS+ , ht∗) ≤ (ϵ− r)+,

– – – –
r r

ht∗ hS+

+ + + +

Figure 1. Learning thresholds with improvements.

with sample complexity M = O
(
1
ϵ log

1
δ

)
.

Proof. See Appendix C.1

Note that the population error is improved from ϵ (in the
standard PAC setting) to ϵ− r for the same sample size, and
we can achieve zero error as long as we set ϵ ≤ r.

Theorem C.1 in Appendix C.2 proves a similar result for
arbitrary distribution D, where instead of getting ϵ− r pop-
ulation error, the reduction in the error is replaced by the
following distribution-dependent quantity

p(hS+ ;ht∗ ,D, r) = Px∼D [x ∈ [tS+ − r, tS+ ]] . (2)

Note that the class of thresholds is closed under intersection:⋂n
i=1 hti = hmax{t1,t2,...,tn}. In the following, we extend

the analysis to such hypothesis classes, more generally.

4.2. Intersection Closed Classes

The learnability of intersection-closed hypothesis classes
in the standard PAC model has been extensively studied
(Helmbold et al., 1990; Auer, 1997; Auer & Cesa-Bianchi,
1998; Auer & Ortner, 2007; Darnstädt, 2015). In this section,
we study the learnability with improvements of these classes.
We start with the following definitions.

Definition 4.2 (Closure operator of a set). For any set S ⊆
X and any hypothesis class H ⊆ 2X , the closure of S
with respect to H, denoted by CLOSH(S) : 2X → 2X ,
is defined as the intersection of all hypotheses in H that
contain S, that is, CLOSH(S) =

⋂
h∈H,S⊆h

h. In words, the

closure of S is the smallest hypotheses in H which contains
S. If {h : H : S ⊆ h} = ∅, then CLOSH(S) = X .

Definition 4.3 (Intersection-closed classes). A hypothesis
class H ⊂ 2X is intersection-closed if for all finite S ⊆ X ,
CLOSH(S) ∈ H. In words, the intersection of all hy-
potheses in H containing an arbitrary subset of the domain
belongs to H. For finite hypothesis classes, an equivalent
definition states that for any h1, h2 ∈ H, the intersection
h1 ∩ h2 is in H as well (Natarajan, 1987).

Many natural hypothesis classes are intersection-closed, for
example, axis-parallel d-dimensional hyperrectangles, in-
tersections of halfspaces, k-CNF boolean functions, and
subspaces of a linear space.
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The Closure algorithm is a learning algorithm that generates
a hypothesis by taking the closure of the positive examples
in a given dataset, and negative examples do not influence
the generated hypothesis. The hypothesis returned by this
algorithm is always the smallest hypothesis containing all
of the positive examples seen so far in the training set.

Definition 4.4 (Closure algorithm Natara-
jan, 1987; Helmbold et al., 1990). Let S =
{(x1, f

∗(x1)), . . . , (xm, f∗(xm))} be a set of labeled
examples, where f∗ ∈ H, xi ∈ X and yi ∈ {0, 1}. The hy-
pothesis hc

S produced by the closure algorithm is defined as:

hc
S(x) =

{
1, if x ∈ CLOSH ({xi ∈ S : yi = 1}) ,
0, otherwise.

Here, CLOSH ({xi ∈ S : yi = 1}) denotes the closure of
the set of positive examples in S with respect to H.

The closure algorithm learns intersection-closed classes with
VC dimension d with an optimal sample complexity of
Θ
(
1
ϵ (d+ log 1

δ )
)

(Auer & Ortner, 2007; Darnstädt, 2015).

We apply the closure algorithm for learning with improve-
ments. In order to quantify the improvement gain of the
returned hypothesis, we define the improvement region of
h as the set of points that can improve from a negative
classification to a (correct) positive classification by h.

Definition 4.5 (Improvement Region). The improvement
region of hypothesis h ⊆ f∗, w.r.t. f∗ and ∆ is

IR(h; f∗,∆) :=

{x : h(x) = 0,∃x′ ∈ ∆(x) : h(x′) = f∗(x′) = 1} .
(3)

The gain from improvements is the probability mass of the
improvement region under D: Px∼D [x ∈ IR(h; f∗,∆)] .

Note that for the class of thresholds, the closure algorithm
returns exactly the hypothesis hS+ , and the probability mass
of the improvement region is p(hS+ ;ht∗ ,D, r) (cf. Eqn. 2).

Axis-Aligned Hyperrectangles in [0, 1]d. An axis-aligned
hyperrectangle classifier assigns a value of 1 to a point if
and only if the point lies within a specific rectangle. For-
mally, let a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ [0, 1]d

where ai ≤ bi for i ∈ {1, . . . , d} := [d]. A hyperrectangle
R(a,b) =

∏
i∈[d][ai, bi] classifies a point x = (x1, . . . , xd)

as: R(a,b)(x) = I{xi ∈ [ai, bi], ∀i ∈ [d]}.

In the following, we show that the closure algorithm learns
with improvements the hypothesis class Hrec = {R(a,b) :

a, b ∈ [0, 1]d}.
Theorem 4.6 (Axis-aligned Hyperrectangles). Let the im-
provement set ∆ be the closed ℓ∞ ball with radius r,
∆(x) = {x′ | ∥x− x′∥∞ ≤ r}. Let Rc

S be the rectan-

gle returned by the closure algorithm given S
i.i.d.∼ Dm, and

R∗ be the target rectangle. For any distribution D, for any
ϵ, δ ∈ (0, 1/2), with probability 1− δ,

LOSSD(R
c
S , R

∗) ≤ (ϵ− Px∼D [x ∈ IR(Rc
S ;R

∗,∆)])+ ,

with sample complexity M = O
(
1
ϵ

(
d+ log 1

δ

))
.

When D is the uniform distribution on [0, 1]2, we can get
the following expression. Denote by l1 and l2 the width and
height (respectively) of the rectangle Rc

S . Then,

Px∼D [x ∈ IR(Rc
S ;R

∗,∆)] = 2r(l1 + l2) + 4r2.

Note that, as opposed to the simple case of thresholds, the
improvement region for hyperrectangles depends on the
geometry of the target hypothesis.

Arbitrary Intersection-closed Classes. We will now show
that any intersection-closed concept class with a finite VC
dimension is PAC learnable with improvements w.r.t. any
improvement function ∆.

Theorem 4.7. Let H be an intersection-closed concept
class on instance space X . There is a learner that PAC-
learns with improvements H with respect to any improve-
ment function ∆ and any data distribution D given a sample
of size O

(
1
ϵ (dVC(H) + log 1

δ )
)
, where dVC(H) denotes the

VC-dimension of H.

Proof Sketch. Note that the closure algorithm outputs a hy-
pothesis hc which exactly classifies the positive agreement
region as positive. By known results for intersection-closed
concept classes, we have that O

(
1
ϵ (dVC(H) + log 1

δ )
)

ex-
amples are enough to guarantee that the error of hc is less
than ϵ in the standard PAC learning setting. Note that any
point that hc classifies as positive is positive according to f∗.
Now if the negative points move in response to hc and get
positively classified by hc, they must become truly positive.
Thus, for the stated sample size, the error can only decrease
with improvements below ϵ. This is quantified by the proba-
bility mass under D of the points in the improvement region,
as defined in Eqn. 3. Intuitively, if H is an intersection-
closed class in Rd and ∆ is the ℓ∞ ball of radius r, then the
improvement region constitutes a strip of width r along the
boundary of hc (a (d− 1)-dimensional hypersurface).

We can also establish the following negative result which
indicates the hardness of proper learning in the absence of
the intersection-closed property.

Theorem 4.8. Let H be any concept class on a finite in-
stance space X such that at least one point x′ ∈ X is clas-
sified negative by all h ∈ H (i.e. {x | h(x) = 0 for all h ∈
H} ̸= ∅), and suppose H |X\{x′} is not intersection-closed
on X \ {x′}. Then there exists a data distribution D and
an improvement function ∆ such that no proper learner can
PAC-learn with improvements H w.r.t. ∆ and D.
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Note that we have an additional requirement that all clas-
sifiers in the concept space agree on some negative point
(intuitively, agents who should never achieve positive classi-
fication). Consider the following simple example where this
condition does not hold, the concept class is not intersection-
closed, and learnability is possible in our setting.

Suppose X = {x1, x2} and H = {h1, h2} with h1(x1) =
1, h1(x2) = 0 and h2(x) = 1 − h1(x) for either x ∈ X .
Clearly h1 ∩ h2 /∈ H and H is not intersection-closed, yet
knowledge of a single label tells us the target concept.

4.3. Halfspaces on the Unit Ball

We now consider the problem of learning homogeneous
halfspaces with respect to the uniform distribution on the
unit ball (or any spherically-symmetric distribution), when
agents have the ability to improve by an angle of r.

Theorem 4.9. Consider the class of d-dimensional half-
spaces passing through the origin, i.e., H = {x 7→
sign(wTx) : w ∈ Rd}. Suppose X is the surface
of the origin-centered unit sphere in Rd for d > 2,
and D is the uniform distribution on X . For each
point x ∈ X , define its neighborhood ∆(x) = {x′ |
arccos(⟨x, x′⟩) ≤ r}. For any δ ∈ (0, 1/2), and train-

ing sample S i.i.d.∼ Dm of size Õ
(

d+log 1
δ

r

)
, with probability

1− δ, LOSSD(POSH(S), f∗) = 0, where POSH(S) is the
intersection of the positive regions of all h ∈ H consistent
with the training set S.

Remark 4.10. It is worth noting that while the aforemen-
tioned result relies on the classifier POS(HS), which is a
fairly complex function, a similar guarantee can be achieved
using a linear classifier (though non-homogeneous, so it is
still not “proper”). Specifically, by obtaining a sufficiently
large sample, one can construct a homogeneous linear clas-
sifier whose angle with respect to the target is at most r

2 . We
can then shift that classifier by r/2 (so it is no longer homo-
geneous) to ensure its positive region is contained inside the
positive region for f∗.

5. Zero-error Learning in the Graph Model
In this section, we will consider a general discrete model for
studying classification of agents with the ability to improve.
The agents are located on the nodes of an undirected graph,
and the edges determine the improvement function, i.e. the
agents can move to neighboring nodes in order to potentially
improve their classification. Note that the graph nodes corre-
spond to an arbitrary discrete instance space X . Remarkably,
zero error may be attained even in this general setting. All
proofs in this Section are deferred to Appendix D.

Formally, let G = (V,E) denote an undirected graph. The
vertex set V = {x1, x2, . . . , xn} represents a fixed collec-

tion of n points corresponding to a finite instance space
X . The edge set E ⊆ V × V captures the adjacency in-
formation relevant for defining the improvement function.
More precisely, for a given vertex x ∈ V , the improve-
ment set of x is given by its neighborhood in the graph, i.e.
∆(x) = {x′ ∈ V | (x, x′) ∈ E}2. Let f∗ : V → {0,+1}
represent the target labeling (or partition) of the vertices in
the graph G. Assume that the hypothesis space H is the set
of all possible labelings of the graph, which is finite.

5.1. Near-tight Sample Complexity for Zero-error

Our first result is to show that we can obtain zero-error
in the learning with improvements setting, when the data
distribution D is given by a uniform distribution over V ,
and obtain near-tight bounds on the sample complexity. Our
learner in this case is the conservative classifier h ∈ H that
classifies exactly the positive points seen in the sample as
positive, and the remaining points as negative. Even though
we allow f∗ to be an arbitrary labeling in H, we do not need
to see all the labels to learn an h that achieves zero error w.r.t.
f∗. Intuitively, this is because for any positively labeled
node x it is sufficient to see the label of x or that of one of its
neighbors since the agents can move to a neighbor predicted
positive by h. We further show that no algorithm can achieve
a better sample complexity, up to some logarithmic factors.

Theorem 5.1. Let G = (V,E) be an undirected graph
with n = |V | vertices, and let f∗ : V → {0,+1} de-
note the ground truth labeling function. Let d+min denote
the minimum degree of the vertices in G+, the induced
subgraph of G on the vertices x ∈ V with f∗(x) = 1. As-
sume that the data distribution D is uniform on V . For
any δ > 0, and training sample S

i.i.d.∼ Dm of size m =

O
(

n(logn+log 1
δ )

d+
min+1

)
, there exists a learner that achieves zero

generalization error, i.e. learns a hypothesis h such that
LOSSD(h, f

∗) = 0, with probability at least 1− δ over the
draw of S. Moreover, there exists a graph G for which any
learner that achieves zero generalization error must see at
least Ω

(
n

d+
min+1

log n
d+
min+1

)
labeled points in the training

sample, with high constant probability.

We note that the value of d+min (and, therefore our bound on
the sample complexity) is generally not known to the learner
in advance, and it depends on the graph structure as well as
the (unknown) target labeling f∗. It is an interesting open
question to design a learner that can determine whether a
sample of sufficient size has been collected to guarantee
zero-error. For the special case of the complete graph, our
sample complexity bound becomes m = Õ

(
n
n+

)
, where

n+ is the number of nodes labeled positive by f∗.

2Our results readily extend to ∆(x) = {x′ ∈ V | dG(x, x′) ≤
r}, where dG denotes the shortest path metric on G, by applying
our arguments to Gr , the rth power of G (see appendix).
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5.2. Enabling Improvement Whenever It Helps

Note that our loss function LOSS(x;h, f∗) penalizes the
learner for mistakes w.r.t. the target f∗ after the agents have
potentially reacted to h. However, we say nothing about
whether a negative point x that truly has the ability to im-
prove and get positively classified (i.e. f∗(x′) = 1 for some
x′ ∈ ∆(x)) will also be able to do so under our published
classifier h. We will now consider an alternative measure
of the performance of h (conceptually captures recall in the
improvement setting) which measures the probability mass
of the points for which we fail to enable improvement even
though it is possible under f∗. Formally, we define

LOSSE
D(h, f

∗) = (4)
Px∼D [f∗(x) = 0 ∧ I[∆f∗(x) = {x}] = I[∆h(x) = {x}]]

That is, we wish to ensure that an agent x with f∗(x) = 0
and an option to improve to a truly positive point in its re-
action set w.r.t. f∗, will also see some option to improve
and get positively classified according to h. In Theorem D.4
in the Appendix, we obtain near-tight sample complexity
bounds for learning a concept h that simultaneously guaran-
tees that LOSSE

D(h, f
∗) = 0 and LOSSD(h, f

∗) = 0 when
the data distribution is uniform over V .

5.3. Teaching a Risk-averse Student

The theory of teaching (Goldman & Kearns, 1995) studies
the size of the smallest set of labeled examples needed to
guarantee that a unique function in the concept space is con-
sistent with the set (for labels according to any target concept
in the space). If the teacher (that knows f∗) provides this
labeled set, then a student that can do consistent learning
(find a concept consistent with training data) will learn the
target concept f∗. In our learning with improvements over
the graph setting, it is natural to consider a simple variant
where the student outputs the most risk-averse concept that
only labels positive points seen in the labeled set received
from the teacher as positive. Here we will consider the
question of the minimum number of labeled examples the
teacher needs to provide to the risk-averse student to achieve
zero-error in our setting.

Let G+ denote the induced subgraph of G on V + = {x ∈
V | f∗(x) = +1}, the nodes labeled positive by the target
concept f∗. We show that it is sufficient for the teacher
to present the labels of a dominating set of G+ (Definition
D.2) for the risk-averse student to learn a zero-error classifier
h. This observation also motivates and helps establish our
learning result (Theorem 5.1).

Theorem 5.2. Let G = (V,E) be an undirected graph,
and f∗ be the target labeling. Let G+ denote the induced

subgraph on the vertices x ∈ V with f∗(x) = 1, and S+ de-
note the dominating set of G+. Then LOSS(x;hS+ , f∗) = 0
for any x ∈ V , where hS+(x) = I{x ∈ S+}.

Proof. See Appendix D.4.

6. Evaluation
Below and in Appendix E, we present the setup and re-
sults of our evaluation of improvement-aware algorithms,
focusing on practical risk-aversion strategies, specifically
loss-based and threshold-based methods. These strategies
align with our theory, which predicts optimal performance
for risk-averse classifiers when agents improve under a lim-
ited budget r. We also investigate whether, and under what
conditions, model error can be driven to zero when agents
can improve within an ℓ∞ ball of radius r. Achieving zero
error is a notable property in the learning with improve-
ments setting, even for broad concept classes (cf. Section 5,
where the instance space is discrete and concepts may be
arbitrary functions).

Datasets. We use three real-world tabular datasets: the
Adult UCI dataset (Becker & Kohavi, 1996), the OULAD
and Law School datasets (Le Quy et al., 2022a), and a
synthetic 8-dimensional binary classification dataset with
class separability 4 and minimal outliers, generated us-
ing Scikit-learn’s make classification function (Pe-
dregosa et al., 2011). In each case we train a zero-error
model f⋆ on the entire dataset, which we treat as the true
labeling function for our experiments.
Let ST = {(x, y) | x ∈ Rd, y ∈ {0, 1}} represent the
dataset (e.g., Adult), where x is the feature vector and
y = f⋆(x) is the label. For all experiments, we split ST into
training Strain (70%) and testing Stest (30%) subsets. Further
dataset details, including improvement features and class
distributions, are provided in Appendix E.1.

Classifiers. For each full dataset ST , we trained a zero-error
model f⋆ using decision trees. We trained the decision-
maker model h : Rd → {0, 1}, taking the form of a two-
layer neural network, on Strain with tuned hyperparameters.
To assess the loss function’s impact on error drop rate when
agents improve, we trained both a standard model with
binary cross-entropy (LBCE) loss and a risk-averse model
with weighted-BCE (LwBCE) loss.

LwBCE =− 1

n

n∑
i=1

[
wFP(1− yi) log(1− ŷi)+wFNyi log(ŷi)

]
(5)

where, n = |Strain|, y ∈ {0, 1} is the true label, ŷ ∈ (0, 1] is
the model prediction, and wFP and wFN are the false positive
and false negative weights, respectively. Setting wFP =
wFN = 1 in LwBCE recovers LBCE.
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Figure 2. We compare the performance gains when agents improve to the risk-averse

(
LwBCE,

wFP
wFN

> 1, wFP = {i}8i=1

)
and the standard

(LBCE, wFP = wFN = 1) models across the Adult and Law School datasets using a fixed classification threshold of 0.5. Higher
improvement budgets (r) and greater risk-aversion (high wFP

wFN
) accelerate error reduction. See Figure 10 (Appendix) for full results.

Beyond the LwBCE loss function, which penalizes false posi-
tives more heavily, we explore another form of risk-averse
classification by applying a higher threshold of 0.9 (instead
of the usual 0.5) to the sigmoid output of the final layer. For
further details, refer to Appendix E.2.

Improvement. Given a trained model function h, a data
sample x ∈ Stest with an undesirable model outcome
h(x) = 0, and a subset of improvable features along with
a predefined improvement budget r, we use Projected Gra-
dient Descent (Madry et al., 2018) to compute the minimal
change within the budget r required to transform x into a
positive outcome h(x′) = 1. Specifically, we aim to find:

x′ = Proj∆(x)

(
x(t) + α·sign(∇x(t)

L(h(x(t)), h(x)))
)

(6)

such that h(x′) = 1. Here, ∇L(h(x(t)), h(x)) represents
the gradient of the loss function (BCE or wBCE), t the
current iteration, and α the step size. Proj∆(x) denotes the
projection of x(t) onto the ℓ∞ ball of radius r centered at x,
∆(x) = {x(t) ∈ Rd : ∥x(t) − x∥∞ ≤ r}. This ensures that
updates remain within the r-ball constraint. A successful
improvement occurs when a negatively classified sample x
transforms within the specified budget r into x′ such that
h(x′) = 1 and f⋆(x′) = 1 (see Appendix E.3).

Results. We highlight three key findings from our evalu-
ations (see also Appendix E.4). First, risk-averse (wBCE-
trained) models consistently outperform standard (BCE-
trained) models in reducing overall error as the improve-
ment budget increases (Figures 2, 8, and 10). While er-
ror gains relative to BCE-trained models tend to cancel
out, wBCE-trained models retain low false positive rates
after agent movement and exhibit a marked decline in false
negatives as the improvement budget increases (Appendix,
Figure 9). Among risk-averse strategies, loss-based risk
aversion, where LwBCE-trained models use wFP

wFN
> 1 outper-

forms threshold-based approaches that classify agents as
positive only if predicted probability exceeds 0.9 (Figure 2).

Second, modest improvement budgets (r ≤ 2.0) lead to sub-
stantial error reduction, but returns diminish for (r > 2.0),
especially with a decision threshold of 0.5. Third, dataset
class separability (Appendix, Figures 6 and 7) significantly
affects the optimal level of risk aversion and the relationship
between improvement budget and error reduction.

In summary, risk-averse models initially incur higher errors
but achieve rapid error reduction as agents improve and
r increases. A stricter false-positive penalty improves the
positive agreement region, reducing test error, sometimes to
zero (e.g., Appendix, Figure 10g).

7. Discussion
We propose a novel model for learning with strategic agents
where the agents are allowed to improve. Surprisingly, we
are able to achieve zero error (with high probability) by
designing appropriate risk-averse learners for several well-
studied concept classes, including a fairly general discrete
graph-based model. We show that the VC dimension of the
concept class is not the correct combinatorial dimension to
capture learnability in the context of improvements. We
further show that the intersection-closed property is suffi-
cient, and in a certain sense necessary for proper learning
with respect to arbitrary improvement sets. We leave open
the question of characterizing improper PAC learnability
with improvements in terms of the concept class and the
improvement sets available to the agents.
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A. Additional Related Work
Classification of gaming agents. Hardt et al., (Hardt et al., 2016) formalized the concept of strategic behavior, often
referred to as “gaming,” where test-set agents who are negatively classified intentionally modify their features—within
the bounds of a separable cost function—without altering their target label, to deceive the model into classifying them as
positive. They theoretically and empirically showed that their strategy-robust algorithm outperforms the standard SVM
algorithm under gaming. However, as the extent of gaming increases, overall model accuracy declines. Dong et al., (Dong
et al., 2018) also study a Stackelberg equilibrium where agents strategically respond to classification learners. However,
unlike Hardt et al., (Hardt et al., 2016), their model assumes that the learner lacks direct knowledge of the agents’ utility
functions and instead infers them through observed revealed preferences. Additionally, agents arrive sequentially, and only
the true negatives strategically respond to the learner. The learner’s objective is to minimize the Stackelberg regret. Chen et
al., (Chen et al., 2020) also study a learner whose goal is to minimize the Stackelberg regret, where gaming agents arrive
sequentially. However, unlike Dong et al., (Dong et al., 2018) which assumes a convex loss function, they deal with a less
smooth agent utility function and learner loss function. They propose the Grinder algorithm, which adaptively partitions the
learner’s action space based on the agents’ responses. Performative prediction (Perdomo et al., 2020) considers a setting
that involves a repeated interaction between the classifier and the agents, and as a result the underlying distribution of the
gaming agents may change over time.

Classification of agents that can both game and improve. Unlike earlier works in the strategic classification literature,
which primarily focus on settings where agents engage in gaming behavior, Kleinberg et al., (Kleinberg & Raghavan, 2020)
examine a scenario where agents can genuinely improve. In this context, the agent can modify their observable features and
true label to achieve a positive model outcome. The authors demonstrate that a learner employing a linear mechanism can
encourage rational agents, who optimize their allocation of effort, to prioritize actions that result in meaningful improvement.
They show how to achieve this by selecting an evaluation rule that incentivizes a desirable effort profile.

Ahmadi et al., (Ahmadi et al., 2022), like Kleinberg et al., (Kleinberg & Raghavan, 2020), consider the agents’ potentially
truthful and actionable responses to the model. However, the primary objective of Ahmadi et al., (Ahmadi et al., 2022) is
to maximize true positive classifications while minimizing false positives. Notably, for the linear case, they show that the
resulting classifier can become non-convex, depending on the agents’ initial positions.

On the other hand, Ahmadi et al., (Ahmadi et al., 2023) design reachable sets of target levels such that they can incentivize
effort-bounded agents within each group to improve optimally.

Theoretical guarantees of incentive-aware or incentive-compatible classifiers. Zhang and Conitzer (Zhang & Conitzer,
2021) show that the vanilla ERM principle fails under strategic manipulation (gaming), even in simple scenarios that
would otherwise be straightforward without gaming. To address this, they propose the concepts of incentive-aware and
incentive-compatible ERMs, theoretically analyzing the corresponding classifiers, their sample complexity, and the impact
of the VC dimension on the associated hypothesis class. Finally, they extend their analysis to ERM-based learning in
environments with transitive strategic manipulation.

Given adversarial data points wanting to receive an incorrect label, Cullina et al., (Cullina et al., 2018) theoretically show that
the sample complexity of PAC-learning a set of halfspace classifiers does not increase in the presence of adversaries bounded
by convex constraint sets and that the adversarial VC dimension can be arbitrarily larger or smaller than the standard VC
dimension. Sundaram et al., (Sundaram et al., 2023) provide theoretical guarantees for an offline, full-information strategic
classification framework where data points have distinct preferences over classification outcomes (+ or −) and incur varying
manipulation costs, modeled using seminorm-induced cost functions. They propose a PAC-learning framework for strategic
linear classifiers in this setting, providing a detailed analysis of their statistical and computational learnability. Additionally,
they extend the concept of the adversarial VC dimension Cullina et al., (Cullina et al., 2018) to this strategic context. They
also show, among other things, that employing randomized linear classifiers can substantially improve accuracy compared to
deterministic methods.

Reliable machine learning. The concept of risk aversion in our work is closely related to selective classification or
machine learning with a reject option (El-Yaniv & Wiener, 2010; Geifman & El-Yaniv, 2017; Hendrickx et al., 2024), where
the classifier balances the trade-off between risk and coverage, opting to abstain from making predictions when it is likely to
make mistakes. Similarly, risk-averse classification aligns with aspects of learning with one-sided error (Natarajan, 1987;
Bshouty & Burroughs, 2005), particularly positive reliable learners (Kalai et al., 2012), which aim to achieve zero false
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positive errors while minimizing false negatives. Prior work has shown connections between strategic classification and
adversarial learning (e.g. (Sundaram et al., 2023)), but it remains an interesting open question if similar connections can be
established between learning with improvements and reliable learning in the presence of adversarial attacks (Balcan et al.,
2022; 2023; Blum & Saless, 2024).

B. Separating PAC Learning with Improvements from the Standard and Strategic PAC Models
Here, we further prove that learning with improvements diverges from the the behavior of the standard PAC model for binary
classification, and also from the more recently studied PAC learning model for strategic classification (Hardt et al., 2016;
Sundaram et al., 2023).

B.1. Separation from Standard PAC Learning Model when H̃ ⊂ H

Example 3 (Error gap when the learner’s hypothesis space H̃ is a strict subset of the concept space H that contains f∗). Let
X = [−1, 1] and H̃ denote the set of concepts including unions of up to k open intervals. The set of possible improvements
for any point x ∈ X is given by X ∩ Q, where Q denotes the set of rational numbers. Suppose the data distribution is
uniform over X . We set the target concept f∗ as follows

f∗(x) =

{
0, if x < 0, or x ∈ Q,

1, otherwise,

Note that rationals are dense in [0, 1] and the set of all rationals have a Lebesgue measure zero. Thus, on any finite sample
S ∈ Xm, any sampled point x will have a positive label according to f∗ iff x ≥ 0 (with probability 1). In the standard PAC
learning setting, the classifier f̃ = I{x ∈ (0, 1)} achieves zero error w.r.t. the target f∗. This is because the misclassification
error for points in Q is zero.

In our setting where agents have the ability to improve, for an h ∈ H̃ which predicts any point x′ in Q as positive, all
negative agents in [−1, 0) can move to such a point x′ and be falsely classified as positive. This corresponds to a lower
bound of 1

2 on the error. Since rationals are dense in the reals, any open interval which h classifies as positive must contain a
point in Q. On the other hand, if h classifies no point as positive, then error rate is again 1

2 as all the positive points are
misclassified.

B.2. Comparison with the PAC Model for Strategic Classification

We first observe that the strategic classification loss can be obtained by a subtle modification to our loss function (1),

LOSSSTR(x;h, f∗) = max
x′∈∆h(x)

I [h (x′) ̸= f∗(x)] .

Intuitively, for a negative point with f∗(x) = 0, ∆h(x) here denotes the set of points that the agent x can “pretend” to be in
order to potentially deceive the classifier h into incorrectly classifying the agent positive. Since the movement within ∆h(x)
is viewed as a manipulation by the agent x, the prediction on the strategically perturbed point is compared with the original
label of x, i.e. f∗(x).

Prior work has shown that learnability in the strategic classification setting is captured by the strategic VC dimension (SVC)
introduced by (Sundaram et al., 2023). We state below the definition of SVC, adapted to our setting above which is a special
case of the strategic classification setting studied in (Sundaram et al., 2023).

Definition B.1 (Strategic VC dimension, (Sundaram et al., 2023)). Define the n-th shattering coefficient of a strategic
classification problem as

σn(H,∆) = max
(x1,...,xn)∈Xn

|{(h(x′
1), . . . , h(x

′
n)) : h ∈ H, x′

i ∈ ∆h(xi)}|.

Then SVC(H,∆) = sup{n ≥ 0 : σn(H,∆) = 2n}.
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A natural question to ask is whether learning with improvements is “easier” than strategic classification. That is, if a concept
space H is learnable w.r.t. ∆ and D in the strategic classification setting, then is it also learnable with improvements?
Interestingly, we answer this question in the negative. More precisely, we show that finite SVC (which is known from prior
work to be a sufficient condition for strategic PAC learning) is actually not a sufficient condition for PAC learnability with
improvements.

Theorem B.2. Finite strategic VC dimension (Sundaram et al., 2023) does not necessarily imply PAC learnability with
improvements.

Proof. Let the instance space X be [0, 1], let H = {habcd : habcd(x) = 1 iff x ∈ [a, b) ∪ (c, d]}, and let D be the uniform
distribution over [0, 1]. We define ∆ as follows. For x ∈ [0, 3/4) let ∆(x) = B(x, 1/4) = (x− 1/4, x+ 1/4) ∩ [0, 1]; for
x ∈ [3/4, 1], let ∆(x) = {x}.

We claim that no algorithm with finite training data can guarantee an expected error of less than 1/16 for the above when
learning with improvements, even though the class is PAC-learnable in the strategic classification setting. To see the
latter, note that SVC(H,∆) ≤ 4. Indeed, consider the points (0, 1/4, 1/2, 3/4, 1) ∈ X 5. Notice the (strategic) labeling
(1, 0, 1, 0, 1) cannot be achieved for any h ∈ H, which establishes the claim.

Now consider a target function defined as the union of two intervals [1/2, b) ∪ (b, 1] where the number b was randomly
chosen in [3/4, 1]. The learner will not see the point b given a finite training set, so it learns nothing about the location of b
(almost surely). Now, we consider two cases. Either, the learner outputs a classifier whose positive region has probability
mass at most 1/16 over the interval [3/4, 7/8]. Then its error rate is at least 1/16 because the positive examples in [3/4, 7/8]
cannot move so at least half of their probability mass will get misclassified. On the other hand, if the learner outputs a
classifier whose positive region has probability mass greater than 1/16 on the interval [3/4, 7/8], then it has at least a 50%
chance of including the negative point b in its positive region (over the random choice of the target function). If the classifier
has a negative point in [3/4, 7/8] that is incorrectly predicted to be positive, then it will have an error rate at least 1/16,
because all the positives in [5/8, 3/4) will move to a false positive (here we use that agents break ties adversarially, see also
Remark 2.1). So, either way, its expected error is ≥ 1/16.

On the other hand, it is not too hard to come up with examples where it is easier to learn in the improvements setting when
compared to the strategic setting. Example 4 shows that it is possible to learn perfectly with improvements (with zero error)
in a setting where avoiding a large constant error is unavoidable in the strategic classification setting.

Example 4 (Learnability with improvements may be easier than strategic classification). Define ∆(x) = X for all examples
x ∈ X . Suppose the “all-negative” classifier h−(x) = 0, the “all-positive” classifier h+(x) = 1, and all “singleton-positive”
classifiers hx∗(x) = I[x = x∗] lie in the concept space H. Select any f∗ ∈ H and any data distribution D over X such that
Px∼D[f

∗(x) = 0] = Px∼D[f
∗(x) = 1] = 1

2 . Now with O(log 1
δ ) examples, the learner sees a positive example, say x+, in

its training set with probability ≥ δ. Outputting hx+ achieves zero-error in the learning with improvements setting, as all
negative points can improve to x+. In contrast, a learner in the strategic classification setting must suffer an error of at least
1/2 here. Indeed, either the learner outputs h− and suffers an error of 1/2 on the positive points. Or, the learner selects an h
that labels at least one point as positive and incurs an error 1/2 on the negative points, all of which successfully deceive the
learner.

Furthermore, let’s consider an improvement function ∆ that takes into account f∗, such that f∗(x′) = 1 for x′ ∈ ∆(x) for
any x ∈ X . That is the improvement function is in a certain sense consistent with f∗, guaranteeing positive classification
after any move. In this setting, any classifier h will have lower error in the improvements setting compared to strategic
classification. This is because a negative point that moves and becomes positive is an error in strategic learning but the point
would have genuinely improved in this case. Contrasting this with Remark 2.1, when ∆ does not satisfy the above property,
we note that the reason it is possible to do worse in the improvement setting (e.g. Theorem B.2) is because some true positive
examples can potentially become negative when moving in response to a false positive for the learner’s hypothesis h.

C. Missing Proofs from Section 4
We include below missing proofs from Section 4.
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C.1. Proof of Theorem 4.1: Learning Thresholds with the Uniform Distribution

Proof. Let S i.i.d.∼ Dm, where D is the uniform distribution over [0, 1]. By using a standard calculation of the sample
complexity of thresholds,

P
S∼Dm

[
P

x∼D
[ht∗(x) ̸= hS+(x)] > ϵ

]
≤

m∏
i=1

P [xi /∈ [t∗, t∗ + ϵ]]

≤ (1− ϵ)m

≤ e−ϵm

≤ δ,

(7)

where the last inequality holds for m ≥ 1
ϵ log

1
δ . Since whenever hS+ classifies a point as positive, ht∗ also classifies it as

positive, any negative point that improves in response to hS+ must move to a true positive point, and the error can only
decrease in the improvements setting for the choice of hS+ .

Now, since we allow improvements of distance r, the points in the interval [tS+ − r, tS+ ] that would have been classified
negatively without improvement are able to improve under hS+ (and indeed improve to be positive with respect to ht∗ ) and
are thus classified correctly. The points on which hS+ makes mistakes are those in the interval [t∗, tS+ − r]. Since D is
uniform, our previous inequality implies that with probability at least 1− δ we have tS+ ≤ t∗ + ϵ. This implies the that
error is at most max(ϵ− r, 0) with probability 1− δ as desired.

C.2. Learning Thresholds with An Arbitrary Distribution

Theorem C.1 (Thresholds, arbitrary distribution). Let the improvement set ∆ be the closed ball with radius r, ∆(x) =
{x′ | |x− x′| ≤ r}. For any distribution D, and any ϵ, δ ∈ (0, 1/2), with probability 1− δ,

LOSSD(hS+ , ht∗) ≤ (ϵ− p(hS+ ;ht∗ ,D, r))+,

where

p(hS+ ;ht∗ ,D, r) = Px∼D [x ∈ [tS+ − r, tS+ ]] ,

with sample complexity M = O
(
1
ϵ log

1
δ

)
.

Proof. Let t0 be such that Px∼D [x ∈ [t∗, t0]] = ϵ. By following the same derivation as in Eqn. 7 and replacing t∗ + ϵ with
t0, we get that

P
S∼Dm

[
P

x∼D
[ht∗(x) ̸= hS+(x)] ≤ ϵ

]
,

with probability 1− δ for m ≥ 1
ϵ log

1
δ .

The points in the interval [tS+ − r, tS+ ] are able to improve under hS+ and thus classified correctly. The gain to the error of
hS+ would be the probability mass of points in D that fall into this interval, defined as

p(hS+ ;ht∗ ,D, r) = Px∼D [x ∈ [tS+ − r, tS+ ]] .

The points on which hS+ makes mistakes are those in the interval [t∗, tS+ − r].

We conclude that with probability at least 1− δ we have tS+ ≤ t0, and given the improvement of points in [t∗, tS+ − r] we
have an error at most max(ϵ− p(hS+ ;ht∗ ,D, r), 0) with probability 1− δ as desired.
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C.3. Proof of Theorem 4.6

Proof. Let Rc
S = CLOSHrec ({xi ∈ S : yi = 1}) be the output of the closure algorithm. For the standard PAC setting, we

have

P
S∼Dm

[
P

x∼D
[Rc

S(x) ̸= R∗(x)] ≤ ϵ
]
,

with probability 1− δ for m ≥ Ω
(
1
ϵ

(
d+ log 1

δ

))
, see (Auer, 1997; Darnstädt, 2015). Since whenever Rc

S classifies a point
as positive, R∗ also classifies it as positive, any negative point that improves in response to Rc

S must move to a true positive
point and the error can only decrease in the improvements setting for the choice of Rc

S .

Now, in order to quantify the gain in error from the improvements, we define the “outer boundary strip” of Rc
S . Let the

rectangle defined by Rc
S =

∏
i∈[d][ai, bi]. The points that are able to improve under Rc

S are exactly fall into the outer
boundary strip of size r, defined as

BS(Rc
S , r) =

∏
i∈[d]

[ai + r, bi + r] \
∏
i∈[d]

[ai, bi].

Note that this is exactly the improvement region of Rc
S : BS(Rc

S , r) = IR(Rc
S ;R

∗,∆). Under general distribution D, the
probability mass of the improvement region is

Px∼D [x ∈ IR(Rc
S ;R

∗,∆)] = Px∼D [x ∈ BS(Rc
S , r)] ,

since Rc
S is the smallest rectangle that fits S, these points that are able to improve under Rc

S indeed improve to be positive
with respect to R∗. This implies that

LOSSD(R
c
S , R

∗) ≤ max (ϵ− Px∼D [x ∈ IR(Rc
S ;R

∗,∆)]) , 0).

Now, for the uniform distribution, we can compute an exact expression of the improvement region. Let li = bi − ai, then

Px∼D [x ∈ IR(Rc
S ;R

∗,∆)] =
∏
i∈[d]

(li + 2r)−
∏
i∈[d]

li.

For d = 2, we get

Px∼D [x ∈ IR(Rc
S ;R

∗,∆)] = (l1 + 2r)(l2 + 2r)− l1l2

= 2r(l1 + l2) + 4r2.

C.4. Proof of Theorem 4.7

Proof. Let S ∼ Dm and hc
S denote the classifier learned by the closure algorithm (Definition 4.4). For some m =

O( 1ϵ (dVC(H)+ log 1
δ )), we know from prior work (Auer & Ortner, 2007; Darnstädt, 2015) that hc

S satisfies, with probability
at least 1− δ,

Px∼D[h
c
S(x) ̸= f∗(x)] ≤ ϵ,

for any target concept f∗ ∈ H.

Now for any x ∈ X if hc
S(x) = 1, the improvement loss LOSS(x;hc

S , f
∗) = I[hc

S(x) ̸= f∗(x)] = 0 since ∆hc
S
(x) = {x}

and f∗(x) = 1 since hc
S is obtained using the closure algorithm. If hc

S(x) = 0 and if ∆hc
S
(x) ̸= {x}, for any point

x′ ∈ ∆hc
S
(x), we have hc

S(x
′) = 1 = f∗(x′) and therefore LOSS(x;hc

S , f
∗) = 0. So the only points for which hc

S can
make a mistake are points where hc

S(x) = 0 and ∆hc
S
(x) = {x}, i.e. the points do not move in reaction to hc

S . This implies
hc
S must disagree with f∗ on these points also in the PAC setting. But the probability mass of these points is at most ϵ as

noted above.
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C.5. Proof of Theorem 4.8

Proof. For any concept h ∈ H, let X+
h denote the set of points {x ∈ X | h(x) = 1} positively classified by h. Since

H′ := H |X\{x′} is not intersection-closed, there must exist a set S ⊆ X \ {x′} such that CLOSH′(S) /∈ H′. For
the uniformly negative point x′, we have its improvement set as ∆(x′) = X \ S. For points in CLOS(S) we have the
improvement set as the empty set. We set the data distribution D as the uniform distribution over CLOS(S) ∪ {x′}. Let
h1 ∈ H be a minimally consistent classifier w.r.t. S, i.e. if h′ ∈ H and X+

h′ ⊆ X+
h1

, then h′ = h1. By choice of S, there is
a point x1 ∈ X+

h1
\ CLOSH′(S). By the definition of closure of S, there must exist h2 ∈ H consistent with S (assumed

minimally consistent WLOG) such that h2(x1) = 0. Also, since h1 was chosen to be minimally consistent, there must exist
x2 ∈ X+

h2
such that h1(x2) = 0. We will set the target concept f∗ to one of h1 or h2.

Now any learner that picks a concept not consistent with S will clearly suffer a constant error on the points in CLOS(S)
which are incorrectly classified as negative and not allowed to improve. Suppose therefore that the learner selects a
hypothesis h consistent with S. Let h̃ denote a classifier which is minimally consistent with S and X+

h̃
⊆ X+

h (h̃ could
possibly be the same as h). If h̃ = h1 (resp. h̃ = h2), the learner suffers a constant error as x′ can improve to the false
positive x1 (resp. x2) when the target concept is h2 (resp. h1). Else, there must exist x̃ ∈ X+

h̃
such that h1(x̃) = 0, since h1

was chosen to be minimally consistent (and likewise for h2). h(x̃) = 1 in this case, and x′ can now falsely “improve” to x̃.
Since the learner has no way of knowing from the sample whether the target is h1 or h2, it must suffer a constant error for
any h it selects from H.

D. Missing Proofs and Additional Definitions from Section 5
We include below additional definitions and complete proofs for results in Section 5.

D.1. Additional Definitions

Definition D.1. The shortest path metric dG : V × V → [0, |V |+ 1) is defined as follows:

dG(x, x
′) =

{
min {k | ∃ (x0 = x, x1, . . . , xk = x′) ⊆ V, (xi−1, xi) ∈ E ∀i ∈ [k]} , if a path exists,
|V |+ 1, if no path exists.

Here, k is the length of the shortest path between x and x′ in terms of the number of edges. If there is no path connecting x
and x′, the distance is defined as |V |+ 1. The shortest path metric satisfies the following properties:

• Non-negativity: dG(x, x′) ≥ 0 for all x, x′ ∈ V , with dG(x, x) = 0.

• Symmetry: dG(x, x′) = dG(x
′, x) for all x, x′ ∈ V , since G is undirected.

• Triangle inequality: dG(x, x′) ≤ dG(x, z) + dG(z, x
′) for all x, x′, z ∈ V .

Our results in Section 5 extend to the more general improvement function ∆(x) = {x′ ∈ V | dG(x, x′) ≤ r} by applying
our arguments to Gr, the rth power of G.

Definition D.2 (Dominating Set). Let G = (V,E) be an undirected graph, where V is the set of vertices and E ⊆ V × V is
the set of edges. A subset of vertices S ⊆ V is called a dominating set if every vertex in V is either in S or adjacent to at
least one vertex in S. Formally, S is a dominating set if:

∀x ∈ V, x ∈ S or ∃x′ ∈ S such that (x, x′) ∈ E.

D.2. Proof of Theorem 5.1

Proof. Given a sample S labeled by f∗, let S+ = {x ∈ S | f∗(x) = +1} denote the set of positive points in S. To
achieve the claimed upper bound on the sample complexity of learning with zero-error, the learner outputs hS with
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hS(x) = I{x ∈ S+}, that is the classifier which positively classifies exactly the points in S+. We will now show that with a
sample of size m = O

(
n(logn+log 1

δ )

d+
min+1

)
, the proposed hS achieves zero generalization error with probability at least 1− δ.

Let V + = {x ∈ V | f∗(x) = +1} denote the set of vertices in G+. We say that x ∈ V + is covered by the sample S
if x ∈ S or there exists x′ ∈ S such that x′ ∈ V + and (x, x′) ∈ E. Note that if every x ∈ V + is covered by S, then
LOSSD(hS , f

∗) = 0 (formally established in Theorem 5.2). It is therefore sufficiently to bound determine the sample size
needed to guarantee that every positive vertex is covered with high probability.

Let x ∈ V + be a vertex in the positive subgraph G+. For x to be covered, it must either be included in the sample S, or
have at least one of its neighbors x′ ∈ ∆(x) included in S . The probability of sampling x directly in one draw is 1

n . The
probability of sampling any of its neighbors is proportional to its degree in G+. Thus, the total probability of covering x in
one draw is:

pcover(x) =
1

n
· (1 + d(x)) ,

where d(x) is the degree of x in G+. Since d(x) ≥ d+min, we have:

pcover(x) ≥
d+min + 1

n
.

To ensure the desired coverage holds with probability at least 1− δ, we analyze the failure probability for a single vertex.
The probability that a given vertex x ∈ V + is not covered after m samples is

P[x is not covered] ≤
(
1− d+min + 1

n

)m

.

To ensure that this holds for all |V +| ≤ n vertices, we apply the union bound

P[∃x ∈ V + not covered] ≤ n

(
1− d+min + 1

n

)m

.

Therefore, the sample size m required to ensure that the probability of the above bad event is at most δ is given by

m = O

(
n(log n+ log 1

δ )

d+min + 1

)
.

To establish the lower bound, consider a graph G on n vertices consisting of k disjoint cliques, each of the same size
n
k = d+min + 1, see Figure 3. Now note that if our sample S does not contain any node from any one of the cliques (say
C), then zero-error is not possible. This is because, one of two cases occur. If the learner’s hypothesis h predicts any point
in C as positive then we can select an f∗ that predicts C entirely as negative while being consistent with S, causing the
population loss to be at least 1

k . On the other hand, if the learned h predicts all points in C as negative, then we can set f∗ to
label C entirely as positive, again incurring a population loss of at least 1

k .

Figure 3. The graph G used to establish our lower bound on the zero-error sample complexity. The graph consists of k components, each
of size n

k
.

Our goal therefore is to determine a lower bound on the number of points required to ensure that every clique has at least
one of its vertices included in the training sample S, which ensures that for every positive vertex, either the vertex itself
or one of its neighbors is included. Using the standard coupon collector analysis, the number of trials needed to collect
k = n

d+
min+1

coupons is Ω(k log k) with high constant probability.
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D.3. Enabling Improvement Whenever It Helps

Theorem D.3. Let G = (V,E) be an undirected graph with n = |V | vertices, and let f∗ : V → {0,+1} denote
the ground truth labeling function. Define: V + = {x ∈ V | f∗(x) = +1}, the set of positive vertices. Define
V − = {x ∈ V | f∗(x) = 0} the set of negative vertices, and N = {x ∈ V − | ∃x′ ∈ V + such that (x, x′) ∈ E} denote the
set of negative vertices that have a positive neighbor. Let dNmin = minx∈N |{x′ ∈ V + | (x, x′) ∈ E}| denote the minimum
number of positive neighbors of vertices in N . Assume that the data distribution D is uniform on V . For any δ > 0, and
training sample S

i.i.d.∼ Dm of size m = O
(

n(logn+log 1
δ )

dN
min

)
, there exists a learner that outputs a hypothesis h such that

LOSSE
D(h, f

∗) = 0, with probability at least 1 − δ over the draw of S. Moreover, there exists a graph G for which any

learner that always outputs h with LOSSE
D(h, f

∗) = 0 for any D, f∗ must see at least Ω
(

n
dN
min

log n
dN
min

)
labeled points in

the training sample, with high constant probability.

Proof. The proof of the upper bound is technically similar to the proof of Theorem 5.1. Essentially, to ensure that LOSSE = 0,
we need to cover all the vertices in N by some vertices in V +. The probability that any fixed node in N is covered by a
random sample can be lower-bounded in terms of dNmin as

pcover(x) ≥
dNmin

n
.

Using the same argument as in Theorem 5.1, we obtain an upper bound of m = O
(

n(logn+log 1
δ )

dN
min

)
on the sample

complexity of the classifier h which outputs exactly the positively labeled points in its sample as positive to guarantee that
LOSSE

D(h, f
∗) = 0 with probability at least 1− δ.

To establish the lower bound, consider a graph G = (V,E) with two types of nodes, i.e. V = V1∪V2, |V1| = k, |V2| = n−k.
f∗ labels all nodes in V1 as negative. Each node xi ∈ V1 has dNmin = n−k

k neighboring nodes ∆i in |V2| and the sets of these
neighbors are pairwise disjoint. Now, suppose our training sample S does not contain any point in ∆i for some i ∈ [k]. If
the learned hypothesis h predicts any point ∆i as positive, we have h(xi) ̸= {xi} but if f∗ labels all points in ∆i negative,
f∗(xi) = {xi} and we incur loss corresponding to xi. Similarly, if h labels all points in ∆i as negative then h(xi) = {xi}
but we can label ∆i consistent with S such that f∗(xi) ̸= {xi}.

Figure 4. The graph G used to establish our lower bound in Theorem D.3.

Therefore it is sufficient to determine a lower bound on the number of points required to ensure that every ∆i has at least
one of its vertices included in the training sample S. Using the standard coupon collector analysis, the number of trials
needed to collect k = n

dN
min+1

coupons is Ω(k log k) with high constant probability.

Theorem D.4. Let G = (V,E) be an undirected graph with n = |V | vertices, and let f∗ : V → {0,+1} denote the
ground truth labeling function. Define V + = {x ∈ V | f∗(x) = +1}, the set of positive vertices and d+min denote
the minimum degree of a vertex in V + in the subgraph of G induced by V +. Define V − = {x ∈ V | f∗(x) = 0}
the set of negative vertices, and N = {x ∈ V − | ∃x′ ∈ V + such that (x, x′) ∈ E} denote the set of negative vertices
that have a positive neighbor. Let dNmin = minx∈N |{x′ ∈ V + | (x, x′) ∈ E}| denote the minimum number of positive
neighbors of vertices in N . Assume that the data distribution D is uniform on V . For any δ > 0, and training sample
S

i.i.d.∼ Dm of size m = O
(

n(logn+log 1
δ )

min{dN
min,d

+
min}

)
, there exists a learner that outputs a hypothesis h such that LOSSD(h, f

∗) = 0

and LOSSE
D(h, f

∗) = 0, with probability at least 1 − δ over the draw of S. Moreover, there exists a graph G for
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which any learner that always outputs h with LOSSD(h, f
∗) = LOSSE

D(h, f
∗) = 0 for any D, f∗ must see at least

Ω
(
max{ n

d+
min

log n
d+
min

, n
dN
min

log n
dN
min

}
)

labeled points in the training sample, with high constant probability.

Proof. See Theorems 5.1 and D.3.

D.4. Proof of Theorem 5.2: Teaching a Risk-averse Student

Proof. Since S+ is a dominating set of G+ = (V +, E+), for any x ∈ V +, either x ∈ S+ or there exists x′ ∈ S+ such
that (x, x′) ∈ E+. In the first case, hS+(x) = 1 and therefore ∆hS+ (x) = {x}. Thus, hS+(x) = 1 = f∗(x) implies that
LOSS(x;hS+ , f∗) = 0 in this case. In the second case, x /∈ S+, but there exists a neighbor x̃ ∈ ∆(x) such that x̃ ∈ S+

by the definition of S+. Thus, for any point x′ ∈ ∆hS+ (x) ⊆ S+, we have that hS+(x′) = 1 = f∗(x′), ensuring that
LOSS(x;hS+ , f∗) = 0 in this case as well.

For x ∈ V \ V +, if x has no positive neighbors in S+, ∆hS+ (x) = {x} because there is no neighboring vertex x′ ∈ ∆(x)
that would induce a reaction. Thus, hS+(x) = 0 = f∗(x) in this case, implying the loss LOSS(x;hS+ , f∗) on x is zero.

Finally, if x ∈ V \V + has positive neighbors contained in the dominating set, i.e., ∆(x)∩S+ ̸= ∅, then hS+(x′) = +1. The
reaction set ∆hS+ (x) ensures that x moves to one of these neighbors. Specifically, the reaction set allows x to improve and
move to a neighboring vertex x′ ∈ ∆(x) ∩ S+ such that f∗(x′) = +1. Thus, h(x′) = f∗(x′) = +1 for any x′ ∈ ∆hS+ (x)
implying LOSS(x;hS+ , f∗) = 0.
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E. Evaluation: Supplementary Details
This section includes supplementary details on the datasets and classifiers used, how improvement is done and results of the
empirical evaluations.

E.1. Datasets

We utilize three real-world datasets: the Adult Income dataset from UCI and the Open University Learning Analytics Dataset
(OULAD) and Law School datasets sourced from Le Quy et al. (Le Quy et al., 2022b). The preprocessing steps for all the
datasets, similar to those described in Le Quy et al. (Le Quy et al., 2022b), include removing missing data and applying label
encoding to categorical variables. In addition to the real-world datasets, we generate an 8-dimensional synthetic dataset
with increased separability (class sep = 4) using the make classification function from Scikit-learn. We clean the dataset by
removing duplicates and outliers, with Z-scores applied with thresholds (0.9 for class 0 and 0.8 for class 1). The cleaned
synthetic dataset is then balanced using SMOTE (Chawla et al., 2002) to ensure class balance.

Statistical details of the datasets, including test/train sizes and number of features, are in Table 1. We examine the structural
variations within datasets to gain deeper insights into how the characteristics influence the impact of improvements on error
drop rates. Figure 5 highlights the target distribution across training datasets: the Adult dataset has a higher proportion
of negative examples, whereas the OULAD and Law School datasets have a higher percentage of positive examples. The
synthetic dataset, by contrast, is balanced. Figure 6 and 7 illustrate dataset separability properties, showing that the synthetic
dataset (k-NN error: 0.1016) and the Law School dataset (k-NN error: 0.1010) have the highest separability. However, as
Figure 7 shows, the Adult and synthetic datasets exhibit the lowest false positive (FP) outlier rates.

Dataset Target variable d Train/Test Improvable features

Adult {1(> 50K), 0(≤ 50K)} 14 21113/9049 {“hours-per-week, capital-gain, capital-
loss, fnlwgt, educational-num, workclass,
education, occupation”}

OULAD {1(pass), 0(fail)} 11 15093/6469 {“code module, code presentation,
imd band, highest education,
num of prev attempts, studied credits”}

Law school {1(pass), 0(fail)} 11 14558/6240 {“decile1b, decile3, lsat, ugpa, zfygpa,
zgpa, fulltime, fam inc, tier”}

Synthetic {1(positive), 0(negative)} 8 1561/669 {all features are used}

Table 1. Details of the tabular datasets, both synthetic and real, used in the experiments.
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Figure 5. Target variable distributions of synthetic and real-world train datasets used in the experiments for the ((a)) Adult, ((b)) OULAD,
((c)) Law School, and ((d)) Synthetic datasets.
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Figure 6. Inspection of clusteredness and class separation using Davies–Bouldin index (Davies & Bouldin, 1979) and Silhouettes scores
(Rousseeuw, 1987; Shahapure & Nicholas, 2020).
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Figure 7. Scatter plots of the two principal components of the training data and of the k-NN misclassification on test data for the ((a))
Adult (k-NN error: 0.1670, FNR: 0.4610, FPR: 0.0678), ((b)) OULAD (k-NN error: 0.3291, FNR: 0.1195, FPR: 0.7645), ((c)) Law
School (k-NN error: 0.1010, FNR: 0.0180, FPR: 0.7875), and ((d)) Synthetic (k-NN error: 0.1016, FNR: 0.1960, FPR: 0.000) datasets.
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Dataset DTC1 DTC2 RFC1 RFC2 XGB

Adult 0.999967± 0.000049 0.999967± 0.000049 0.999934± 0.000079 0.999967± 0.000049 0.999967± 0.000049
Law 1.000000± 0.000000 1.000000± 0.000000 1.000000± 0.000000 1.000000± 0.000000 0.999952± 0.000071
OULAD 1.000000± 0.000000 1.000000± 0.000000 1.000000± 0.000000 1.000000± 0.000000 1.000000± 0.000000
Synthetic 1.000000± 0.000000 1.000000± 0.000000 1.000000± 0.000000 1.000000± 0.000000 1.000000± 0.000000

Table 2. Accuracy score of the f⋆ models when trained and tested on ST across different datasets.

Dataset DTC1 (LOO) DTC2 (LOO) RFC1 (LOO) RFC2 (LOO) XGB (LOO)

Adult 0.8084± 0.0044 0.8053± 0.0045 0.8541± 0.0040 0.8545± 0.0040 —
Law 0.8507± 0.0048 0.8428± 0.0049 0.8962± 0.0041 0.8972± 0.0041 0.8894± 0.0043
OULAD 0.5941± 0.0066 0.5952± 0.0066 0.6684± 0.00663 0.6689± 0.0063 —
Synthetic 0.9955± 0.0028 0.9951± 0.0029 0.9969± 0.0023 0.9973± 0.0021 0.9955± 0.0028

Table 3. Average leave one out (LOO) score of the 5, f⋆ models on ST across different datasets.

E.2. Classifiers

In all experiments we set the random seed to 42 to ensure reproducibility and consistency across all runs. All experiments
were conducted on a laptop computer with the following hardware specifications: 2.6-GHz 6-Core Intel Core i7 processor,
16 GB of 2400-MHz DDR4 RAM, and an Intel UHD Graphics 630 graphics card with 1536 MB of memory. Below are
supplementary details about the classification models used. Below are supplementary details about the classification models
used.

E.2.1. THE f⋆ MODEL

The function f⋆ served as the ground truth labeler, assessing whether the agent’s modifications led to a successful
improvement. We evaluated five standard machine learning binary classification models, each achieving near 100% accuracy
when trained and tested on ST (see Table 2). These models include two decision tree classifiers (DTC1 and DTC2), two
random forest classifiers (RFC1 and RFC2), and a gradient boosting classifier (XGB). Descriptions of these models are
provided below.

1. Model f⋆
1 (DTC1): A decision tree classifier with the following hyperparameters: criterion = “entropy”,

min samples split = 2, min samples leaf = 1, and random state = 42.

2. Model f⋆
2 (DTC2): A decision tree classifier with the following hyperparameters: criterion = “gini”, min samples split

= 2, min samples leaf = 1, and random state = 42.

3. Model f⋆
3 (RFC1): A random forest classifier with default settings and random state = 42.

4. Model f⋆
4 (RFC2): A random forest classifier with the following hyperparameters: n estimators = 500,

min samples split = 2, min samples leaf = 1, max features = “sqrt”, bootstrap = True, oob score = True, and ran-
dom state = 42.

5. Model f⋆
5 (XGB): A gradient boosting classifier with the following hyperparameters: n estimators = 500, max depth =

50, learning rate = 0.088, min child weight = 2, subsample=0.9, gamma = 0.088, and random state = 42.

We define the ground truth labeler f⋆ either as a singular near-100% accuracy model (see Table 2) or as an agreement among
multiple near-100% accuracy models.

The multi-defined f⋆ model. Although the five f⋆ models described above achieve nearly 100% accuracy when trained
and tested on ST , we assessed their generalization using the leave-one-out (LOO) validation score. The observed differences
in LOO validation scores (Table 3), despite similar and high accuracy scores (Table 2), highlight potential generalization
gaps. To account for this, we employ a multi-defined f⋆ model to validate the experimental results.
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For a given data point x, the five models: f⋆
1 (x), f

⋆
2 (x), f

⋆
3 (x), f

⋆
4 (x) and f⋆

5 (x) each make a prediction for the label of the
data point. Based on these predictions, we define a boolean agreement mask M(x) that checks whether all four models
agree on the prediction:

M(x) = 1(f⋆
1 (x) = f⋆

2 (x) = f⋆
3 (x) = f⋆

4 (x) = f⋆
5 (x))

where 1(·) is the indicator function that outputs 1 if all four models agree, and 0 otherwise. Using this agreement mask, we
define the ground truth labeling function f⋆(x) as follows:

f⋆(x) =

{
f⋆
1 (x), if M(x) = 1 (i.e., full agreement)
0, otherwise

(8)

The singularly-defined f⋆ model. Alternatively, we define the labeling function f⋆(x) using a single near-100% accuracy
model trained and tested on ST , selected from the set {f⋆

1 (x), f
⋆
2 (x), f

⋆
3 (x), f

⋆
4 (x), f

⋆
5 (x)}. Unless otherwise stated , all

experimental results were obtained using the DTC2 model (f⋆
2 (x)) as the designated singularly-defined f⋆(x) function.

E.2.2. THE DECISION-MAKER’S MODEL (h)

We trained two-layer neural networks, denoted as h functions, using PyTorch with Adam optimizer with a learning rate
of 0.001 and a batch size of 64. These h functions generate decisions for the test set agents. In cases where the test agent
receives a negative classification, they can, if within budget, improve their feature values to get the desired classification
from the h function. Table 4 summarizes the performance metrics of the f⋆ and h model functions, demonstrating their
varied performance across the datasets.

Since the empirical setup evaluates the impact of improvement on h’s error drop rates, we vary the loss functions we train
the model h function with. We use the standard binary cross entropy loss (BCE) and the risk-averse weighted-BCE (wBCE)
loss functions defined in Equation 5. In particular, because only negatively classified test-set agents improve, improvement
(x′), if successful (that is, f⋆(x′) = h(x′) = 1) reduces the false negative rate and turns true negatives into true positives.
On the other hand, when unsuccessful (that is, f⋆(x′) = 0 and h(x′) = 1), it increases the false positive rate by turning true
negatives into false positives and false negatives into false positives.

The model trained with the weighted-BCE loss corresponds to a more risk-averse classifier that penalizes the false positive
(FP) errors more heavily than the false negative (FN) one, creating a more compact positive agreement region that ensures
more successful improvements. We prioritize minimizing FPs by ensuring the false positive to false negative weight ratio
wFP
wFN

> 1 is high, for example, 4.4
0.001 = 4400 for the adult dataset. Another form of risk-averse classification we consider is

only classifying an agent as positive iff the probability of being positive is high. That is to say, we use the standard threshold
0.5 for the standard classifier and a higher threshold 0.9 for a more risk-averse classifier.

Dataset Model (kind) Accuracy Precision Recall F1 Score

Adult 2-layer neural network (h(x)) 0.841087 0.699811 0.647677 0.672736

Law 2-layer neural network (h(x)) 0.901282 0.911691 0.984731 0.946805

OULAD 2-layer neural network (h(x)) 0.678003 0.698609 0.919853 0.794109

Synthetic 2-layer neural network (h(x)) 0.994021 1.000000 0.988473 0.994203

Table 4. Average performance of the standard models functions h across different datasets’ test sets Stest when test-set agent cannot
improve that is, r = 0.
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E.3. Agents Improvement

Given the feature vector of a negatively classified test-set agent, xorig and it’s negative label h(xorig), the loss function L
(BCE or wBCE), improvement budget r, step size α, number of iterations T and set of indices of improvement features
S, compute the agent’s improvement features. For each dataset, we predefine the improvable features that the agents can
change in order to get a desirable (positive) model outcome (see Table 1). We vary the improvement budget in the empirical
setup to so as to assess the impact of improvement on the the error drop rates.

Below are the steps of the improvement algorithm we used to compute each agent’s improvement features.

Initialization:
x′
(0) = xorig

Iterative updates: For t = 0, 1, . . . , T − 1:

1. Compute the gradient of the loss L with respect to the agent’s updates x′
(t):

g(t) = ∇x′
(t)
L
(
h
(
x′
(t)

)
, h

(
xorig

))
2. Update the improvement features by taking a step in the direction of the sign of the gradient:

ρ(t)[i] =

{
α · sign(g(t)[i]), if i ∈ S

0, otherwise
, ∀i ∈ [d]

x′
(t+1) = x′

(t) + ρ(t)

3. Project the updated improvement features back onto the r-ball around the original features xorig:

x′
(t+1) =

(
xorig + clip[−r,r](x

′
(t+1) − xorig)

)
Improvement vector: After T iterations, the final agent’s improvement is given by:

x′ = x′
(T )
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E.4. Evaluation Results: Supplementary Details

Following the key insights mentioned in the main paper in Section 6, below are the detailed observations from the
experimental evaluation and the supplementary figures of the experimental results.

Effect of dataset characteristics. For all datasets we consider, Figure 2 shows that as the improvement budget increases,
error rates drop significantly, particularly when agents improve in response to a risk-averse model trained using the LwBCE
loss function. Dataset characteristics notably influence performance. For instance, as shown in Figure 6, the Law school
and Synthetic datasets exhibit the highest separability and require relatively less risk aversion to achieve substantial and
close to zero error reductions. Among all datasets, the Synthetic dataset shows a sharper error decline, reaching zero as the
improvement budget increases (refer to Figure 2). Furthermore, as depicted in Figure 7, the Adult and Synthetic datasets
demonstrate the lowest k-NN test-set false positive rates (FPRs) of 0.0678 and 0.000, respectively, compared to the OULAD
and Law School datasets. As seen in Figure 2, for both datasets, the error drops close to 0 as r increases.

Effect of risk-aversion and improvement budget. Figures 10a, 10c, 10e and 10g show that when agents improve to
a risk-averse model trained using LwBCE with wFP

wFN
> 1, the error rate decreases rapidly, particularly as the improvement

budget increases. Notably, the higher the false positive to false negative weight ratio wFP
wFN

, the faster the reduction in error
(see Figure 8). In contrast, models trained with the standard LBCE loss function exhibit a slower error reduction rate, almost
looking like a line, under the same conditions as the effects of improvement are minimal and cancel each other out (see
Figure 9).

Furthermore, the false negative rate (FNR) decreases as the improvement budget r grows when the agents respond (improve)
to an LwBCE–trained model (see Figures 9b, 9d, and 9f). This is because almost 100% of the false negatively classified agents
improve to become true positives as shown in Figures 9a, 9c, and 9e. On the other hand, on datasets where the weighted-BCE
loss function effectively removed false positives (close to 0 false positive rate (FPR)) before agents’ improvement, remains
very low, in some cases close to 0 (e.g., in Figure 9f), since no or few agents become false positives after improvement
(see Figure 9e). However, when the weighted-BCE loss function wasn’t as effective, the false positive rate increases as the
improvement budget r < 2.0 grows (see Figure 9d).

Although we observe similar trends when the threshold for classifying an agent as positive increases to 0.9 (instead of 0.5),
the error is slightly higher and the reduction becomes slower (Figure 10). Additionally, while Figures 2 and 8 demonstrate
diminishing returns for r > 2.0, a different trend emerges in Figures 10b, 10d, 10f and 10h where we classify agents positive
with high probability (0.9).

Effect of choice of f⋆ model. Although different f⋆ models achieved ∼ 100% accuracy on a given dataset while exhibiting
varied LOO accuracy (cf. Tables 2 and 3), the error drop rate showed consistent patterns when different f⋆ models are used.
As shown in Figure 11, although some f⋆ models, such as RFC2 (f⋆

4 ) (cf. Figure 11c), had higher performance gains than
others, in all cases, the error drops rapidly as improvement budget increases and agents respond (improve) to wBCE-trained
models.

Additionally, performance gains observed with evaluation of successful improvement using the multi-defined f⋆ (cf.
Figure 12) were quite similar in trend and gains to those when a singularly-defined model function f⋆ = f⋆

2 was used (cf.
Figure 10, column one ((a), (c), (e) and (g))).

Our results indicate that while the f⋆ models achieve ∼ 100% accuracy when trained and tested on the unsplit dataset ST ,
they often overfit, as shown by the LOO scores (cf. Table 3). Nevertheless, they yield comparable performance gains when
assessing agents’ improvement (cf. Figures 12 and 11).
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Figure 8. Comparison of the error drop rate when agents improve to the risk-averse models trained with LwBCE where wFN = 1.0 ((a), (c),
(e), and (g)) and where wFN ((b), (d), (f), and (h)) is optimized and false positive weight is varied wFP = {i}8i=1 across different datasets
(Adult, OULAD, Law school and Synthetic). The standard model (black line) trained with LBCE loss function is such that wFP = wFN = 1,
and in all cases an agent is classified as positive if the probability of being positive is above 0.5.
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Figure 9. ((a), (c), and (e)) The percentage of negatively classified agents (TN and FN) that transition to TP and FP after responding to the
classifier (h(x)). ((b), (d), and (f)) The FPR and FNR before and after agents move. On the adult dataset, the wBCE-trained model used
wFP = 0.001 and wFN = 4.4, while on the OULAD dataset, it used wFP = 1.33 and wFN = 2, and on the synthetic dataset, wFP = 0.009
and wFN = 1.0. In all cases, BCE-trained models used wFP = wFN = 1, and in all cases an agent is classified as positive if the probability
of being positive is above 0.5.
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Figure 10. Comparison of the error drop rate when agents improve to the risk-averse

(
LwBCE,

wFP
wFN

> 1, wFP = {i}8i=1

)
and standard

(LBCE, wFP = wFN = 1) models across four datasets (Adult, OULAD, Law school, and Synthetic). Column one ((a), (c), (e) and (g))
considers models where an agent is classified as positive if the probability of being positive is above 0.5 and column two ((b), (d), (f) and
(h)) considers models where a higher threshold is used 0.9. Increasing the improvement budget and classifier risk-aversion (high wFP

wFN
)

leads to a sharper error drop rate, and loss-based risk aversion is more effective than the threshold-based risk-aversion.
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Figure 11. Risk-averse
(
LwBCE with wFP = {i}8i=1, wFN = 1.33

)
and standard (LBCE, wFP = wFN = 1) trained model function (h) error

drop rates versus improvement budget (r) on the Adult dataset where different singularly-defined f⋆ are used to verify successful-ness of
improvement: ((a)) with f⋆

1 , ((b)) with f⋆
3 , ((c)) with f⋆

4 , and ((d)) with f⋆
5 . For DTC2, f⋆

2 see Figure 10c. In all cases, the threshold for
classifying an agent as positive is 0.5.
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Figure 12. Risk-averse

(
LwBCE with wFP = {i}8i=1

)
and standard (LBCE) trained model function (h) error versus improvement budget

(r) across four datasets (Adult, OULAD, Law school, and Synthetic). For all cases, the threshold for classifying an agent as positive is
0.5 and a multi-defined f⋆ model is used to verify successful-ness of improvement. Increasing the improvement budget and classifier
risk-aversion (high wFP

wFN
) leads to a faster error drop rate.

31


