
PROGRESSOR: A Perceptually Guided Reward Estimator
with Self-Supervised Online Refinement

Tewodros W. Ayalew1 Xiao Zhang∗,1 Kevin Yuanbo Wu∗,1 Tianchong Jiang2

Michael Maire1 Matthew R. Walter2

1University of Chicago 2Toyota Technological Institute at Chicago

https://ripl.github.io/progressor

Abstract

We present PROGRESSOR, a novel framework that learns
a task-agnostic reward function from videos, enabling pol-
icy training through goal-conditioned reinforcement learn-
ing (RL) without manual supervision. Underlying this re-
ward is an estimate of the distribution over task progress
as a function of the current, initial, and goal observa-
tions that is learned in a self-supervised fashion. Cru-
cially, PROGRESSOR refines rewards adversarially during
online RL training by pushing back predictions for out-of-
distribution observations, to mitigate distribution shift in-
herent in non-expert observations. Utilizing this progress
prediction as a dense reward together with an adversar-
ial push-back, we show that PROGRESSOR enables robots
to learn complex behaviors without any external supervi-
sion. Pretrained on large-scale egocentric human video
from EPIC-KITCHENS, PROGRESSOR requires no fine-
tuning on in-domain task-specific data for generalization to
real-robot offline RL under noisy demonstrations, outper-
forming contemporary methods that provide dense visual
reward for robotic learning. Our findings highlight the po-
tential of PROGRESSOR for scalable robotic applications
where direct action labels and task-specific rewards are not
readily available.

1. Introduction

Practical applications of reinforcement learning (RL) re-
quire that a domain expert design complex reward models
that encourage desired behavior while simultaneously pe-
nalizing unwanted behavior [32, 35, 36]. However, manu-
ally constructing dense rewards that enable effective learn-
ing is difficult and can yield undesired behaviors [5, 15].
Sparse rewards require far less effort, however the lack of
supervision typically results in a significant loss of sample
efficiency. These issues are exacerbated for long-horizon

Figure 1. Trained in a self-supervised manner on expert videos,
PROGRESSOR predicts an agent’s progress toward task comple-
tion, providing a reward signal for reinforcement learning. During
online reinforcement learning, we employ an adversarial technique
to refine this reward estimate, addressing the distribution shift be-
tween expert data and non-expert online rollouts.

tasks, where credit assignment is particularly difficult.
A promising alternative is to learn effective rewards

from unlabeled (i.e., action-free) videos of task demonstra-
tions [2, 8, 20, 24, 27, 40]. Large-scale video data is readily
available on the internet, providing a effective alternative to
costly, intensive task-specific data collection. An effective
way to incorporate diverse video data into a single model
without learning a new policy for each task is to condition
the model on a goal image that visually specifies the desired
environment changes upon task completion [9, 24].

To that end, we propose PROGRESSOR, a self-supervised
framework that learns a task-agnostic reward function from
videos for goal-conditioned reinforcement learning that
only requires image observations, without the need for cor-
responding action labels. Following Yang et al. [40], we as-
sume that expert demonstrations make monotonic progress
towards a goal and employ a self-supervised temporal learn-
ing approach that utilizes a proxy objective aimed at esti-

https://ripl.github.io/progressor

mating task completion progress. PROGRESSOR predicts
the distribution of progress from the current observation
(i.e., the current image) relative to the initial and goal ob-
servations. This estimation provides dense supervision of
an agent’s progression towards reaching the goal, and thus
performing the task, guiding exploration in alignment with
expert execution trajectories. However, during RL explo-
ration, agents will often encounter states that were not vis-
ited as part of the expert trajectories. PROGRESSOR ac-
counts for this distribution shift via an online adversarial
refinement that pushes back pushing back predictions for
out-of-distribution observations.

We evaluate the effectiveness of PROGRESSOR for robot
manipulation tasks in both simulation and the real world.
These results demonstrate the the benefits that PROGRES-
SOR’s self-supervised reward has on policy learning, partic-
ularly in settings where existing methods otherwise require
intricate reward design. The key contributions of this paper
are as follows:
• We present PROGRESSOR, a self-supervised reward

model trained on unlabeled videos that guides a reinforce-
ment learning agent by providing dense rewards based on
predicted progress toward a goal.

• PROGRESSOR achieves state-of-the-art performance on
six diverse tasks from the Meta-World benchmark [43]
without the need for environment reward.

• Pretrained on large-scale egocentric human video from
EPIC-KITCHENS [6], PROGRESSOR enables few-shot
real-robot offline, even when half of the demonstrations
are unsuccessful.

2. Related Work
Learning from expert videos has gained traction due to the
potential to scale the acquisition of complex skills using the
vast amount of video content readily available.

Inverse RL Inverse reinforcement learning (IRL) is
a framework for learning reward functions from expert
demonstrations as an alternative to specifying them man-
ually. In contrast to traditional RL, where the reward func-
tion is predefined and the goal is to learn an optimal pol-
icy, IRL focuses on deducing the underlying reward struc-
ture that results in the expert’s behavior [1, 39, 46]. Re-
cent IRL methods leverage adversarial techniques to learn
reward functions [10, 11, 22], such as in Generative Adver-
sarial Imitation Learning (GAIL) [19]. A key limitation of
typical approaches to IRL is that they require action-labeled
demonstrations, which are only available in small quanti-
ties. Another is the ambiguity that results from having mul-
tiple rewards that can explain the observed behavior [25],
potentially leading to ill-shaped reward functions. In con-
trast, our notion of progress enables the learning of well-
shaped dense rewards.

Imitation learning from video Several methods [4, 44]

learn from videos by inferring the inverse dynamics model,
leveraging a small amount of annotated data. However,
these methods depend on the presence and quality of an
albeit limited action labels. Other methods have used ex-
isting hand pose estimation as intermediate annotation fol-
lowed by standard imitation learning [3, 30]. However,
these methods rely on the accuracy of the pose estimators
and camera calibration.

Learning reward from video Recent methods learn vi-
sual representations useful for RL from video data using
self-supervised temporal contrastive techniques [9, 24, 27,
34, 41]. Time-contrastive objectives treat observations close
in time as positive pairs and those that are temporally distant
as negative pairs. They then learn embeddings that encour-
age small distances between positive pairs and large dis-
tances between negative pairs. The learned embeddings can
then be used to define reward functions, i.e., as the distance
from the goal image in embedding space. Time-contrastive
objectives can be sensitive to frame rate, and extracted re-
wards are assumed to be symmetric [24]. In comparison,
our approach is agnostic to the sampling rate and can learn
asymmetric dynamics depending on the specified initial and
goal images.

Additionally, generative approaches have been used for
reward learning. VIPER [8] estimates the log-likelihood of
an observation as a reward function by training on an ex-
pert dataset using a VideoGPT-based autoregressive model.
Similarly, Huang et al. [20] employ a diffusion-based ap-
proach to learn rewards by leveraging conditional entropy.
However, these methods necessitate costly generative pro-
cesses to estimate rewards.

Particularly relevant, Rank2Reward [40] demonstrates
that learning the ranking of visual observations from a
demonstration helps to infer well-shaped reward functions.
By integrating ranking techniques with the classification
of expert demonstratin data vs. non-expert data obtained
through on-policy data collection, Rank2Reward guides
robot learning from demonstration. A key limitation of
the method is that it necessitates training distinct models
for each task due to the task-dependent nature of ranking
frames. In contrast, our approach employs a single reward
model for all tasks. Additionally, we utilize an adversar-
ial training approach that tackles the domain shift observed
during online RL, rather than incorporating a separate clas-
sifier as used in Rank2Reward.

3. Preliminaries
We formulate our method in the context of a finite-horizon
Markov decision process (MDP) M defined by the tu-
ple (O,A,P,R, γ, ρ0), which represents the observation
space, action space, reward function, transition probability
function, discount factor, initial state distribution, respec-
tively. Typically, the agent starts from an initial state with

observation o0 ∼ O and at each step performs an action
a ∼ A. The fundamental objective in RL is to learn optimal
policy π∗ that maximizes the expected discounted reward,
i.e., expressed as π∗ = argmaxπ Eπθ

[
∑T

t=1(γ
t−1R(ot))].

In this paper, we operate under the assumption that
the environment is fully observable, wherein observations
ok ∈ RH×W×3 are high-dimensional image frames. Ad-
ditionally, we assume access to a dataset De that consists
of expert demonstrations. These demonstrations are com-
prised of sets of trajectories {τk}Nk=1, each containing se-
quences of observations, τk = {oτk

0 ,oτk
1 , ...,oτk

n }.
However, we assume that neither the reward function R

nor the demonstrated actions a ∼ A are known. This setup
mirrors the real-world robot task-learning scenario in which
we have a plethora of videos of human-performed tasks,
without knowledge of the actions being performed or the re-
wards being received. The primary objective of this paper is
to construct a model capable of predicting a well-structured
dense reward from a dataset of expert demonstrations, with-
out access to demonstrated actions or rewards. This model
can subsequently serve as a reward estimating mechanism
when training an agent using online RL in the absence of
any environment rewards.

4. Method
We propose to learn a unified reward model via an en-
coder Eθ(oi,oj ,og) that estimates the relative progress of
an observation oj with respect to an initial observation oi

and a goal observation og , all of which are purely pixel-
based. Figure 2 illustrates PROGRESSOR’s framework for
task progress estimation. Here, the objective is to learn the
temporal ordering of observations that lead to the correct
execution of a task. By learning this progress estimation,
we can create a reward model that incentivizes progress to-
ward the goal. Similar to Yang et al. [40], our method relies
on the assumption that the values of states in optimal poli-
cies increase monotonically towards task completion.

4.1. Learning the Self-Supervised Reward Model
We measure an observation oj’s progress towards a goal in
terms of its relative position with respect to the initial obser-
vation oi and the goal observation og . In order to learn this
progress estimate, we first represent the relative position of
an observation oj within an expert trajectory τk as

δ(oτk
i ,oτk

j ,oτk
g) =

|j − i|
|g − i|

. (1)

Here, δ(oτk
i ,oτk

j ,oτk
g) calculates the ratio of the relative

frame position differences between oj and oi and between
og and oi within a given expert trajectory τk. This progress
label is always such that δ(oτk

i ,oτk
j ,oτk

g) ∈ [0, 1].
Predicting progress based on real-world video is chal-

lenging due to factors like camera motion and repetitive

sub-trajectories. We address this by formulating the prob-
lem as one of estimating a Gaussian distribution over
progress, allowing the model to estimate uncertainty as vari-
ance. With this approach, we approximate the ground-
truth distribution for a triplet of frames (oτk

i ,oτk
j ,oτk

g)
within a video τk as a normal distribution with mean
µτk = δ(oτk

i ,oτk
j ,oτk

g) and standard deviation στk =

max(1
g−i , ϵ):

ptarget(o
τk
i ,oτk

j ,oτk
g) = N

(
µτk , σ

2
τk

)
(2)

Our ϵ upper-bound of στk downweights the penalty for
triplets in which there are many frames between the ini-
tial and goal images, which we empirically find to improve
robustness during training. Therefore, the predicted distri-
bution of this form provides a distribution of the progress
estimate. Sampling from this predicted distribution yields
values that reflect the observed progress.

We optimize our reward model rθ to predict the distri-
bution of the progress on expert trajectory. We use a shared
visual encoder to compute the per-frame representation, fol-
lowed by several MLPs to produce the final estimation:

Eθ(oi,oj ,og) = N
(
µ, σ2

)
(3)

Following Kingma and Welling [21], we estimate log σ2

and then compute σ as σ = exp
(
0.5 log σ2

)
. We learn

the parameters of the network by optimizing the Kullback-
Leibler divergence loss between the ground-truth and the
predicted distributions:

Lexpert=DKL
(
ptarget

(
oτk
i ,oτk

j ,oτk
g

)
∥Eθ

(
oτk
i ,oτk

j ,oτk
g

))
(4)

During the training of our reward model rθ, we randomly
select and rank three frames from a video sequence of expert
trajectories as a training triplet. Additionally, since these
triplets can be randomly drawn from any trajectory within
the dataset of different robotics tasks, a single reward model
suffices to handle a variety of tasks.

Using the Reward Model in Online RL: Due to the
monotonic nature of task progress in our problem formula-
tion, the estimates derived from the trained model can serve
as dense rewards for training, replacing the unknown true
reward. We create the reward model by defining a function
derived from the model’s predicted outputs given a sample
of frame triplet (oi,oj ,og) of trajectory as:

rθ(oi,oj ,og) = µ− αH(N (µ, σ2)), (5)

where rθ denotes PROGRESSOR’s reward estimate and H is
the entropy. The first term µ in Eqn. 5 uses the mean pre-
diction from the progress estimation model to determine the
position of the current observation relative to the goal. The
second term penalizes observations that yield high variance.
Here, α is hyperparameter, which we set to α = 0.4 in all
our experiments. See S8 for an ablation of α.

Figure 2. Top Left: Initial phase of reward model pretraining on expert data, where the model learns to predict the parameters of a Gaussian
distribution centered on normalized progress, reflecting expected progress as demonstrated by experts. Top Right: In online reinforcement
learning (RL) training, an adversarial online refinement (i.e., push-back) is applied to counteract non-expert predictions made by the reward
model, effectively distinguishing expert from non-expert progress. Bottom: During online RL, the reward model is updated on expert and
non-expert data.

4.2. Adversarial Online Refinement via Push-Back
Our reward model rθ can be used to train a policy that max-
imizes the expected sum of discounted rewards as:

π∗ = arg max
π

Eπθ

[
T∑

t=1

γt−1rθ(o
τ ′

i ,oτ ′

t ,oτ ′

g)

]
(6)

The reward encourages the agent to take actions that align
its observed trajectories τ ′ with those of the expert demon-
strations τ , thereby promoting task completion. However,
the all-but-random actions typical of learned policies early
in training result in out-of-distribution observations relative
to the expert trajectories. As a result, optimizing the policy
using a reward rθ that is only trained on an expert trajec-
tory τ can result in unintended behaviors, since rθ does not
reflect the actual progress of τ ′. To tackle this distribu-
tion shift, we implement an adversarial online refinement
strategy [12, 13], which we refer to as “push-back”, that en-
ables the reward model rθ to differentiate between in- and
out-of-distribution observations τ and τ ′, providing better
estimation. Specifically, for a frame triplet (oτ ′

k
i ,o

τ ′
k

j ,o
τ ′
k

g)
sampled from τ ′k and the estimated progress µτ ′

k
from Eθ

(3), we update Eθ so that it learns to push-back the current

Algorithm 1 Training PROGRESSOR with Online RL

Require: Expert demonstration data De = {τk}Nk=1

1: Initialize policy π, empty replay buffer DRB

2: Initialize reward model rθ.
3: // Pretraining PROGRESSOR
4: for step n in {1, . . . , Npretrain} do
5: Sample triplets (oτk

i ,oτk
j ,oτk

g) from τk ∈ De

6: Learn rθ with objective Eqn. 4
7: end for
8: // Policy optimization and reward model fine-tuning
9: for step n in {1, . . . , N} do

10: With π, collect transitions {τl}Ml=1 and store in DRB

11: if n % reward_update_frequency == 0 then
12: Update rθ with Eqn. 4 using samples from De

13: Update rθ with Eqn. 7 using samples from DRB

14: end if
15: Sample batch of transitions sπ from DRB

16: Update π to maximize returns using Eqn. 5
17: end for

estimation as βµτ ′
k

with β ∈ [0, 1] as the decay factor. In
our experiments, we use β = 0.9. We formulate our online

Figure 3. Visualization of the robotic tasks: (a-d) Real world en-
vironments with a UR5 arm. (e-j) Simulation environments for
evaluation using the Meta-World [43] benchmark.

refinement objectives as:

ppush-back = sg
(
N

(
βµτ ′

k
,

1

(g − i)2

))
Lpush-back = DKL

(
ppush-back∥Eθ

(
o
τ ′
k

i ,o
τ ′
k

j ,o
τ ′
k

g

))
, (7)

where sg(·) denotes the stop gradient operator. With this
approach, we differentiate between the two sources of tra-
jectories by treating observations from the (inferior) online
roll-out trajectories τ ′ as corresponding to lower progress
compared to expert trajectories τ . In this case, optimizing
for π∗ would encourage the agent to consistently improve
its actions until the policy trajectories are well aligned with
the distribution of expert trajectories τk .

During online training, we fine-tune Eθ (3) using hybrid
objectives: we optimize Lpush-back based on τ ′k sampled from
the most recent buffers and at the same time, we optimize
Lexpert using samples from τk, preventing Eθ from being
biased by τ ′k.

5. Experimental Evaluation
We evaluate the effectiveness with which PROGRESSOR
learns reward functions from visual demonstrations that en-
able robots to perform various manipulation tasks in sim-
ulation as well as the real world. The results demonstrate
noticeable improvements over the previous state-of-the-art.

5.1. Simulated Experiments
In our simulated experiments, we used benchmark tasks
from the Meta-World environment [43], selecting six
table-top manipulation tasks (Figure 3 e-j): door-open,
drawer-open, hammer, peg-insert-side,
pick-place, and reach. For all tasks, we trained the
model-free reinforcement learning algorithm DrQ-v2 [42]
using the reward predicted by PROGRESSOR in place of the
environment reward.

We compare our method to three relevant baselines: (1)
TCN [33], a temporal contrastive method that optimizes
embeddings for measuring task progress; (2) GAIL [18],

an adversarial approach that aligns the state-action distribu-
tion of a policy with that of an expert. GAIL’s discrim-
inator is used as a reward function for our baseline fol-
lowing Yang et al. [40]; (3) SOIL [31] jointly trains an
inverse dynamics model and policy by predicting actions
from state-only demonstrations.; (4) ROT [16] leverages
optimal transport to match the expert and agent’s trajec-
tory to provide extra regularization for robotics learning;
and (5) Rank2Reward [40], a state-of-the-art reward learn-
ing method that combines temporal ranking and classifi-
cation of expert demonstrations to estimate rewards. Un-
like our method, which uses a single model for all tasks,
Rank2reward requires a separate model for each task and
needs an additional classifier for online adaptation. For a
fair comparison, we use their default hyperparameters and
trained all methods under the same setup. All methods were
trained for 1.5M steps, relying solely on the reward esti-
mates provided by the model.

We evaluate the methods in terms of the episodic re-
turn, which reflects the cumulative reward received by the
agent during each episode of the task. To ensure the ro-
bustness of our results, we average the episodic return over
five different seeds for both the baseline methods and our
approach, providing a comprehensive comparison of per-
formance across all tested tasks. This setup allows us to
analyze the impact of our proposed method in a controlled,
simulated environment.

We present the results in Figure 4. Our method sig-
nificantly outperforms the baseline methods across most
tasks, with a notable advantage in efficiency. In the
drawer-open and hammer tasks, PROGRESSOR re-
quires only 10% of the total training budget to achieve
higher rewards than the baselines. In the door-open and
peg-insert-side tasks, where almost all other meth-
ods fail entirely, our approach demonstrates strong perfor-
mance and a higher success rate.

Ablating Push-back We examine the impact of ad-
versarial online refinement via push-back in our frame-
work. Across various tasks (see Figure 4), we find that
online push-back significantly enhances PROGRESSOR’s
performance, particularly on challenging tasks such as
door-open and hammer. These tasks demand more pre-
cise discrimination between expert behavior and online roll-
outs to provide an informative reward signal. Notably, PRO-
GRESSOR without push-back still outperforms every base-
line on the drawer-open and reach tasks.

In the case of the reach task, we observe that PRO-
GRESSOR with push-back shows a decrease in return as
training progresses, a trend that is less pronounced in the
version without push-back. We hypothesize that this occurs
because the model initially achieves a high success rate—
reaching a peak with only 10% of the total steps—leading
the refinement process to overly penalize the agent, even

0.0 0.5 1.0 1.5
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

door-open

0.0 0.5 1.0 1.5
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

drawer-open

0.0 0.5 1.0 1.5
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

hammer

0.0 0.5 1.0 1.5
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

peg-insert-side

0.0 0.5 1.0 1.5
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

pick-place

0.0 0.5 1.0 1.5
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

reach

TCN [Sermanet et al., 2017] GAIL [Ho & Ermon, 2016] ROT [Haldar et al., 2022] SOIL [Radosavovic et al., 2021] Rank2Reward [Yang et al., 2024] PROGRESSOR w/o Push Back PROGRESSOR (Ours)

(a) The evolution of the episodic reward (b) The evolution of the success rate

Figure 4. Visualization of policy learning in the Meta-World [43] simulation environment. We run PROGRESSOR and several baselines
on six diverse tasks of various difficulties. We also run PROGRESSOR without online push-back as an ablation. We follow the standard
evaluation protocol to report the environment reward during training (left) and the task success rate from 10 rollouts (right) averaged over
five seeds. The line denotes the mean and the transparent area denotes standard deviation. PROGRESSOR demonstrates clear advantages in
both metrics, especially at early stages of training.

when its behavior closely resembles the expert.
Online training with non-expert data is crucial for robust

performance. TCN, which is only trained on expert demon-
strations without online updates, fails at every task due to
the domain shift between pre-training and online RL.

5.2. Real-World Robotic Experiments
In this section, we demonstrate how PROGRESSOR, pre-
trained on the egocentric EPIC-KITCHENS dataset [6, 7],
can efficiently learn robotic tasks from a limited number of
demonstrations, even when some are unsuccessful. Our ap-
proach enhances sample efficiency and robustness to noisy
data in offline RL, making it more effective than traditional
behavior cloning (BC) methods.

5.2.1. Pretraining on Kitchen Dataset
Using ResNet34 [17] as a backbone, we first pretrain our
encoder Eθ with Equation 4 taking P01-P07 sequences
from the EPIC-KITCHENS dataset composed of approxi-
mately 1.29M frames. We randomly sample frame triplets
(oi,oj ,og) from the videos ensuring a maximal frame gap
∥i − g∥ ≤ 2000. To improve the robustness of Eθ, we ad-
ditionally train with distractor frames where we replace the
current observation oj with a frame randomly sampled from

Task Behavior of Failed Demonstrations

Drawer-Open
The robot approaches the drawer
but misses the handle by a few cen-
timeters, failing to open it.

Drawer-Close
The robot misses the drawer by a
few centimeters, failing to close it.

Push-Block
The robot moves the block halfway
toward the target cup but stops be-
fore reaching it.

Pick-Place-Cup
The robot lowers to pick up the cup
but misses it by a few centimeters
and remains in that position.

Table 1. Failure modes in the collected suboptimal trajectories for
the real-world robotic experiments. For each task we collected 20
failed demonstrations to go with the 20 expert demonstrations.

different video sequence oj′ as negative examples. For neg-
ative triplets, we replace µ in Eqn. 3 with −1 as the label.
We train our model with batch size 128 for 30000 iterations
using the Adam optimizer with constant learning rate 2e−4.

Drawer-Close Drawer-Open Push-Block Pick-Place-Cup
Tasks

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

90
80

70
65

80

30

10
0

55
50

5
0

70

0 0 0

PROGRESSOR-RWR-ACT VIP-RWR-ACT R3M-RWR-ACT ACT

Figure 5. Success rates for four real-world tasks, where RWR-
ACT is trained on a combination of correct and failed demonstra-
tions using PROGRESSOR, R3M, and VIP as reward models.

5.2.2. Baselines
We compare PROGRESSOR with R3M [26] and VIP [23].
VIP and R3M are self-supervised visual representations
shown to provide dense reward functions for robotic tasks.
Both R3M and VIP are pretrained on Ego4D [14] with
4.3M frames from videos from 72000 clips. R3M is trained
via time contrastive learning, where the distance between
frames closer in time is smaller than for images farther in
time. Additionally, they leverage L1 weight regularization
and language embedding consistency losses. VIP uses a
contrastive approach treating frames close in time as nega-
tive pairs and those further away as positive pairs towards
learning visual goal-conditioned value functions.

5.2.3. Real-World Few-Shot Offline Reinforcement
Learning with Noisy Demonstrations

Following the offline reinforcement learning experiments of
Ma et al. [23], we leveraged the reward-weighted regres-
sion (RWR) method [28, 29]. Our aim in applying RWR
is to show that a reward model trained on human videos
can help robots learn to perform tasks even when the train-
ing data contains noisy, suboptimal trajectories. In sce-
narios with highly suboptimal trajectories, vanilla behavior
lloning (BC) approaches often struggle to learn the correct
behaviors. However, goal-conditioned reward weighting
provides a signal that focuses learning from the correct sub-
trajectories, enabling the visual imitation learning model to
effectively learn accurate action executions.

To this end, we start with a vanilla BC model and adapt
the loss function to be weighted by a pretrained reward
model. Specifically, we employed Action-Chunking Trans-
former (ACT) [45], a BC model designed for learning fine-
grained manipulation tasks. We modified ACT’s recon-
struction loss—originally defined as the mean absolute er-
ror between the predicted action and the ground-truth ac-
tion—to incorporate RWR as follows:

Lreconst = exp (ω · r̂) · ∥πACT(oj)− at∥1 , (8)

where r̂ is the reward prediction for the current observa-
tion oj , ω is the temperature parameter, at is the ground-
truth action, and πACT(oj) represents the action predicted
by ACT by taking the current observation image (oj) as an
input. In this paper, we refer to ACT trained with the re-
construction loss replaced by Equation 8 as RWR-ACT, to
distinguish it from the standard ACT.

We compare PROGRESSOR with R3M and VIP by freez-
ing the pre-trained models and using them as reward pre-
diction models to train RWR-ACT on downstream robotic
learning tasks. The reward predictions from these models
are used in place of uθ in Equation 8. In both VIP and
R3M, the reward prediction is parameterized by the cur-
rent observation, previous observation, and goal observa-
tion. Following Ma et al., the reward for a given tran-
sition tuple (ot, ot+1) is defined as R(ot, ot+1;ϕ, og) :=
Sϕ(ot+1; og) − Sϕ(ot; og). Where Sϕ is the distance func-
tion in the ϕ-representation space extracted from VIP and
R3M, defined as: Sϕ(ot; og) := −∥ϕ(ot)− ϕ(g)∥2.

In contrast, our method parameterizes reward using the
initial observation, current observation, and goal observa-
tion. Additionally, we include vanilla ACT as a baseline,
which applies uniform weighting (i.e., ω = 0) across all
observations in the training trajectories .

We design four tabletop robotic manipulation tasks
(see Figure 3 a-d): Drawer-Open, Drawer-Close,
Pick-Place-Cup, and Push-Block. For each task,
we collect 40 demonstrations, half of which are suboptimal
and fail to complete the task. Including these failed demon-
strations is crucial for evaluating whether the learned re-
ward model can accurately signal progress toward a goal by
assigning high reward to transitions that lead toward com-
pletion and low reward to those that do not. Table 1 summa-
rizes the behaviors in failed demonstrations. Detailed task
and data descriptions along with frame sequences from both
successful and failed trajectories, are provided in S9. We
categorize Drawer-Close as an easy task and the other
three as hard tasks. This distinction in difficulty is based on
the complexity of the tasks and the level of suboptimality in
failed demonstrations.

We train all policies using the same hyperparameters em-
ployed by Zhao et al. [45] for training ACT in their real-
world behavior cloning experiments (full details in S9.2).
For all RWR experiments, we set ω = 0.1. Each method is
then evaluated over 20 rollouts, and the success rate is re-
ported. The success criteria for each task are presented in
S9.

The evaluation results presented in Figure 5 high-
light the significant advantage of PROGRESSOR-RWR-
ACT, which consistently outperforms all baseline methods
across all tasks. This advantage is particularly pronounced
in the more challenging tasks, such as Push-Block and
Pick-Place-Cup, on which other methods struggle to

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

door-open

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

drawer-open

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

hammer

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

peg-insert-side

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

pick-place

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

reach

TCN [Sermanet et al., 2017] GAIL [Ho & Ermon, 2016] Rank2Reward [Yang et al., 2024] PROGRESSOR w/o Push Back PROGRESSOR (Ours) SOIL [Radosavovic et al., 2021]

0 100 200 300 400
Steps

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

r p
re

di
ct

io
n

(a) R3M

0 100 200 300 400
Steps

0.01

0.00

0.01

0.02

0.03

(b) VIP

0 100 200 300 400
Steps

0.2

0.4

0.6

0.8

(c) PROGRESSOR

Figure 6. Mean reward predictions, r̂, for correct and incorrect demonstrations in the Drawer-Open task from PROGRESSOR, R3M, and
VIP. PROGRESSOR provides more distinct reward weighting between correct and failed trajectories compared to the baseline models.

achieve meaningful task performance. While R3M-RWR-
ACT and VIP-RWR-ACT show moderate success in sim-
pler tasks, such as Drawer-Close, their performance sig-
nificantly drops in Push-Block and Pick-Place-Cup
tasks. As can be seen in Figure 6, the gap in reward predic-
tion between failed and correct trajectories for PROGRES-
SOR is notably larger compared to R3M and VIP, starting
when the robot begins to deviate from the goal observation
(around step 125). This supports our hypothesis that PRO-
GRESSOR provides more distinct reward weighting between
both correct and failed trajectories compared to the base-
line models. Vanilla ACT performs poorly, especially in
difficult tasks. Since ACT assigns equal weight to all sub-
trajectories, it cannot prioritize more relevant transitions or
filter out noise effectively, leading to poor task execution.

Figure 7 shows reward predictions for a sample frame
sequence from EPIC-KITCHENS and a trajectory from our
Pick-Place-Cup robotic task. The figure shows that,
despite being pretrained solely on human videos, PRO-
GRESSOR generates well-formed reward predictions for a
robotic task in a zero-shot setting.

6. Conclusion and Limitations
In this work, we presented PROGRESSOR, a self-supervised
framework that learns task-agnostic reward functions from
video via progress estimation. By learning progress esti-
mation between observations in expert trajectories, PRO-
GRESSOR generates dense rewards that effectively guide
policy learning. During online RL training, this progress
estimation is further refined through an adversarial push-
back strategy, helping the model handle non-expert obser-
vations and minimize distribution shift. Our method shows
enhanced performance compared to previous state-of-the-
art approaches across a range of simulated experiments.
In real-robot experiments, we applied PROGRESSOR, pre-
trained on in-the-wild human videos, to learn policies with
limited and noisy task demonstrations, outperforming other

rθ

Frame Index

(a) The evolution of the episodic reward on human video

Frame Index

rθ

(b) The evolution of the episodic reward on robot video

Figure 7. Visualization of the predicted rewards from Epic
Kitchen pretrained PROGRESSOR, evaluated on a sample clip from
EPIC-KITCHENS (top) and on sample frames from an unseen
Pick-Place-Cup demonstration on our robot (bottom).

visual reward models.
Limitations and Future Work We acknowledge several

limitations in our work. (1) Our method assumes a linear
progression of tasks and models progress as a unimodal pre-
diction, making it unsuitable for tasks with cyclic observa-
tions, such as those in the DeepMind Control Suite [37].
Future enhancements that model progress as a multimodal
prediction could address this limitation more effectively. (2)
While our online RL experiments demonstrate that our hy-
perparameters are robust across various tasks, incorporating
a dynamic weighting factor β for refinement may further
enhance performance.

References
[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning

via inverse reinforcement learning. In Proceedings of the
Twenty-First International Conference on Machine Learn-
ing, page 1, New York, NY, USA, 2004. Association for
Computing Machinery. 2

[2] Minttu Alakuijala, Gabriel Dulac-Arnold, Julien Mairal,
Jean Ponce, and Cordelia Schmid. Learning reward func-
tions for robotic manipulation by observing humans, 2023.
1

[3] Shikhar Bahl, Abhinav Gupta, and Deepak Pathak.
Human-to-robot imitation in the wild. arXiv preprint
arXiv:2207.09450, 2022. 2

[4] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga,
Jie Tang, Adrien Ecoffet, Brandon Houghton, Raul Sampe-
dro, and Jeff Clune. Video pretraining (VPT): Learning to
act by watching unlabeled online videos. 2022. 2

[5] Serena Booth, W Bradley Knox, Julie Shah, Scott Niekum,
Peter Stone, and Alessandro Allievi. The perils of trial-and-
error reward design: Misdesign through overfitting and in-
valid task specifications. In AAAI, 2023. 1

[6] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da-
vide Moltisanti, Jonathan Munro, Toby Perrett, Will Price,
and Michael Wray. Scaling egocentric vision: The EPIC-
KITCHENS dataset. In ECCV, 2018. 2, 6, 1

[7] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Jian Ma, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. Rescaling egocentric vision: Collection,
pipeline and challenges for EPIC-KITCHENS-100. IJCV,
130:33—-55, 2022. 6

[8] Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay
Jain, Xue Bin Peng, Ken Goldberg, Youngwoon Lee, Dani-
jar Hafner, and Pieter Abbeel. Video prediction models as
rewards for reinforcement learning. 2024. 1, 2

[9] Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov,
and Sergey Levine. Contrastive learning as goal-conditioned
reinforcement learning, 2023. 1, 2

[10] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost
learning: Deep inverse optimal control via policy optimiza-
tion. arXiv preprint arXiv:1603.00448, 2016. 2

[11] Justin Fu, Katie Luo, and Sergey Levine. Learning robust re-
wards with adversarial inverse reinforcement learning. arXiv
preprint arXiv:1710.11248, 2018. 2

[12] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
March, and Victor Lempitsky. Domain-adversarial training
of neural networks. 17(59):1–35, 2016. 4

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. 2014. 4

[14] Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson
Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4D:
Around the world in 3,000 hours of egocentric video. In
CVPR, pages 18995–19012, 2022. 7

[15] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J
Russell, and Anca Dragan. Inverse reward design. 2017. 1

[16] Siddhant Haldar, Vaibhav Mathur, Denis Yarats, and Lerrel
Pinto. Watch and match: Supercharging imitation with regu-
larized optimal transport. In Conference on Robot Learning,
pages 32–43. PMLR, 2023. 5

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 6, 1

[18] Jonathan Ho and Stefano Ermon. Generative adversarial im-
itation learning. 2016. 5

[19] Jonathan Ho and Stefano Ermon. Generative adversarial im-
itation learning. arXiv preprint arXiv:1606.03476, 2016. 2

[20] Tao Huang, Guangqi Jiang, Yanjie Ze, and Huazhe Xu. Dif-
fusion reward: Learning rewards via conditional video diffu-
sion. arXiv preprint arXiv:2312.14134, 2023. 1, 2

[21] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional Bayes. arXiv preprint arXiv:1312.6114, 2013. 3

[22] Yunzhu Li, Jiaming Song, and Stefano Ermon. InfoGAIL:
Interpretable imitation learning from visual demonstrations.
arXiv preprint arXiv:1703.08840, 2017. 2

[23] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Os-
bert Bastani, Vikash Kumar, and Amy Zhang. VIP: Towards
universal visual reward and representation via value-implicit
pre-training. arXiv preprint arXiv:2210.00030, 2022. 7

[24] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Os-
bert Bastani, Vikash Kumar, and Amy Zhang. Vip: Towards
universal visual reward and representation via value-implicit
pre-training, 2023. 1, 2

[25] Alberto Maria Metelli, Filippo Lazzati, and Marcello
Restelli. Towards theoretical understanding of inverse rein-
forcement learning. arXiv preprint arXiv:2304.12966, 2023.
2

[26] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3M: A universal visual
representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022. 7

[27] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3M: A universal visual
representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022. 1, 2

[28] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey
Levine. Advantage-weighted regression: Simple and scal-
able off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019. 7

[29] Jan Peters and Stefan Schaal. Reinforcement learning by
reward-weighted regression for operational space control.
pages 745–750, 2007. 7

[30] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Rui-
han Yang, Yang Fu, and Xiaolong Wang. DexMV: Imitation
learning for dexterous manipulation from human videos. In
ECCV, 2022. 2

[31] Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra
Malik. State-only imitation learning for dexterous manipu-
lation. In 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 7865–7871. IEEE,
2021. 5

[32] Stuart J Russell and Peter Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall, Englewood Cliffs, NJ,
USA, 1 edition, 1995. 1

[33] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine
Hsu, Eric Jang, Stefan Schaal, and Sergey Levine. Time-
contrastive networks: Self-supervised learning from video.
pages 1134–1141, 2018. 5

[34] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine
Hsu, Eric Jang, Stefan Schaal, and Sergey Levine. Time-
contrastive networks: Self-supervised learning from video,
2018. 2

[35] Satinder Singh, Richard L. Lewis, and Andrew G. Barto.
Where do rewards come from? In Proceedings of the Inter-
national Symposium on AI Inspired Biology, pages 111–116,
2010. 1

[36] Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge, MA,
USA, 2 edition, 2018. 1

[37] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez,
Yazhe Li, Diego de Las Casas, David Budden, Abbas Ab-
dolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lilli-
crap, and Martin Riedmiller. DeepMind control suite. arXiv
preprint arXiv:1801.00690, 2018. 8

[38] Michael C Welle, Nils Ingelhag, Martina Lippi, Maciej K.
Wozniak, Andrea Gasparri, and Danica Kragic. Quest2ROS:
An app to facilitate teleoperating robots. In Proceedings
of the International Workshop on Virtual, Augmented, and
Mixed-Reality for Human-Robot Interactions, 2024. 1

[39] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner.
Maximum entropy deep inverse reinforcement learning,
2016. 2

[40] Daniel Yang, Davin Tjia, Jacob Berg, Dima Damen, Pulkit
Agrawal, and Abhishek Gupta. Rank2Reward: Learning
shaped reward functions from passive video. arXiv preprint
arXiv:2404.14735, 2024. 1, 2, 3, 5

[41] Mengjiao Yang and Ofir Nachum. Representation matters:
Offline pretraining for sequential decision making. arXiv
preprint arXiv:2102.05815, 2021. 2

[42] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image aug-
mentation is all you need: Regularizing deep reinforcement
learning from pixels. In International Conference on Learn-
ing Representations, 2021. 5

[43] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
World: A benchmark and evaluation for multi-task and meta
reinforcement learning. 2020. 2, 5, 6, 1

[44] Qihang Zhang, Zhenghao Peng, and Bolei Zhou. Learning
to drive by watching YouTube videos: Action-conditioned
contrastive policy pretraining. In ECCV, 2022. 2

[45] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.
7, 2

[46] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and
Anind K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI, pages 1433–1438, 2008. 2

PROGRESSOR: A Perceptually Guided Reward Estimator
with Self-Supervised Online Refinement

Supplementary Material

7. PROGRESSOR Training Details

7.1. Architecture and Training

PROGRESSOR can, in principle, be trained with any visual
encoding architecture, requiring only minor modifications
to the final layer to predict Gaussian parameters. In our ex-
periments, we utilize the standard ResNet34 model [17], re-
placing its final fully-connected layer with an MLP of size
[512, 512, 128]. Given that our method processes triplets
of inputs (oi,oj ,og), the resulting representation has a size
of [128 × 3]. This representation is then fed into an MLP
with layers of size [128 × 3, 2048, 256]. Finally, two pre-
diction heads are derived from the 256-dimensional output,
predicting µ and log σ2.

We pretrain PROGRESSOR for 30000 steps using the
EPIC-KITCHENS dataset [6] for the real-world experi-
ments, and for 10000 steps for experiments performed in
simulation. In the pretrianing steps for both our simulated
and real-world experiments, we first sample a trajectory
(i.e., a video clip) from the pretraining dataset. We then
randomly select an initial frame oi as well as a goal frame
og from the selected trajectory such that ∥g−i∥ ≤ 2000. Fi-
nally, we uniformly randomly select an intermediate frame
oj , where i < j < g.

7.2. Hyperparameters

Simulation Real-World RWR

α 0.4 0.4
β 0.9 −

Table 2. Hyperparameters used by PROGRESSOR for experiments
performed in simulation and the real world.

Table 2 lists the hyperparameters used for both the sim-
ulation online RL and real-world offline RL experiments.
A consistent α = 0.4 is used across all experiments. The
push-back decay factor is employed exclusively in the sim-
ulated online RL experiments.

8. Simulation Experiment Details

In this section, we describe the tasks and the data generation
process employed using the MetaWorld environment [43]
for our simulation experiments.

8.1. Meta-World Tasks
We took six diverse tasks from the Meta-World environ-
ment [43], described in Table 3. In all tasks, the position
of the target object, such as the drawer or hammer, is ran-
domized between episodes.

Task Task Description

door-open Open a door with a revolving joint.
drawer-open Open a drawer.
hammer Hammer a screw on the wall.
peg-insert-side Insert a peg sideways.
pick-place Pick and place a puck to a goal.
reach Reach a goal position.

Table 3. Meta-World [43] task descriptions.

8.2. Expert Data Generation
To collect expert trajectories for our simulated experiments,
we execute Meta-World’s oracle policies. For each task,
we generated 100 successful rollouts for training and 10 for
testing. This dataset is subsequently used for pretraining
PROGRESSOR in our simulated experiments, following the
steps outlined in Section 7.1.

9. Real-World Robot Experiment Details
9.1. Robotic Experiment Setup
The real-robot experiments are performed using a Universal
Robots UR5 robot arm equipped with a Robotiq 3-Finger
Gripper (Figure 8). The setup includes two RealSense cam-
eras: one mounted on the robot’s wrist that images the grip-
per, and the second on a fixed tripod facing the robot.

9.2. Robotic Demonstration Data Collection
We collect demonstrations by teleoperating the UR5 using
a Meta Quest 3 controller [38]. We record each demon-
stration at 30 Hz for 400 steps. Figure 9 shows video frame
sequences from correct and incorrect demonstrations for the
four real-world tasks.

9.3. Task Descriptions
The tasks involve a variety of object manipulation chal-
lenges designed to test reward weighting in offline Rein-
forcement Learning. In the Drawer-Close task, the ob-
jective is to close a drawer starting from an open position.
The Drawer-Open task requires the agent to pull a drawer
open from a closed state. In the Push-Block task, the

Figure 8. The real-world experiments were conducted using a Uni-
versal Robots UR5 robot arm equipped with a Robotiq 3-Finger
Gripper. One RealSense camera is mounted to the end-effector
and the other RealSense camere is fixed in the environment using
a tripod (visible in the left of the image).

goal is to push a block toward a specified target, a cup, en-
suring the block moves into proximity with the cup. Finally,
Pick-Place-Cup involves picking up a cup and care-
fully placing it into a designated box. Figure 10 displays
the goal frames representing the completion of each task.

9.4. Training and Evaluation Details

Task Success Criterion

Drawer-Open Drawer is open by more than 5 cm.
Drawer-Close Drawer is within 1 cm of being fully closed.
Push-Block Block is within 5 cm of the cup.
Pick-Place-Cup Cup is placed inside the box.

Table 4. Success criterion for the real-robot experiments.

Our few-shot offline RL implementation builds upon the
Action-Chunking Transformer (ACT) [45]. The inputs to
the model include (i) two 640×480 RGB images from the
RealSense cameras, and (ii) proprioceptive data consisting
of the 6-DoF joint angles and the binary open or close state
of the gripper. The action space consists of the 6-DoF trans-
lational and rotational velocity of the end-effector and a bi-
nary open or close command of the gripper.

In the reward-weighted regression (RWR) setup, rewards
are computed by providing all reward models with the final
frame of a correct demonstration from each task as the goal
image. For all reward predictions, frames from the fixed
RealSense camera were used. Figure 10 illustrates the goal
images used for the four robotic tasks, which were consis-
tently used across all reward predictions. The temperature
scale in RWR was set to ω = 0.1 for all tasks.

Hyperparameter Value

prediction horizon 30
learning rate 10−5

batch size 64
epochs 5000
ω 0.1

Table 5. Hyperparameters for reward-weighted ACT training.

Table 5 shows the hyperparameters used to train the
{PROGRESSOR, VIP, R3M}-RWR-ACT models. For the
vanilla ACT, we used the same hyperparameters as listed in
Table 5, except for ω = 0.

During inference, the model predicts a sequence of ac-
tions (a “chunk”) of length 30 and then executes each action
before predicting the next chunk. We did not use a temporal
ensemble as proposed by Zhao et al. [45], since we found
that it causes the gripper to drift and negatively impacts per-
formance.

For evaluation, we conduct 20 test rollouts for each task
and report the success rate. The success criteria for each
task are outlined in Table 4.

10. Ablation
In this section, we present an ablation study evaluating dif-
ferent values of the push-back decay factor (β) while train-
ing a DrQ-v2 agent on Meta-World’s hammer task, using a
fixed seed of 121. The case of β = 0 (PROGRESSOR with-
out Push-back) is discussed in the main paper. Figure 11 de-
picts the environment rewards accumulated during training.
As shown in the figure, the agent achieves higher rewards
with β = 0.9.

11. Qualitative Analysis
Figure 12 presents zero-shot reward predictions from PRO-
GRESSOR pretrained on the EPIC-KITCHENS dataset. This
figure serves as an extension to Figure 7 for complete-
ness. It includes zero-shot reward predictions for sample
correct trajectories from our collected real-robot demonstra-
tions for the tasks Drawer-Open, Drawer-Close, and
Push-Block.

For completeness, we have included plots similar to
the mean reward prediction figure from the main pa-
per (see Figure 7). The plots in Figure 13 pro-
vide a qualitative comparison of reward predictions from
our robotic demonstration dataset for three additional
real-world tasks: Drawer-Close, Push-Block, and
Pick-Place-Cup. As illustrated in the figure, for all
tasks, our reward model consistently predicts lower average
rewards for the sub-trajectories in the incorrect demonstra-
tions, where the failures occur.

Time −−→
(a) Push-Block: (top) correct and (bottom) incorrect

Time −−→
(b) Drawer-Close: (top) correct and (bottom) incorrect

Time −−→
(c) Push-Block: (top) correct and (bottom) incorrect

Time −−→
(d) Pick-Place-Cup: (top) correct and (bottom) incorrect

Figure 9. Correct and incorrect demonstrations (every 80th frame) for each real-robot task from a third-person camera view used in
our experiments. To see how PROGRESSOR and the baselines differentiate between correct and incorrect trajectories, see Figure 6
(Drawer-Open) and Figure 13 (other three tasks).

(a) Drawer-Open (b) Drawer-Close

(c) Push-Block (d) Pick-Place-Cup

Figure 10. The goal images that we use for each task for reward
weighting in the offline reinforcement learning experiments.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8
 Step ×105

100

200

300

400

500

En
vi

ro
nm

en
t R

ew
ar

d

 = 0.2
 = 0.3
 = 0.4
 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9

Figure 11. Visualization of policy learning performance in Meta-
World’s hammer environment, evaluating the effect of different
values for the push-back decay factor β. The plot highlights the
accumulated rewards over training, demonstrating how varying β
values influences the agent’s ability to optimize performance.

(a) Reward plot for Drawer-Open task

(b) Reward plot for Drawer-Close task

(c) Reward plot for Push-Block task

Figure 12. Visualization of the predicted reward by PROGRES-
SOR, pretrained on EPIC-KITCHENS and evaluated zero-shot
on correct robotic demonstrations for (a) Drawer-Open (b)
Drawer-Close and (c) Push-Block tasks.

0 100 200 300 400
Steps

0.01

0.00

0.01

0.02

0.03
Correct demonstrations Incorrect demonstrations

0 100 200 300 400
Steps

0.02

0.01

0.00

0.01

0.02

r p
re

di
ct

io
n

(a) R3M - Drawer-Close

0 100 200 300 400
Steps

0.02

0.01

0.00

0.01

0.02

(b) VIP - Drawer-Close

0 100 200 300 400
Steps

0.1

0.2

0.3

0.4

0.5

0.6

(c) PROGRESSOR- Drawer-Close

0 100 200 300 400
Steps

0.06

0.04

0.02

0.00

0.02

0.04

0.06

r p
re

di
ct

io
n

(d) R3M - Push-Block

0 100 200 300 400
Steps

0.02

0.01

0.00

0.01

0.02

(e) VIP - Push-Block

0 100 200 300 400
Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r p
re

di
ct

io
n

(f) PROGRESSOR- Push-Block

0 100 200 300 400
Steps

0.02

0.01

0.00

0.01

0.02

0.03

0.04

r p
re

di
ct

io
n

(g) R3M - Pick-Place-Cup

0 100 200 300 400
Steps

0.02

0.00

0.02

0.04

(h) VIP - Pick-Place-Cup

0 100 200 300 400
Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(i) PROGRESSOR- Pick-Place-Cup

Figure 13. Mean reward predictions r̂ of (left column) R3M, (middle column) VIP, and (right column) PROGRESSOR for correct
and incorrect demonstrations for the Drawer-Close, Push-Block, and Pick-Place-Cup tasks. PROGRESSOR provides reward
predictions (weights) that better differentiate between correct and incorrect trajectories, consistently outperforming the baseline models.

	Introduction
	Related Work
	Preliminaries
	Method
	Learning the Self-Supervised Reward Model
	Adversarial Online Refinement via Push-Back

	Experimental Evaluation
	Simulated Experiments
	Real-World Robotic Experiments
	Pretraining on Kitchen Dataset
	Baselines
	Real-World Few-Shot Offline Reinforcement Learning with Noisy Demonstrations

	Conclusion and Limitations
	Progressor Training Details
	Architecture and Training
	Hyperparameters

	Simulation Experiment Details
	Meta-World Tasks
	Expert Data Generation

	Real-World Robot Experiment Details
	Robotic Experiment Setup
	Robotic Demonstration Data Collection
	Task Descriptions
	Training and Evaluation Details

	Ablation
	Qualitative Analysis

