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Abstract— We propose a method for accurately localizing
ground vehicles with the aid of satellite imagery. Our approach
takes a ground image as input, and outputs the location from
which it was taken on a georeferenced satellite image. We
perform visual localization by estimating the co-occurrence
probabilities between the ground and satellite images based
on a ground-satellite feature dictionary. The method is able to
estimate likelihoods over arbitrary locations without the need
for a dense ground image database. We present a ranking-
loss based algorithm that learns location-discriminative feature
projection matrices that result in further improvements in
accuracy. We evaluate our method on the Malaga and KITTI
public datasets and demonstrate significant improvements over
a baseline that performs exhaustive search.

I. INTRODUCTION

Autonomous vehicles have recently received a great deal
of attention in the robotics, intelligent transportation, and
artificial intelligence communities. Accurate estimation of
a vehicle’s location is a key capability to realizing au-
tonomous operation. Currently, many vehicles employ Global
Positioning System (GPS) receivers to estimate their abso-
lute, georeferenced pose. However, most commercial GPS
systems suffer from limited precision and are sensitive to
multipath effects (e.g., in the so-called “urban canyons”
formed by tall buildings), which can introduce significant
biases that are difficult to detect. Visual place recognition
seeks to overcome this limitation by identifying a camera’s
(coarse) location in an a priori known environment (typically
in combination with map-based localization, which uses
visual recognition for loop-closure). Visual place recognition,
however, is challenging due to the appearance variations
that result from environment and perspective changes (e.g.,
parked cars that are no longer present, illumination changes,
weather variations), and the perceptual aliasing that results
from different areas having similar appearance. A number of
techniques have been proposed of late that make significant
progress towards overcoming these challenges [3–15].

Satellite imagery provides an alternative source of infor-
mation that can be employed as a reference for vehicle local-
ization. High resolution, georeferenced, satellite images that
densely cover the world are becoming increasingly accessible
and well-maintained, as exemplified by the databases avail-
able via Google Maps [16] and the USGS [17]. Algorithms
that are able to reason over the correspondence between
ground and satellite imagery can exploit this availability to
achieve wide-area camera localization [18–23].

In this paper, we present a multi-view learning method
that performs accurate vision-based localization with the aid

Fig. 1. Given a ground image (left), our method outputs the vehicle location
(blue) on the satellite image (left), along the known vehicle path (orange).

of satellite imagery. Our system takes as input an outdoor
stereo ground image and returns the location of the stereo
pair in a georeferenced satellite image (Fig. 1), assuming
access to a database of ground (stereo) and satellite images
of the environment (e.g., such as those acquired during a
previous environment visit). Instead of matching the query
ground image against the database of ground images, as
is typically done for visual place recognition, we estimate
the co-occurrence probability of the query ground image
and the local satellite image at a particular location, i.e.,
the probability over the ground viewpoint in the satellite
image. This allows us to identify a more precise distribution
over locations by interpolating the vehicle path with sampled
local satellite images. In this way, our approach uses readily
available satellite images for localization, which improves
accuracy without requiring a dense database of ground
images. Our method includes a listwise ranking algorithm
to learn effective feature projection matrices that increase
the features’ discriminative power in terms of location, and
thus further improve localization accuracy.

The novel contributions of this paper are:
• We propose a strategy for localizing a camera based

upon an estimate of the ground image-satellite image
co-occurrence, which improves localization accuracy
without ground image database expansion.

• We describe a ranking-loss method that learns general
feature projections to effectively capture the relationship
between ground and satellite imagery.

II. RELATED WORK

Several approaches exist that address the related problem
of localizing a ground image by matching it against an
Internet-based database of geotagged ground images. These
methods typically employ visual features [24, 25] or a com-
bination of visual and textual (i.e., image tags) features [26].



These techniques have proven effective at identifying the
location of query images over impressively large areas [24].
However, their reliance upon available reference images
limits their use to regions with sufficient coverage (e.g., those
visited by tourists) and their accuracy depends on the spatial
density of this coverage. Meanwhile, several methods [27–
30] treat vision-based localization as a problem of image
retrieval against a database of street view images. Majdik
et al. [30] propose a method that localizes a micro aerial
vehicle within urban scenes by matching against virtual
views generated from a Google Street View image database.

In similar fashion to our work, previous methods have
investigated visual localization of ground images against a
collection of georeferenced satellite images [18, 19, 21, 22].
Bansal et al. [19] describe a method that localizes street view
images relative to a collection of geotagged oblique aerial
and satellite images. Their method uses the combination of
satellite and aerial images to extract building facades and
their locations. Localization then follows by matching these
facades against those in the query ground image. Meanwhile,
Lin et al. [21] leverage the availability of land use attributes
and propose a cross-view learning approach that learns the
correspondence between features from ground-level images,
overhead images, and land cover data. Viswanathan et al.
[22] describe an algorithm that warps panoramic ground
images to obtain a projected bird’s eye view of the ground
that they then match to a grid of satellite locations. The
inferred poses are then used as observations in a particle
filter for tracking. Other methods [20, 23] focus on extracting
orthographical texture patterns (e.g., road lane markings on
the ground plane) and then match these observed patterns
with the satellite image. These approaches perform well, but
rely on the existence of clear, non-occluded visual textures.
Meanwhile, other work has considered the related task of
of visual localization of a ground robot relative to images
acquired with an aerial vehicle [31, 32].

A great deal of attention has been paid in the robotics
and vision communities to the related problem of visual
place recognition [3–15]. The biggest challenges to visual
place recognition arise due to variations in image appearance
that result from changes in viewpoint, environment structure,
and illumination, as well as to perceptual aliasing, which
are both typical of real-world environments. Much of the
work seeks to mitigate some of these challenges by using
interest point detectors and descriptors that are robust to
transformations in scale and rotation, as well as to slight
variations in illumination (e.g., SIFT [33] and SURF [34]).
Place recognition then follows as image retrieval, i.e., image-
to-image matching-based search against a database (with
various methods to improve efficiency) [27, 35–37]. While
these methods have demonstrated reasonable performance
despite some appearance variations, they are prone to failure
when the environment is perceptually aliased. Under these
conditions, feature descriptors are no longer sufficiently dis-
criminative, which results in false matches (notably, when the
query image corresponds to a environment location that is not
in the map). When used for data association in a downstream

SLAM framework, these erroneous loop closures can result
in estimator divergence.

The FAB-MAP algorithm by Cummins and Newman [3, 5]
is designed to address challenges that arise as a result of
perceptual aliasing. To do so, FAB-MAP learns a generative
model of region appearance using a bag-of-words represen-
tation that expresses the commonality of certain features. By
essentially modeling this perceptual ambiguity, the authors
are able to reject invalid image matches despite significant
aliasing, while correctly recognizing those that are valid.
Alternatively, other methods achieve robustness to perceptual
aliasing and appearance variations by treating visual place
recognition as a problem of matching image sequences [7–
10, 38], whereby imposing joint consistency reduces the
likelihood of false matches. The robustness of image retrieval
methods can be further improved by increasing the space
of appearance variations spanned by the database [39, 40].
However, approaches that achieve invariance proportional
to the richness of their training necessarily require larger
databases to achieve robustness. Our method similarly learns
a probabilistic model that we can then use for matching,
though our likelihood model is over the location of the query
in the georeferenced satellite image. Rather than treating
localization as image retrieval, whereby we find the nearest
map image for a given query, we instead leverage the
availability of satellite images to estimate the interpolated
position. This provides additional robustness to viewpoint
variation, particularly as a result of increased separation
between the database images (e.g., on the order of 10 m).

Meanwhile, recent attention in visual place recognition
has focused on the particularly challenging problem of
identifying matches in the event that there are significant
appearance variations due to large illumination changes
(e.g., matching a query image taken at night to a database
image taken during the day) and seasonal changes (e.g.,
matching a query image with snow to one taken during
summer) [12, 14, 15, 39, 41, 42]. While some of these vari-
ations can be captured with a sufficiently rich database [39],
this comes at the cost of requiring a great deal of training
data and its ability to generalize is not clear [14]. Mc-
Manus et al. [40] seek to overcome the brittleness of point-
based features to environment variation [7, 10, 43, 44] by
learning a region-based detector to improve invariance to
appearance changes. Alternatively, Sünderhauf et al. [14]
build on the recent success of deep neural networks and
eschew traditional features in favor of ones that can be
learned from large corpora of images [45]. Their framework
first detects candidate landmarks in an image using state-of-
the-art proposal methods, and then employs a convolutional
neural network to generate features for each landmark. These
features provide robustness to appearance and viewpoint
variations that enables accurate place recognition under chal-
lenging environmental conditions. We also take advantage of
this recent development in convolutional neural networks for
image segmentation to achieve effective pixel-wise semantic
feature extractors.

Related to our approach of projection matrix learning is a
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Fig. 2. Illustration of our ground and satellite feature dictionary learning process.

long history of machine learning research with ranking loss
objective functions [46]. Our approach is also related to the
field of multi-view learning [47], as we learn the relationship
between ground and satellite image views.

III. APPROACH

Our approach first constructs a ground-satellite feature
dictionary that captures the relationship between the two
views using an existing database from the area. Second, we
learn projection matrices for the each of the two views so
as to arrive at a feature embedding that is more location-
discriminative. Given a query ground image, we then use
the dictionary and the learned projections to arrive at a dis-
tribution over the location in georeferenced satellite images
of the environment in which the ground image was taken.
Next, we describe these three steps in detail.

A. Ground-Satellite Image Feature Dictionary

The role of the ground-satellite dictionary is to capture
the relationships that exists between feature-based represen-
tations of ground images and their corresponding overhead
view. Specifically, we define our ground-satellite image dic-
tionary using three types of features. The first consists of
pixel-level RGB intensity, which we smooth using bilat-
eral filtering to preserve color transitions [48]. The second
takes the form of edge potentials for which we use a
structured forest-based method [49] that is more robust to
non-semantic noise (as compared to classic gradient-based
edge detectors) and can be computed in real-time. The
third feature type we use are neural, pixel-wise, dense,
semantic attributes. For these, we use fully-convolutional
neural networks [50] trained on ImageNet [51] and fine-
tuned on PASCAL VOC [52]. Next, we describe the process

by which we construct the ground-satellite dictionary, which
we depict in Figure 2.

For each ground image in the database, we identify the
corresponding satellite image centered on and oriented with
the ground image pose. We then compute pixel-wise features
for both images. Next, we compute the ground image features
gdicti on a fixed-interval 2D grid (to ensure an efficient
dictionary size), and project these sampled points onto the
satellite image using the stereo-based depth estimate [53].1

Sampled points that fall outside the satellite image region
are rejected. We record the satellite features corresponding to
the remaining projected points, which we denote as sdicti . We
repeat this process for all ground-satellite image pairs to form
our one-to-one ground-satellite image feature dictionary. We
also store dense satellite features even if they do not appear
in the dictionary, so that they do not need to be recomputed
during the localization phase. We store the dictionary with
two k-d trees for fast retrieval.

B. Location-Discriminative Projection Learning

The goal of location-discriminative projection learning is
to identify two linear projections Wg and Ws that transform
the ground and satellite image features such that those that
are physically close are also nearby in the projected space.
Nominally, we can model this projection learning task as
an optimization over a loss function that expresses the
distance in location between each feature point and its nearest
neighbor in the projected space. In the case of the ground

1For the experimental evaluation, we use the stereo pair only to estimate
depth. We only use images from one camera to generate the dictionary,
learn the projections, and estimate pose.



Algorithm 1: Location-discriminative projection learning

Input: {gdicti }, {L(i)}
Output: W

1: Initialize W = I and t = 0
2: for epi=1:MAXITER do
3: for each i do
4: t = epi× imax + i

5: if fg(i, k∗,W )−min
k∈N (i)

(
fg(i, k,W )−m(i, k)

)
>0

then
6: Compute ∂Lt as

∂
(
fg(i, k∗,W )− min

k∈N (i)
fg(i, k,W )

)
/∂W

7: Compute ∆Wt as
ADAM({∂L0, ∂L1, . . . , ∂Lt}) [54]

8: Update W ←W −∆Wt

9: end if
10: end for
11: if convergence then
12: break
13: end if
14: end for

image, this results in a loss of the form

Wg = arg min
W

∑
i

∆L
(
i, arg min

k∈N (i)

fg(i, k,W )
)
, (1)

where ∆L(i, k) is the scalar difference in location (ignoring
orientation for simplicity) between two feature points, N (i)
is a neighborhood around feature i in feature space, and
fg(i, k,W ) = ‖Wgdicti −Wgdictk ‖2. We consider a feature-
space neighborhood for computational efficiency and have
found a N (i) = 20 neighborhood to be effective in our
reported experiments. A similar definition is used for Ws.

In practice, however, this loss function is difficult to
optimize. Instead, we treat the objective as a ranking problem
and optimize over a surrogate loss function that employs the
hinge loss,

L=
∑
i

(
fg(i, k∗,W )−min

k∈N (i)

(
fg(i, k,W )−m(i, k)

))
+

(2)

where k∗ = arg mink ∆L(i, k) is the nearest feature with
regards to metric location, m(i, k) = ∆L(i, k)−∆L(i, k∗),
and (x)+ = max(0, x) denotes the hinge loss. Intuitively, we
would like the distance fg(i, k∗,W ) to be smaller than any
other distance fg(i, k,W ) by a margin m(i, k). We minimize
the loss function (2) using stochastic gradient descent with
Adam [54] as the weight update algorithm. Algorithm 1
describes the process we use to learn a projection matrix,
which is repeated twice for both Wg , and Ws.

C. Localization

In our final localization step, we compute the probability
P (L|Iq) that a given query ground image Iq was taken at
a particular position and orientation L, where we interpolate
the database locations along the vehicle path to get a larger

(a) (b)

Fig. 3. Localization by (a) image-to-image matching using two-image
reference database. By estimating the ground-satellite co-occurrence, our
method (b) yields a more fine-grained distribution over the camera’s
location, without the need for a larger ground image database. Iq denotes the
query ground image. Idbi denotes a database ground image, and Ldb

i,0. Ldb
i,1

and Ldb
i,2 are the interpolated locations along the vehicle path. Our method is

able to evaluate localization possibilities of Ldb
i,1 and Ldb

i,2 without knowing
their ground images.

number of location candidates L (Fig. 3). In order to arrive at
this likelihood, we first extract features for the query image
Iq and then retrieve the precomputed dense features for the
satellite image associated with pose L. Next, we sample the
query ground image features with a 2D grid and find their
corresponding satellite image features by projecting using
the query stereo image, as if Iq was centered and oriented
at pose L. After rejecting projected samples that lie outside
the satellite image, we obtain a set of ground-satellite image
feature pairs, where the nth pair is denoted as (gqn, s

L
n).

For each ground-satellite image feature pair, we evaluate
their co-occurrence score according to the size of the in-
tersection of their respective database neighbor sets in the
projected feature space. To do so, we first transform the
features to their corresponding projected spaces as Wgg

q
n

and Wss
L
n . Next, we retrieve their M -nearest neighbors,

each for the transformed ground and satellite images, among
the dictionary features projected into the projected space
using the Approximate Nearest Neighbor algorithm [55]. The
retrieved neighbor index sets are denoted as {idmg (Wgg

q
n)}

and {idms (Wss
L
n)}. The Euclidean feature distances between

the query and database index m are denoted as {dmg (Wgg
q
n)}

and {dms (Wss
L
n)} for the ground and satellite images, respec-

tively. A single-pair co-occurrence score is expressed as the
consistency between the two retrieved sets

score(sLn |gqn) =
∑

(m1,m2)∈I

(
dm1
g (Wgg

q
n) · dm2

s (Wss
L
n)
)−1

, (3)

where I = {idmg (Wgg
q
n)} ∩ {idms (Wss

L
n)} denotes all the

(m1,m2) pairs that are in the intersection of the two sets.



Fig. 4. Examples from the KITTI-City dataset that include (top) two ground
images and (bottom) a satellite image with a curve denoting the vehicle path
and arrows that indicate the poses from which the ground images were taken.

We then define the desired probability over the pose L for
the query image Iq as

P (L|Iq) =
1

C

∑
n

score(sLn |gqn), (4)

where C is a normalizing factor. We interpolate the database
vehicle path with Ldb

i,j (Fig. 3) and infer the final location as
that where P (L|Iq) is maximized.

IV. EXPERIMENTAL RESULTS

We evaluate our method on the widely-used, publicly
available KITTI [2] and Malaga-Urban [1] datasets.

A. KITTI Dataset

We conduct two experiments on the KITTI dataset. In
the first experiment, we use five raw data sequences from
the KITTI-City category. Together, these sequences involve
1067 total images, each with a resolution of 1242 × 375.
The total driving distance for these sequences is 822.9 m.
We randomly select 40% of the images as the database
image set, and the rest as the query image set. Figure 4
provides examples of these images and the vehicle’s path.
In the second KITTI experiment, we consider a scenario
in which the vehicle initially navigates an environment and
later uses the resulting learned database for localization when
revisiting the area. We emulate this scenario using a long
sequence drawn from the KITTI-Residential category, where
we use the ground images from the first pass through the
environment to generate the database, and images from the
second visit as the query set. For the long KITTI-Residential
sequences, we downsample the database and query sets at a
rate of approximately one image per second to reduce the
overlap in viewpoints, which facilitates the independence
assumptions of FAB-MAP[5]. This results in 3654 total
images (3376 images for the database and 278 images for
the query), each with a resolution of 1241 × 376, with a
total of 3080 m travelled by the vehicle (2847 m and 233 m

Fig. 5. Examples from the KITTI-Residential dataset that include (top)
two ground images and (bottom) a satellite image. The yellow and cyan
paths denote the vehicle path during the first and second visit, respectively.
Green arrows indicate the pose from which the images were taken.

for the database and query, respectively). Figure 5 shows
example ground images and the database/query data split.
Note that while the ground-satellite dictionary is generated
using images from the downsampled database, projection
learning was performed using the full-framerate imagery
along the database path.

We evaluate three variations of our method on these
datasets as a means of ablating individual components, and
compare against two existing approaches, which serve as
baselines. One baseline that we consider is a publicly avail-
able implementation of FAB-MAP [5],2 for which we use
SURF features with a cluster-size of 0.45, which yields 2611
and 3800 bag-of-words for the two experiments, respectively.
We consider a second baseline that performs exhaustive
matching over a dense set of SURF features for image
retrieval. We further refine these matches using RANSAC-
based [56] image-to-image homography estimation to iden-
tify a set of geometrically consistent inlier features. We use
the average feature distance over these inliers as the final
measurement of image-to-image similarity. We refer to this
baseline as Exhaustive Feature Matching (EFM). The first
variation of our method that we consider eschews satellite
images and instead performs ground image retrieval using
our image features (as opposed to SURF), which we refer
to as Ours-Ground-Only (Ours-GO). The second ablation
consists of our proposed framework with satellite images,
but without learning the location-discriminative feature pro-
jection, which we refer to as Ours-No-Projection (Ours-NP).
Lastly, we consider our full method that utilizes satellite
images and all images along the database path for projection
learning. For all methods, we identify the final position as a
weighted average of the top three location matches. We also
considered an experiment in which we include query images
taken from regions outside those captured in our learned

2https://github.com/arrenglover/openfabmap

https://github.com/arrenglover/openfabmap


Fig. 6. Data split for the Malaga sequence where yellow, cyan, and purple
denote the database, revisit query, and the outside query set, respectively.

database and found that none of the methods produced any
false positives, which we define as location estimates that
are more than 10 m from ground-truth.

TABLE I
KITTI LOCALIZATION ERROR (METERS)

Method KITTI-City KITTI-Residential

FAB-MAP [5] 1.24 (0.69) 2.29 (1.55)
EFM 0.87 (0.15) 1.18 (0.91)
Ours-GO 0.81 (0.07) 1.13 (0.81)
Ours-NP 0.41 (0.20) 0.62 (0.33)
Ours-full 0.39 (0.22) 0.42 (0.20)

Table I compares the localization error for each of the
methods on the two KITTI-based experiments, with our
method outperforming the FAB-MAP and EFM baselines.
Ours-GO achieves lower error than the two SURF-based
methods, which shows the effectiveness of our proposed
features at discriminating between ground images, especially
when there is overlap between images.3 Ours-NP further
reduces the error by interpolating the trajectory between two
adjacent ground database images (as described in Fig. 3)
and evaluating ground-satellite co-occurrence probabilities,
which brings in more localization information. Ours-full
achieves the lowest error, which demonstrates the effective-
ness of using re-ranking to learn the location-discriminative
projection matrices. Note that Ours-NP and Ours-full use
stereo to compute depth when learning the ground-satellite
image dictionary, whereas FAB-MAP does not use stereo.

B. Malaga-Urban Dataset

We also evaluate our framework on the Malaga-Urban
dataset [1], where we adopt the setup similar to KITTI-
Residential, using the first vehicle pass of an area as the
database set, and the second visit as the query set. In addition,
we also set aside images taken from a path outside the area
represented in the database to evaluate each method’s ability

3We note that this may violate independence assumptions that are made
when learning the generative model for FAB-MAP [5].

(a) GPS trajectory error (b) Reference image

(c) GPS-based match (d) Correct match

Fig. 7. Deficiency of the ground-truth location tags in the Malaga dataset.

to handle negative queries. We used the longest sequence,
Malaga-10, which contains 18203 images, each with a res-
olution of 1024 × 768. We downsample the database and
query sets at approximately one frame per second. The total
driving distance is 6.08 km, with 4.96 km for the database set,
583.5 m as the inside query set, and 534.3 m as the outside
query set. Figure 6 depicts the data splits.

Unlike the KITTI datasets, the quality of the ground-
truth location tags in the Malaga dataset is relatively poor.
Figure 7 conveys the deficiencies in the GPS tags provided
with the data. Figure 7(a) shows a portion of the ground-
truth trajectory, where the GPS data incorrectly suggests that
the vehicle took an infeasible path through the environment.
As further evidence, the GPS location tags suggest that the
image in Figure 7(c) is 3.28 m away from the reference image
in Figure 7(b) and constitutes the nearest match. However,
the image in Figure 7(d) is actually a closer match to the
reference image (note the white trashcan in the lower-right),
despite being 5.48 m away according to the GPS data. Due
to the limited accuracy of the ground-truth locations, we
evaluate the methods in terms of place recognition (i.e., their
ability to localize the camera within 10 m of the ground-truth
location) as opposed to localization error.

We compare the full version of our algorithm to the FAB-
MAP and Exhaustive Feature Matching (EFM) methods as
before. We set the bag-of-words size for FAB-MAP to 2589.
We define true positives as images that are identified as
inliers and localized within 10 m of their ground-truth loca-
tions. We picked optimal thresholds for each method based
on the square area under their precision-recall curves (Fig. 8).
Table II summarizes the precision and recall statistics for the
different methods.

The results demonstrate that our method is able to cor-
rectly classify most images as being inliers or outliers and
subsequently estimate the location of the inlier images. The
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Fig. 8. Precision-recall curve of different methods on the Malaga dataset.

TABLE II
OPTIMAL PRECISION-RECALL OF DIFFERENT METHODS.

Method Precision Recall

FAB-MAP [5] 49.3% 61.6%
EFM 89.4% 43.6%
Ours-full 90.2% 86.6%

EFM method achieves comparable precision, however the
computational expense of doing exhaustive feature matching
makes it intractable for real-time use in all but trivially
small environments. Note that using only inlier images, the
average location errors (with standard deviation) in meters
when rough localization succeeds for FAB-MAP, EFM, and
our method are 3.45 (2.16), 3.65 (2.21), and 3.33 (2.08),
respectively. Although our method achieves better accu-
racy, it is difficult to draw strong conclusions due to the
aforementioned deficiencies in the ground-truth data. We
believe the improvement in accuracy of our method will be
more significant if accurate ground-truth location tags are
available, similar to what we have observed in our KITTI
experiments.

V. CONCLUSION

We presented a multimodal learning method that performs
accurate visual localization by exploiting the availability of
satellite imagery. Our approach takes a ground image as
input and outputs the vehicle’s corresponding location on a
georeferenced satellite image using a learned ground-satellite
image dictionary embedding. We proposed an algorithm
for estimating the co-occurrence probabilities between the
ground and satellite images. We also described a ranking-
based technique that learns location-discriminative feature
projection matrices, improving the ability of our method to
accurately localize a given ground image. We evaluated our

method on multiple public datasets, which demonstrate its
ability to accurately perform visual localization.

Our future work will focus on the inclusion of additional
features that enable learning with a smaller amount of data,
and on learning general ground-to-satellite relationships that
generalize across different environments.
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