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Abstract— Natural language interfaces are powerful tools
that enables humans and robots to convey information without
the need for extensive training or complex graphical interfaces.
Statistical techniques that employ probabilistic graphical mod-
els have proven effective at interpreting symbols that represent
commands and observations for robot direction-following and
object manipulation. A limitation of these approaches is their
inefficiency in dealing with larger and more complex symbolic
representations. Herein, we present a model for language
understanding that uses parse trees and environment models
both to learn the structure of probabilistic graphical models and
to perform inference over this learned structure for symbol
grounding. This model, called the Hierarchical Distributed
Correspondence Graph (HDCG), exploits information about
symbols that are expressed in the corpus to construct min-
imalist graphical models that are more efficient to search.
In a series of comparative experiments, we demonstrate a
significant improvement in efficiency without loss in accuracy
over contemporary approaches for human-robot interaction.

I. INTRODUCTION

Advances in natural language understanding will enable
non-experts to effectively interact with robots in meaning-
ful ways. Recent applications that include route direction-
following [1, 2, 3, 4, 5], map building [6], and object
manipulation [7, 8, 9] show that statistical approaches to
language modeling can effectively translate intent expressed
in free-form language to robots in restricted domains. The
problem of command understanding is often considered as
one of determining the most probable trajectory x∗ (t) for a
given natural language utterance Λ, based upon the perceived
environment model Υ and space of trajectories X (t):

x∗ (t) = arg max
x(t)∈X(t)

p (x (t) |Λ,Υ) (1)

A limiting factor of contemporary approaches for natural
language understanding of robot instructions is that they
exhaustively reason over a fixed resolution of the environ-
ment representation. Consequently, real-time performance is
often sacrificed for increasingly complex tasks and cluttered
environments. In this paper, we present an algorithm that
addresses this limitation by learning a distribution over the
state space so as to exclude the constituents that are unlikely
to be expressed during probabilistic inference. The Hierar-
chical Distributed Correspondence Graph (HDCG) increases
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(a) Husky mobile robot (b) smart wheelchair

Fig. 1. Two mobile robots that have used the HDCG to interpret natural
language instructions for autonomous navigation.

performance by running probabilistic inference with the
Distributed Correspondence Graph (DCG) [9] twice on the
utterance [10]. The HDCG achieves improved performance
by first learning a distribution over constituents that are
relevant to the utterance. This distribution is then used
to build a simplified language understanding model that
can be searched more efficiently. This approach has been
demonstrated to be effective for interpreting natural language
instructions conveyed to different mobile robots (Figure 1)
in domains that involved complex groundings composed of
thousands of constituents. The HDCG has been used to
translate natural language instructions in a multimodal inter-
face to structured Tactical Behavior Sequences (TBS) [11]
for outdoor navigation with an unmanned ground vehicle.
Hemachandra et al. [12] utilize the HDCG on a voice-
commandable wheelchair to infer annotations and behaviors
in real-time for an intelligence architecture composed of a
semantic map and a policy-based motion planner.

Hemachandra et al. [12] introduced the concept and pre-
sented a novel application of the HDCG. However, this work
did not attempt to characterize the algorithm’s performance
in the context of other approaches. The main contributions
of this paper include a formal description of the HDCG and
a thorough evaluation of its computational complexity in
comparison to that of related natural language understanding
algorithms based on probabilistic graphical models.

II. PROBABILISTIC GRAPHICAL MODELS FOR
NATURAL LANGUAGE UNDERSTANDING

One class of techniques for natural language understanding
that have proven effective of late are those that take a
probabilistic approach to solving the symbol grounding prob-



lem [13], that of mapping (grounding) linguistic elements
to their corresponding referents in the external world. One
such algorithm is the Generalized Grounding Graph (G3) [7],
which addresses this problem by constructing a probabilistic
graphical model that expresses the relationship between
elements from the language λi ∈ Λ and their corresponding
groundings γi ∈ Γ through binary correspondence variables
φi ∈ Φ according to the grammatical structure of the parse
tree. Groundings are symbols that express some physical con-
cept, such as an object, a region, a constraint, or a trajectory.
Correspondence variables φi associated with each symbol-
word pair (γi, λi) denote whether the symbol γi is the ref-
erent for the word λi. The G3 assumes the correspondences
to be true (φi = TRUE) and builds a factor graph repre-
sentation of the distribution p(Φ = TRUE|Γ,Λ,Υ), with one
correspondence node (assumed observed) and one grounding
(unobserved) for each word in the utterance (observed). The
algorithm then incrementally searches the graph for the most
likely set of groundings γi in the context of the phrases λi,
child groundings Γci , and world model Υ:

Γ∗ = arg max
γ1...γn

p (Φ = TRUE | γ1 . . . γn,Λ,Υ) (2a)

Γ∗ = arg max
γ1...γn

∏
i

p (φi = TRUE | γi, λi,Γci ,Υ) (2b)

In order for G3 to infer the most likely set of groundings,
it searches all symbols that can be represented by the model.
Since this space may contain all possible robot motions, this
space is infinitely large for non-trivial robot domains. Gener-
ating an approximation of this space that is coarse enough to
search efficiently and diverse enough to represent a variety of
robot behaviors is quite difficult in practice. An alternative
to inferring the most likely sequence of actions or states
is to instead convert the natural language instruction into
an equivalent representation as a planning problem. Directly
inferring the most probable constraints, objective function,
and model dynamics using the G3 algorithm would also
be difficult, because it requires evaluating each individual
problem description in aggregate. To address this, Howard
et al. [9] developed an alternative probabilistic graphical
model formulation for natural language understanding of
robot instructions called the DCG. This model builds upon
the conditional independence assumptions made by the G3

by assuming that constituents of a grounding are also con-
ditionally independent and that the space of constituents
is finite and known. What is not known in the DCG is
how the constituents correlate to the phrases in the natural
language utterance. Therefore, the DCG searches for the
most likely correspondence variables φij in the context of
the groundings γij , phrases λi, child groundings Γci , child
correspondences Φci , and world model Υ by maximizing the
product of individual factors and uses the most likely set of
correspondence variables Φ∗ to express the most probable
set of groundings Γ∗:

Φ∗ = arg max
φ11

...φnm

∏
i

∏
j

p
(
φij |γij , λi,Φci ,Γci ,Υ

)
(3)

The runtime of probabilistic inference for the DCG can be
shown to increase linearly with the number of constituents
within a grounding set [9], which enables real-time transla-
tion of natural language into symbols for small structured
languages. For example, Duvallet et al. [14] use the DCG to
convert natural language utterances into annotations (obser-
vations about the environment) and behaviors (the objective
function for robot navigation), thereby allowing users to
command the smart wheelchair in Figure 1 using natural
language instructions. Though significantly more efficient
than G3, the runtime of DCG depends significantly on the
number of constituents expressed by the groundings, which
limits its performance for complex tasks and environments.

III. HIERARCHICAL DISTRIBUTED
CORRESPONDENCE GRAPHS

The core difference between HDCG, DCG, and G3 is that
HDCG assumes that the space of symbols Γ for natural
language understanding is itself a function of the utterance in
the context of the environment. Direct inference of the most
probable Γ (Λ,Υ) ⊂ Γ is difficult because of the inherent
diversity of symbols and the computational cost of evaluating
the likelihood of individual symbols. Instead, we observe that
a set of rules that govern how the space is constructed may
be easier to learn and faster to evaluate.

We introduce a set of rules P ∈ P. Each rule ρ in the rule
set P admits a certain subset of symbols in Γ. The space
of symbols is then a function of rules Γ (P) rather than a
fixed set; it consists only of the set of symbols created from
constituents allowed by the rules P. In HDCG, we run the
first DCG in the space of rules P to infer a distribution
of rule correspondence variables Φρ in the context of the
natural language instruction Λ and the world model Υ.
Just as we use inferred correspondence variables to express
groundings in Equation 3, we use the distribution of rule
correspondence variables to infer a distribution of rule sets P.
We then run the second DCG over the distribution of reduced
spaces Γ(P) to determine the most probable correspondence
variables Φ∗ that we use to express the most probable set
of symbols Γ∗. We introduce the rule inference model as a
latent random variable in Equation 3 that we marginalize
out as illustrated in Equations 4 and 5. In practice, we
approximate this summation using a limited number of most
likely samples that result from beam search and use log-
linear models trained from a corpus of examples to represent
the probability of the correspondence between phrases and
constituents.

This concept is illustrated in Figures 2 through 7 for “go
to the kitchen that is down the hall,” the example natural
language expression from Hemachandra et al. [12] in an en-
vironment composed of seven regions of five different types
(Figure 2). Constituents in this example symbol grounding
model include regions, spatial relations, and goals. If we
assume seven regions in the world model, eight spatial
relation types (below, above, near, far, right, left, back, and
front), and a number of goals that is equal to the number of
regions in the world model, there exist seventy constituents



Φ∗ = arg max
φ11 ...φnm

∑
Φρ∈Φρ

∏
i

∏
j

p
(
φij |γij (P) , λi,Φci ,Γci (P) ,Υ

)
p (Φρ|P,Λ,Φρc ,Pc,Υ) (4)

Φ∗ = arg max
φ11

...φnm

∑
Φρ∈Φρ

∏
i

∏
j

f
(
φij , γij (P) , λi,Φci ,Γci (P) ,Υ

)∏
k

∏
l

fρ

(
φρkl , ρkl , λk,Φρck ,Pck ,Υ

)
(5)

in the symbol grounding model to evaluate (seven regions
(γ1, . . . , γ7), fifty-six spatial relationships (γ8, . . . , γ63), and
seven goals (γ64, . . . , γ70)). In this example, it is clear that
two types of semantic regions (kitchen and hallway) and one
spatial relationship (down) are likely to be expressed during
symbol grounding and therefore need to be represented in
the model for natural language understanding.
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Fig. 2. An illustration of a world composed of seven regions. There exists
one lobby region (r1), two kitchen regions (r2 and r3), one office region
(r4), one hallway region (r5), and two stair regions (r6 and r7). A robot
is initially located in r1 and the desired motion from the natural language
instruction “go to the kitchen down the hall” is illustrated as a dashed line.

For this example, we assume one rule for each of the five
region types (ρ1, . . . , ρ5) and one rule for each of the eight
spatial relations (ρ6, . . . , ρ13). If a rule for a particular region
type is active, all regions, goals, and spatial relationships with
those regions are included in the symbol grounding model.
Similarly, if a rule for a particular spatial relation type is
active, all spatial relationships of that type are also included
in the model for symbol grounding. Figures 3 through 5
illustrate partitioning of the space of constituents when three
rules that correspond to the kitchen and hallway region types
(ρ2, ρ4) and the back spatial relationship type (ρ12) are
active. Note that the expression of active and inactive rules
is illustrated as translucent green and red boxes respectively.
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Fig. 3. An illustration of how rules filter the space of regions. The space
of regions is formed by partitioning the space of all regions with rules that
evaluate their semantic tag. In this example, two region rules (ρ2, ρ4) reduce
the space of symbols from seven to three (γ2, γ3, and γ5).
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Fig. 4. An illustration of how rules filter the space of spatial relations. The
space of spatial relations is formed by the intersection of rules that permit
particular regions and spatial relation types. In this example, the intersection
of two region rules (ρ2, ρ4) and one spatial relation rule (ρ7) reduce the
space of symbols from fifty-six to three (γ17, γ25, and γ41).

goal1 goal2 goal3 goal4 goal5 goal6 goal7
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Fig. 5. An illustration of how rules filter the space of navigation goals. The
space of goals is formed by partitioning the space of all goals with rules
that evaluate their semantic tag. In this example, two region rules (ρ2, ρ4)
reduce the space of symbols from seven to three (γ65, γ67, and γ68).

These three rules reduce the space of constituents for
symbol grounding from seventy to nine (γ2, γ3, γ5, γ17, γ25,
γ41, γ65, γ66, and γ68). Figure 7 illustrates the constituents
that would be actively expressed in a DCG originating from
the parse tree in Figure 6. Of particular interest is how the
ambiguity of the phrase “the kitchen” would be resolved by
incorporating the information from the spatial relationship
inferred from “that is down the hall.” Since all of the actively
expressed constituents are expressed by the simplified model,



we would expect that the DCG would find the same solution
as the full model in less time.

go to the kitchen that is down the hall

NP NP
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Fig. 6. A parse tree for the natural language instruction “go to the kitchen
that is down the hall” using tags from the Penn Treebank [15].
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Fig. 7. The actively expressed constituents in the symbol inference model
for the natural language instruction “go to the kitchen that is down the hall”
in the context of a map with seven objects.

Figure 8 illustrates how the DCG applies to the problem
of inferring a set of rules to construct the simplified model in
Figure 7. The constituents at the root of the sentence contain
the rules that describe all actively expressed constituents in
the symbol inference model for that particular expression.
We infer a likelihood of individual models because labeling
of natural language expressions can vary between annotators.

IV. EXPERIMENTS

We evaluate the performance of the G3, DCG, and HDCG
models through comparative experiments that measure both
the runtime and number of factor computations required of
each model using a corpus of navigation instructions. Each
test consisted of training each model on a corpus of examples
and then measuring the CPU time and number of factor
evaluations executed by the model for each example. To
vary the complexity of the phrases, we performed tests over
corpus subsets of varying size. This was accomplished by
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Fig. 8. The actively expressed constituents in the rule inference model for
the natural language instruction “go to the kitchen that is down the hall” in
the context of a map with seven objects.

randomly sampling a subset of the corpus examples and then
constructing a space of only those groundings comprised of
the symbols (region and spatial relation types) present in the
subset. By changing the size of the subset of the corpus, we
were able to adjust the size of the grounding space used for
each test, thus enabling us to measure the performance of
each model in situations of varying complexity.

Even with a limited number of corpus examples, the
exponentially large number of possible sets of groundings
made it infeasible to test the G3 in the same way as DCG
and HDCG. In order to create grounding spaces small enough
to run the G3, we constructed grounding spaces consisting of
only the individual groundings present in the corpus subset.
This is an even smaller subset of the grounding space than
the subset of all groundings comprised of symbols present in
the corpus subset (the space used for DCG and HDCG). The
full grounding space was then constructed as the powerset
of these individual groundings and the G3 was run on these
smaller spaces.

Experiments were performed using a Python implemen-
tation of G3, DCG, and HDCG on the open-source H2SL1

corpus of 32 examples, referencing 10 region types and eight
different spatial relations. All tests were run on a quad-core
Intel Core i7 processor with 16 GB of RAM running Mac
OS X 10.10 (x86 64 architecture).

Figures 9 and 10 present log-log plots of the runtimes
and factor evaluations for the DCG, HDCG and G3 mod-
els, respectively. In these plots, we normalize the runtimes
and factor evaluations over the number of phrases in the
instruction, since the model is run over each of these phrases
individually. Although this normalization does not account
for the fact that different phrase types have grounding
spaces of different sizes, it effectively reduces the possible
confounding effect of complex sentence structure. Also note
that the independent variable is the number of individual

1https://github.com/tmhoward/h2sl

https://github.com/tmhoward/h2sl


groundings used to construct the grounding space and not
the size of the grounding space itself, which for the G3 is
constructed as the powerset of these individual groundings.
Finally, note that in these plots and in all others throughout
this paper, the error bars denote standard error.
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Fig. 9. Log-log plot of models’ runtime for inferring groundings vs. number
of individual groundings, normalized over number of phrases.
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Fig. 10. Log-log plot of models’ factor evaluations vs. number of individual
groundings, normalized over number of phrases.

In order to check whether the improved performance of
the HDCG is not at the expense of correctness, we performed
an additional series of tests to evaluate accuracy. We trained
the DCG and HDCG models on a randomly sampled subset
of the corpus, then tested each on the full corpus. We varied

the percentage of the corpus sampled from 0% to 100% over
intervals of 10%, and recorded whether the models inferred
the correct grounding. Figure 11 displays a plot comparing
the accuracy DCG and HDCG.
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Fig. 11. Percentage of examples inferred correctly vs. percentage of
examples used for training for the DCG and HDCG models.

V. DISCUSSION

The runtime and factor evaluation costs of the HDCG
and DCG models were both observed to be linear with
respect to the number of individual groundings on the log-
log scale, corresponding to a monomial relationship. The
HDCG model’s log-log line had a lower slope but greater
intercept than DCG, corresponding to a smaller power but
larger coefficient. This reflects the conclusion that the cost of
inferring groundings is dominant for large grounding spaces,
while the cost of rule inference dominates for small spaces.

The G3 exhibits trends in runtime cost and number of
factor evaluations that are exponential with respect to the
number of individual groundings. This trend is due to the ex-
ponentially increasing number of possible sets of groundings
the G3 is required to evaluate. In addition, each individual
G3 factor evaluation requires a greater number of feature
evaluations than an individual DCG factor evaluation. This
is due to the presence of additional features for grounding
sets, which caused the G3 factor evaluations to have a greater
runtime cost than the corresponding DCG factor evaluations.
This explains why the G3 has a greater intercept than the
DCG models in the runtime plot, but not in the plot for factor
evaluations. The HDCG consistently achieves correctness
rates nearly equivalent to that of the DCG, showing that
accuracy is not compromised for the superior performance
obtained by the hierarchical model.

We found that for small grounding spaces, it was more
efficient to use the DCG directly. However, as the size of the



grounding space increases, the HDCG requires significantly
less time and factor evaluations than the DCG, while still
retaining a similar level of accuracy. The HDCG thus better
supports the ability for robots to understand a more complex
set of instructions in real-time.

VI. CONCLUSIONS

A key limitation of contemporary approaches to under-
standing natural language robot instructions involves scaling
to diverse tasks and complex environments. In this paper,
we presented the Hierarchical Distributed Correspondence
Graph, a novel approach to natural language understanding
that achieves significant gains in efficiency by explicitly
building a compact graphical model that expresses the sym-
bol grounding problem. This HDCG addresses the linear
growth in computational complexity that encumbers the
efficiency of the previous state-of-the-art by inferring a
distribution over simplified models for grounding symbols.
We provided a detailed analysis of the computational com-
plexity of the HDCG that offers further insights into the
performance characteristics of the HDCG observed on real-
time, real-world deployments [12]. Of particular note is the
identification of two regions of performance, one in which
the number of groundings is small and the computational cost
of inferring the structure of the simplified model outweighs
the benefits of more efficient symbol grounding, and the other
in which the larger number of grounding constituents makes
the hierarchical approach more efficient.

In future work, we will explore the application of hi-
erarchical probabilistic graphical models to improve the
computational performance of related models like G3 that
do not assume the conditional independence of constituents.
We also seek to eliminate the dependence on training models
using fully annotated corpora by exploring semi-supervised
learning techniques. Additionally, we are actively exploring
applications that extend beyond route directions to tasks like
cooperative robot manipulation that require inference over a
larger space of groundings. Lastly, we are investigating the
extension of the model to additional human-robot communi-
cation mechanisms that include joint gesture, tone, speech,
and facial expression.
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