
Navigational Instruction Generation
as Inverse Reinforcement Learning

with Neural Machine Translation

Andrea F Daniele
TTI-Chicago

afdaniele@ttic.edu

Mohit Bansal
UNC Chapel Hill

mbansal@cs.unc.edu

Matthew R Walter
TTI-Chicago

mwalter@ttic.edu

ABSTRACT
Modern robotics applications that involve human-robot in-
teraction require robots to be able to communicate with hu-
mans seamlessly and effectively. Natural language provides
a flexible and efficient medium through which robots can ex-
change information with their human partners. Significant
advancements have been made in developing robots capa-
ble of interpreting free-form instructions, but less attention
has been devoted to endowing robots with the ability to
generate natural language. We propose a model that en-
ables robots to generate natural language instructions that
allow humans to navigate a priori unknown environments.
We first decide which information to share with the user
according to their preferences, using a policy trained from
human demonstrations via inverse reinforcement learning.
We then “translate” this information into a natural lan-
guage instruction using a neural sequence-to-sequence model
that learns to generate free-form instructions from natural
language corpora. We evaluate our method on a bench-
mark route instruction dataset and achieve a BLEU score
of 72.18% compared to human-generated reference instruc-
tions. We additionally conduct navigation experiments with
human participants demonstrating that our method gener-
ates instructions that people follow as accurately and easily
as those produced by humans.

1. INTRODUCTION
Robots are increasingly being used as our partners, work-

ing with and alongside people, whether it is serving as assis-
tants in our homes [60], transporting cargo in warehouses [11],
helping students with language learning in the classroom [28],
and acting as guides in public spaces [23]. In order for hu-
mans and robots to work together effectively, robots must
be able to communicate with their human partners to con-
vey information, establish a shared understanding of their
collaborative task, or to coordinate their efforts [21, 17, 50,
49]. Natural language provides an efficient, flexible medium
through which humans and robots can exchange informa-
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Output: route instruction

“turn to face the grass hallway. walk forward twice. face
the easel. move until you see black floor to your right. face
the stool. move to the stool”

Figure 1: An example route instruction that our
framework generates for the shown map and path.

tion. Consider, for example, a search-and-rescue operation
carried out by a human-robot team. The human may first
issue spoken commands (e.g., “Search the rooms at the end
of the hallway”) that direct one or more robots to navigate
throughout the building searching for occupants [40, 54, 41].
In this process, the robot may engage the user in dialogue
to resolve any ambiguity in the task (e.g., to clarify which
hallway the user was referring to) [55, 15, 47, 56, 24]. The
user’s ability to trust their robotic partners is also integral
to effective collaboration [20], and a robot’s ability to gen-
erate natural language explanations of its progress (e.g., “I
have inspected two rooms”) and decision-making processes
have been shown to help establish trust [16, 2, 61].

In this paper, we specifically consider the surrogate prob-
lem of synthesizing natural language route instructions and
describe a method that generates free-form directions that
people can accurately and efficiently follow in environments
unknown to them a priori (Fig. 1). This problem has previ-
ously been considered by the robotics community [44, 18, 45]
and is important for human-robot collaborative tasks, such
as search-and-rescue, exploration, and surveillance [33], and
for robotic assistants, such as those that serve as guides in

http://dx.doi.org/10.1145/2909824.3020241


museums, offices, and other public spaces. More generally,
the problem is relevant beyond human-robot interaction to
the broader domain of indoor navigation. There are two
primary challenges to generating effective, natural language
route instructions, which are characteristic of the more gen-
eral problem of free-form generation.

The first challenge is content selection, the problem of de-
ciding what and how much information to convey to the user
as part of the directions. In general, the more detailed an
instruction is, the less ambiguous it is. However, verbose
instructions can be unnatural and hard for followers to re-
member and, thus, ineffective. Consequently, it is important
to balance the value of including particular information as
part of a route instruction with the cost that comes with
increasing the level of detail. Further, not all information is
equally informative. Existing commercial navigational solu-
tions typically rely on a set of hand-crafted rules that con-
sider only street names and metric distances as valid candi-
dates, the latter of which requires that follower’s keep track
of their progress. In contrast, studies have shown that peo-
ple prefer route instructions that reference physical, salient
landmarks in the environment [59]. However, no standard
exists with regards to what and how these landmarks should
be selected, as these depend on the nature of the environ-
ment and the demographics of the follower [62, 27].

We propose a method that models this content selection
problem as a Markov decision process with a learned pol-
icy that decides what and how much to include in a formal
language specification of the task (path). We learn this pol-
icy via inverse reinforcement learning from demonstrations
of route instructions provided by humans. This avoids the
need for hand-crafted selection rules, and allows our method
to automatically adapt to the preferences and communica-
tion style of the target populations and to simultaneously
choose to convey information that minimizes the ambiguity
of the instruction while avoiding verbosity.

The second challenge is surface realization, which is the
task of synthesizing a natural language sentence that refers
to the selected content. Existing solutions rely on sentence
templates, generating sentences by populating manually de-
fined fields (e.g.,“turn 〈direction〉”) and then serializing these
sentences in a turn-by-turn fashion. As expected, the use of
such templates reduces coherence across sentences and lim-
its the ability to adapt to different domains (e.g., from out-
door to indoor navigation). Additionally, while the output
is technically correct, the resulting sentences tend to be rigid
and unnatural. Studies show that language generated by a
robot is most effective when it emulates the communication
style that people use [57].

We address the surface realization problem through a neu-
ral sequence-to-sequence model that “translates” a formal
language specification of the selected command into a nat-
ural language sentence. Our model takes the form of an
encoder-aligner-decoder architecture that first encodes the
formal path specification with a recurrent neural network us-
ing long short-term memory (LSTM-RNN) [25]. The model
then decodes (translates) the resulting abstraction of the in-
put into a natural language sentence (word sequence), using
an alignment mechanism to further refine the selected in-
formation and associate output words with the correspond-
ing elements in the input formal specification. The use of
LSTMs as the hidden units enables our model to capture
the long-term dependencies that exist among the selected

information and among the words in the resulting instruc-
tion. We train our surface realization model on instruction
corpora, enabling our method to generate free-form direc-
tions that emulate the style of human instructions, without
templates, specialized features, or linguistic resources.

We evaluate our method on the benchmark SAIL dataset
of human-generated route instructions [39]. Instructions
generated with our method achieve a sentence-level BLEU
score of 72.18%, indicating their similarity with the reference
set of human-provided instructions. We perform a series of
ablations and visualizations to better understand the contri-
butions of the primary components of our model. We addi-
tionally conduct human evaluation experiments that demon-
strate that our method generates instructions that people
are able to follow as efficiently and accurately as those gen-
erated by humans.

The paper presents what is, to the best of our knowl-
edge, the first framework that generates natural language
instructions that reflect the preferences and rhetorical style
of humans. We achieve this firstly via a decision process
that learns to emulate human content selection preferences
from demonstrations; and secondly through a neural ma-
chine translation model that learns to express this content
via natural language. Human experiments reveal that our
method produces instructions that are as accurate, effective,
and usable as those generated by humans.

2. RELATED WORK
Existing research related to the generation of route in-

structions spans the fields of robotics, natural language pro-
cessing, cognitive science, and psychology. Early work in
this area focuses on understanding the way in which humans
generate natural language route instructions [62, 1, 38] and
the properties that make “good” instructions easier for peo-
ple to follow [36, 48, 59]. These studies have shown that
people prefer to give directions as a sequence of turn-by-
turn instructions and that they favor physical objects and
locations as intuitive landmarks.

Based on these studies, much of the existing research
on generating route instructions involves the use of hand-
crafted rules that are designed to emulate the manner in
which people compose navigation instructions [51, 13]. Look
et al. [36] compose route instructions using a set of tem-
plates and application rules engineered based upon a corpus
of human-generated route instructions. Look [37] improves
upon this work by incorporating human cognitive spatial
models to generate high-level route overviews that augment
turn-by-turn directions. Similarly, Dale et al. [14] analyze a
dataset of route instructions composed by people to derive a
set of hand-designed rules that mimic the content and style
of human directions. Goeddel and Olson [18] describe a par-
ticle filter-based method that employs a generative model of
direction following to produce templated instructions that
maximize the likelihood of reaching the desired destination.
Meanwhile, Morales Saiki et al. [44] propose a system that
enables robots to provide route instructions using a combina-
tion of language and pointing gestures. Unlike our approach,
their method is limited to paths with no more than three
direction changes and employs four generation templates,
limiting the content and structure of the instructions.

The challenge with instruction generation systems that
rely upon hand-crafted rules is that it is difficult to design a
policy that generalizes to a wide variety of scenarios and fol-



lowers, whose preferences vary depending on such factors as
their cultural background [27] and gender [62]. Cuayáhuitl
et al. [12] seek to improve upon this using reinforcement
learning with hand-crafted reward functions that model the
length of the instructions and the likelihood that they will
confuse a follower. They then learn a policy that reasons
both over the best route and the corresponding navigational
instructions. However, this approach still requires that do-
main experts define the reward functions and specify model
parameters. In contrast, Oswald et al. [45] model the prob-
lem of deciding what to include in the instruction (i.e., the
content selection problem) as a Markov decision process and
learn a policy from a human-generated navigation corpus us-
ing maximum entropy inverse reinforcement learning. Given
the content identified by the policy, their framework does
not perform surface realization, and instead generates in-
structions by matching the selected content with the nearest
match in a database of human-generated instructions. Our
method also uses inverse reinforcement learning for content
selection, but unlike their system, our method also learns
to perform surface realization directly from corpora, thus
generating newly-composed natural language instructions.

Relatedly, much attention has been paid recently to the
“inverse” problem of learning to follow (i.e., execute) natural
language route instructions. Statistical methods primarily
formulate the problem of converting instructions to actions
as either a semantic parsing task [40, 9, 4] or as a symbol
grounding problem [31, 54, 34, 26, 10]. Alternatively, Mei
et al. [41] translate free-form instructions to action sequences
in an end-to-end fashion using an encoder-aligner-decoder.

Meanwhile, selective generation considers the more gen-
eral problem of converting a rich database to a natural lan-
guage utterance, with existing methods generally focusing
on the individual problems of content selection and sur-
face realization. Barzilay and Lee [7] perform content selec-
tion on collections of unannotated documents for the sake
of text summarization. Barzilay and Lapata [6] formulate
content selection as a collective classification problem, simul-
taneously optimizing local label assignments and their pair-
wise relations. Liang et al. [35] consider the related prob-
lem of aligning elements of a database to textual descrip-
tion clauses. They propose a generative semi-Markov model
that simultaneously segments text into utterances and aligns
each utterance with its corresponding entry in the database.
Meanwhile, Walker et al. [58] perform surface realization via
sentence planners that can be trained to generate sentences
for dialogue and context planning. Wong and Mooney [63]
effectively invert a semantic parser to generate natural lan-
guage sentences from formal meaning representations using
synchronous context-free grammars. Rather than consider
individual sub-problems, recent work focuses on solving se-
lective generation via a single framework [8, 29, 3, 32, 42].
Angeli et al. [3] model content selection and surface real-
ization as local decision problems via log-linear models and
employ templates for generation. Mei et al. [42] formulate
selective generation as an end-to-end learning problem and
propose a recurrent neural network encoder-aligner-decoder
model that jointly learns to perform content selection and
surface realization from database-text pairs. Unlike our
method, they do not reason over the correctness or unam-
biguity of the summaries, nor do they attempt to model
human content selection preferences.

MDP
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Language
Model

Seq2Seq
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Figure 2: Our method generates natural language
instructions for a given map and path.

3. TASK DEFINITION
We consider the problem of generating natural language

instructions that allow humans to navigate environments
that are unknown to them a priori. The given map m
takes the form of a hybrid metric-topologic-semantic rep-
resentation (Fig. 1) that encodes the position of and con-
nectivity between a dense set of locations in the environ-
ment (e.g., intersections) and the position and type of ob-
jects and environment features (e.g., floor patterns). The
path p is a sequence of poses (i.e., position and orienta-
tion) that corresponds to the minimum distance route from
a given initial pose to a desired goal pose. We split the
path according to changes in direction, representing the path
p = (p1, p2, . . . pM ) as a sequence of intermediate segments
pi.

Training data comes in the form of tuples (m(i), p(i),Λ(i))
for i = 1, 2, . . . , n drawn from human demonstrations, where
m(i) is a map of the environment, Λ(i) is a human-generated
natural language route instruction, and p(i) is the path that
a different human took when following the instructions. At
test time, we consider only the map and path pair as known
and hold out the human-generated instruction for evalua-
tion. The dataset that we use for training, validation, and
testing comes from the benchmark SAIL corpus [39].

4. MODEL
Given a map and a path, our framework (Fig. 2) performs

content selection to decide what information to share with
the human follower and subsequently performs surface real-
ization to generate a natural language instruction according
to this selected content. Our method learns to perform con-
tent selection and surface realization from human demon-
strations, so as to produce instructions that are similar to
those generated by humans.

Our framework only assumes knowledge of the user’s pose
and can be readily implemented on a mobile robot or body-
worn device that provides natural language guidance as the
user navigates, re-planning and issuing corrections as nec-
essary. By maintaining probabilistic models of information
content and ambiguity, our method is amenable to incor-
porating user feedback (e.g., utterances and gaze) to revise
the information shared with the user (e.g., referencing land-
marks based upon gaze). By using inverse reinforcement
learning, our method can also adapt the content selection
policy based on feedback to better learn user preferences.

4.1 Compound Action Specifications
In order to bridge the gap between the low-level nature of

the input paths and the natural language output, we en-
code paths using an intermediate logic-based formal lan-
guage. Specifically, we use the Compound Action Spec-
ification (CAS) representation [39], which provides a for-
mal abstraction of navigation commands for hybrid metric-
topologic-semantic maps. The CAS language consists of five
actions (i.e., Travel, Turn, Face, Verify, and Find), each



of which is associated with a number of attributes (e.g.,
Travel.distance, Turn.direction) that together define spe-
cific commands. We distinguish between CAS structures,
which are instructions with the attributes left empty (e.g.,
Turn(direction=None)) thereby defining a class of instruc-
tions, and CAS commands, which correspond to instantiated
instructions with the attributes set to particular values (e.g.,

Turn(direction=Left)). For each English instruction Λ(i) in
the dataset, we generate the corresponding CAS command
c(i) using the MARCO architecture [39]. For a complete
description of the CAS language, see MacMahon et al. [39].

4.2 Content Selection
There are many ways in which one can compose a CAS

representation of a desired path, both in terms of the type
of information that is conveyed (e.g., referencing distances
vs. physical landmarks), as well as the specific references
to use (e.g., different objects provide candidate landmarks).
Humans exhibit common preferences in terms of the type of
information that is shared (e.g., favoring visible landmarks
over distances) [59], yet the specific nature of this informa-
tion depends upon the environment and the followers’ de-
mographics [62, 27]. Our goal is to learn these preferences
from a dataset of instructions generated by humans.

4.2.1 MDP with Inverse Reinforcement Learning
In similar fashion to Oswald et al. [45], we formulate

the content selection problem as a Markov decision process
(MDP) with the goal of then identifying an information se-
lection policy that maximizes long-term cumulative reward
consistent with human preferences (Fig. 2). However, this
reward function is unknown a priori and is generally diffi-
cult to define. We assume that humans optimize a common
reward function when composing instructions and employ
inverse reinforcement learning (IRL) to learn a policy that
mimics the preferences that humans exhibit based upon a
set of human demonstrations.

An MDP is defined by the tuple (S,A,R, P, γ), where S
is a set of states, A is a set of actions, R(s, a, s′) ∈ R is the
reward received when executing action a ∈ A in state s ∈ S
and transitioning to state s′ ∈ S, P (s′|a, s) is the probabil-
ity of transitioning from state s to state s′ when executing
action a, and γ ∈ (0, 1] is the discount factor. The policy
π(a|s) corresponds to a distribution over actions given the
current state. In the case of the route instruction domain,
the state s defines the user’s pose and path in the context
of the map of the environment. We represent the state in
terms of 14 context features that express characteristics such
as changes in orientation and position, the relative location
of objects, and nearby environment features (e.g., different
floor colors). We encode the state s as a 14-dimensional bi-
nary vector that indicates which context features are active
for that state. In this way, the state space S is spanned by
all possible instantiations of context features. Meanwhile,
the action space corresponds to the space of different CAS
structures (i.e., without instantiated attributes) that can be
used to define the path.

We seek a policy π(a|s) that maximizes expected cumu-
lative reward. However, the reward function that defines
the value of particular characteristics of the instruction is
unknown and difficult to define. For that reason, we frame
the task as an inverse reinforcement learning problem us-
ing human-provided route instructions as demonstrations of

the optimal policy. Specifically, we learn a policy using the
maximum entropy formulation of IRL [64], which models
user actions as a distribution over paths parameterized as

a log-linear model P (a; θ) ∝ e−θ
>ξ(a), where ξ(a) is a fea-

ture vector defined over actions and θ is a parameter vector.
We consider 9 instruction features (properties) that include
features expressing the number of landmarks included in the
instruction, the frame of reference that is used, and the com-
plexity of the command. The feature vector ξ(a) then takes
the form of a 9-dimensional binary vector. The Supplemen-
tary Material presents the full set of context and property
features used to parameterize the states and actions. Maxi-
mum entropy IRL then solves for the distribution as

P (a; θ∗) = arg max
θ

P (a; θ) logP (a; θ)

s.t. ξg = E[ξ(a)],
(1)

where ξg denotes the features from the demonstrations and
the expectation is taken over the action distribution. For
further details regarding maximum entropy IRL, we refer
the reader to Ziebart et al. [64].

The policy defines a distribution over CAS structure com-
positions (i.e., using the Verify action vs. the Turn action)
in terms of their feature encoding. We perform inference
over this policy to identify the maximum a posteriori prop-
erty vector ξ(a∗) = arg maxξ π. As there is no way to invert
the feature mapping, we then match this vector ξ(a∗) to a
database of CAS structures formed from our training set.
Rather than choosing the nearest match, which may result
in an inconsistent CAS structure, we retrieve the kc nearest
neighbors from the database using a weighted distance in
terms of mutual information [45] that expresses the impor-
tance of different CAS features based upon the context. As
several of these may be valid, we employ spectral clustering
using the similarity of the CAS strings to identify a set of
candidate CAS structures Cs.

4.2.2 Sentence Planning
Given the set of candidate CAS structures Cs, our method

next chooses the attribute values such that the final CAS
commands are both valid and not ambiguous. We express
the likelihood that a command c ∈ Cs is a valid representa-
tion of a particular path p defined on a map m as

P (c|p,m) =
δ(c|p,m)∑K
j=1 δ(c|p̂j ,m)

. (2)

The index j iterates over all possible paths that have the
same starting pose as path p. We define δ(c | p,m) as

δ(c|p,m) =

{
1 if η(c) = φ(c, p,m)
0 otherwise

where η(c) is the number of attributes defined in the com-
mand c, and φ(c, p,m) is the number of attributes in the
command c that are valid relative to the path p and map m.

For each candidate CAS structure c ∈ Cs, we generate
multiple CAS commands by iterating over the possible at-
tributes values. We evaluate the correctness and ambiguity
of each configuration according to Equation 2. A command
is deemed valid if its likelihood is greater than a threshold
Pt. Since the number of possible configurations for a struc-
ture increases exponentially with respect to the number of
attributes, we assign attributes using greedy search. The
iteration is constrained to use only objects and properties of
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the environment visible to the follower. The result is a set
C of valid CAS commands.

4.3 Surface Realization
Having identified a set of CAS commands suitable to the

given path, our method then proceeds to generate the corre-
sponding natural language route instruction. We formulate
this problem as one of “translating” the instruction specifi-
cation in the formal CAS language into its natural language
equivalent.1 We perform this translation using an encoder-
aligner-decoder model (Fig. 3) that enables our framework
to generate natural language instructions by learning from
examples of human-generated instructions, without the need
for specialized features, resources, or templates.

4.3.1 Sequence-to-Sequence Model
We formulate the problem of generating natural language

route instructions as inference over a probabilistic model
P (λ1:T |x1:N ), where λ1:T = (λ1, λ2, . . . , λT ) is the sequence
of words in the instruction and x1:N = (x1, x2, . . . xN ) is
the sequence of tokens in the CAS command. The CAS se-
quence includes a token for each action (e.g., Turn, Travel)
and a set of tokens with the form attribute.value for each
attribute-value pair; for example, Turn(direction=Right) is
represented by the sequence (Turn, direction.Right). Gener-
ating an instruction sequence then corresponds to inference
over this model.

λ∗1:T = arg max
λ1:T

P (λ1:T |x1:N ) (3a)

= arg max
λ1:T

T∏
t=1

P (λt|λ1:t−1, x1:N ) (3b)

We formulate this task as a sequence-to-sequence learning
problem, whereby we use a recurrent neural network (RNN)
to first encode the input CAS command

hj = f(xj , hj−1) (4a)

zt = b(h1, h2, . . . hN ), (4b)

where hj is the encoder hidden state for CAS token j, and f
and b are nonlinear functions that we define later. An aligner
computes the context vector zt that encodes the language
instruction at time t ∈ {1, . . . , T}. An RNN decodes the
context vector zt to arrive at the desired likelihood (Eqn. 3)

P (λt|λ1:t−1, x1:N ) = g(dt−1, zt), (5)

1Related work [40, 4, 41] similarly models the inverse task of
language understanding as a machine translation problem.

where dt−1 is the decoder hidden state at time t− 1, and g
is a nonlinear function.

Encoder Our encoder (Fig. 3) takes as input the se-
quence of tokens in the CAS command x1:N . We transform
each token xi into a ke−dimensional binary vector using
a word embedding representation [43]. We feed this se-
quence into an RNN encoder that employs LSTMs as the
recurrent unit due to their ability to learn long-term de-
pendencies among the instruction sequences without being
prone to vanishing or exploding gradients. The LSTM-RNN
encoder summarizes the relationship between elements of
the CAS command and yields a sequence of hidden states
h1:N = (h1, h2, . . . , hN ), where hj encodes CAS words up
to and including xj . In practice, we reverse the input se-
quence before feeding it into the neural encoder, which has
been demonstrated to improve performance for other neural
translation tasks [53].

Our encoder is similar to that of Graves et al. [19]
iej
fej
oej
gej

 =


σ
σ
σ

tanh

T e
(
xj
hj−1

)
(6a)

cej = fej � cej−1 + iej � gej (6b)

hj = oej � tanh(cej) (6c)

where T e is an affine transformation, σ is the logistic sig-
moid that restricts its input to [0, 1], iej , f

e
j , and oej are the

input, output, and forget gates of the LSTM, respectively,
and cej is the memory cell activation vector (the Supplemen-
tary Material provides a visualization of an LSTM unit).
The memory cell cej summarizes the LSTM’s previous mem-
ory cej−1 and the current input, which are modulated by the
forget and input gates, respectively.

Aligner Having encoded the input CAS command into a
sequence of hidden annotations h1:N , the decoder then seeks
to generate a natural language instruction as a sequence of
words. We employ an alignment mechanism [5] (Fig. 3) that
permits our model to match and focus on particular elements
of the CAS sequence that are salient to the current word in
the output instruction. We compute the context vector as

zt =
∑
j

αtjhj . (7)

The weight αtj associated with the j-th hidden state is

αtj = exp(βtj)/
∑
k

exp(βtk), (8)



where the alignment term βtj = f(dt−1, hj) expresses the
degree to which the CAS element at position j and those
around it match the output at time t. The term dt−1 rep-
resents the decoder hidden state at the previous time step.
The alignment is modeled as a one-layer neural perceptron

βtj = v> tanh(Wdt−1 + V hj), (9)

where v, W , and V are learned parameters.

Decoder Our model employs an LSTM decoder (Fig. 3)
that takes as input the context vector zt and the decoder
hidden state at the previous time step dt−1, and outputs the
conditional probability distribution Pλ,t = P (λt|λ1:t−1, x1:N )
over the next token as a deep output layer

idt
fdt
odt
gdt

 =


σ
σ
σ

tanh

T d
(
dt−1

zt

)
(10a)

cdt = fdt � cdt−1 + idt � gdt (10b)

dt = odt � tanh(cdt ) (10c)

qt = L0(Lddt + Lzzt) (10d)

Pλ,t = softmax (qt) (10e)

where L0, Ld, and Lz are parameters to be learned.

Training We train our encoder-aligner-decoder model
so as to predict the natural language instruction λ∗1:T for a
given input sequence x1:N using a training set of human-
generated reference instructions. We use the negative log-
likelihood of the reference instructions at each time step t
as our loss function.

Inference Given a CAS command represented as a se-
quence of tokens x1:N , we generate a route instruction as
the sequence of maximum a posteriori words λ∗1:T under our
learned model (Eqn. 3). We use beam search to perform
approximate inference, but have empirically found greedy
search to often perform better.2 For that reason, we gener-
ate candidates using both greedy and beam search.

4.3.2 Language Model
The inference procedure results in multiple candidate in-

structions for a given segment, and additional candidates
may exist when there are multiple CAS specifications. We
rank these candidate instructions using a language model
(LM) trained on large amounts of English data. We formu-
late this LM as an LSTM-RNN [52] that assigns a perplexity
score to each of the corresponding instructions.

Given the CAS specifications for a segmented path p =
(p1, p2, . . . pM ), we generate the final instruction Λ by se-
quencing the M sentences {Λ?1, . . . ,Λ?M} (i.e., one for each
path segment)

Λ?i = arg min
Λij

L(Λij), (11)

where Λij is the j-th candidate for the i-th segment and
L(Λij) is the perplexity score assigned by the language model
to the sentence Λij .

2This phenomenon has been observed by others [3, 42], and
we attribute it to training the model in a greedy fashion.

5. EXPERIMENTAL SETUP

5.1 Dataset
We train and evaluate our system using the publicly avail-

able SAIL route instruction dataset collected by MacMahon
et al. [39]. We use the original data without correcting ty-
pos or wrong instructions (e.g., confusing “left” and “right”).
The dataset consists of 3213 demonstrations arranged in 706
paragraphs produced by 6 instructors for 126 different paths
throughout 3 virtual environments, where each demonstra-
tion provides a map-path-command tuple (m(i), p(i),Λ(i)).
We partition the dataset into separate training (70%), val-
idation (10%), and test (20%) sets. We utilize command-

instruction pairs (c(i),Λ(i)) from the training, validation and
test sets for training, hyper-parameter tuning, and test-
ing of our encoder-aligner-decoder model, respectively. We
use path-command pairs (p(i), c(i)) from the training set for
IRL and pairs from the validation set to tune the hyper-
parameters of the content selection model. Finally, we use
path-instruction pairs (p(i),Λ(i)) from the test set for eval-
uations with human participants.

5.1.1 Data Augmentation
The SAIL dataset is significantly smaller than those typ-

ically used to train neural sequence-to-sequence models. In
order to overcome this scarcity, we augment the original
dataset using a set of rules. We use the augmented dataset
to train the neural encoder-aligner-decoder model and the
original dataset to train the content selection model. The
Supplementary Material provides further details.

5.2 Implementation Details
We implement and test the proposed model using the fol-

lowing values for the system parameters: kc = 100, Pt =
0.99, ke = 128, and Lt = 95.0. The encoder-aligner-decoder
consists of 2 layers for the encoder and decoder with 128
LSTM units per layer. The language model similarly in-
cludes a 2-layer recurrent neural network with 128 LSTM
units per layer. The size of the CAS and natural (English)
language vocabularies is 88 and 435, respectively, based upon
the SAIL dataset. All parameters are chosen based on the
performance on the validation set. We train our model using
Adam [30] for optimization. At test time, we perform ap-
proximate inference using a beam width of two. Our method
requires an average of 33 s (16 s without beam search) to
generate instructions for a path of 9 movements on a laptop
with an Intel Core i7 CPU (2.0 GHz) and 8 GB of RAM.

5.3 Automatic Evaluation
To the best of our knowledge, we are the first to use the

SAIL dataset for the purposes of generating route instruc-
tions. Consequently, we evaluate our method by comparing
our generated instructions with a reference set of human-
generated commands from the SAIL dataset using the BLEU
score (a 4-gram matching-based precision) [46]. For each

command-instruction pair (c(i),Λ(i)) in the validation set,

we first feed the command c(i), into our model to obtain the
generated instruction Λ∗, and secondly use Λ(i) and Λ∗ as
the reference and hypothesis, respectively, to compute the
BLEU score. We consider the average BLEU score at the
individual sentence (macro-average precision) and the full-
corpus (micro-average precision) levels.



5.4 Human Evaluation
The use of BLEU score indicates the similarity between

instructions generated via our method and those produced
by humans, but it does not provide a complete measure of
the quality of the instructions (e.g., instructions that are cor-
rect but different in prose will receive a low BLEU score).
In an effort to further evaluate the accuracy and usability of
our method, we conducted a set of human evaluation exper-
iments in which we asked 42 novice participants on Ama-
zon Mechanical Turk (21 females and 21 males, ages 18–
64, all native English speakers) to follow natural language
route instructions chosen randomly from two equal-sized sets
of instructions generated by our method and by humans
for 50 distinct paths of various lengths. The paths and
corresponding human-generated instructions were randomly
sampled from the SAIL test set. Given a route instruc-
tion, human participants were asked to navigate to the best
of their ability using their keyboard within a first-person,
three-dimensional virtual world representative of the three
environments from the SAIL corpus. The Supplementary
Material provides an example of the participants’ field of
view while following route instructions. After attempting to
follow each instruction, each participant was given a survey
comprised of eight questions, three requesting demographic
information and five requesting feedback on their experi-
ence and the quality of the instructions that they followed.
We collected data for a total of 441 experiments (227 us-
ing human annotated instructions and 214 using machine-
generated instructions). The system randomly assigned the
experiments to discourage the participants from learning the
environments or becoming familiar with the style of a partic-
ular instructor. No participants experienced the same sce-
nario with both human annotated and machine-generated
instructions. The Supplementary Material provides further
details regarding the experimental procedure.

6. RESULTS
We evaluate the performance of our architecture by scor-

ing the generated instructions using the 4-gram BLEU score
commonly used as an automatic evaluation mechanism for
machine translation. Comparing to the human-generated in-
structions, our method achieves sentence- and corpus-level
BLEU scores of 74.67% and 60.10%, respectively, on the val-
idation set. On the test set, the method achieves sentence-
and corpus-level BLEU scores of 72.18% and 45.39%, re-
spectively. Figure 1 shows an example of a route instruction
generated by our system for a given map and path.

6.1 Aligner Ablation
Our model employs an aligner in order to learn to focus on

particular CAS tokens that are salient to words in the output
instruction. We evaluate the contribution of the aligner by
implementing and training an alternative model in which
the last encoder hidden state is fed to the decoder.

Full Model No Aligner

sentence-level BLEU 74.67 74.40
corpus-level BLEU 60.10 57.40

Table 1: Aligner ablation results.

Table 1 compares the performance of the two models on

Verify

value.Path

side.Right

appear.Honeycomb

you should have the olive hallway on your right now

Turn

face

value.Sofa

side.Right

turn so that the bench is on your right

Figure 4: Alignment visualization for two pairs of
CAS and natural language instructions.

the original validation set. The inclusion of an aligner re-
sults in a slight increase in the BLEU score of the generated
instructions relative to the human-provided references, and
is also useful as a means of visualizing the inner workings
of our model (as discussed later). Additionally, we empir-
ically find that the aligner improves our model’s ability to
learn the association between CAS elements and words in
the output, thereby yielding better instructions.

6.2 Language Model Ablation
Our method employs a language model to rank instruc-

tions generated for the different candidate CAS commands
with different beam width settings. In practice, the language
model, trained on large amounts of English data, helps to
remove grammatically incorrect sentences produced by the
sequence-to-sequence model, which is only trained on the
smaller pairwise dataset. Table 2 presents two instruction
candidates generated by our encoder-aligner-decoder model
for two CAS commands. Our language model successfully
assigns high perplexity to the incorrect instructions, with
the chosen instruction being grammatically correct.

LM-score Candidate

105.00 “so so a straight chair to your left”
27.65 “turn so that the chair is on your left side”

101.00 “keep going till the blue flor id on your left”
11.00 “move until you see blue floor to your right”

Table 2: Language model ablation outputs.

6.3 Aligner Visualization
Figure 4 presents heat maps that visualize the alignment

between a CAS command that serves as input for surface re-
alization (rows) and the generated instruction (columns) for
two different scenarios drawn from the SAIL validation set.
The visualizations demonstrate that our method learns to
align elements of the formal CAS command with their cor-
responding words in the generated instruction. For example,
the network learns the association between the honeycomb
textured floor and its color (top); that “bench” refers to sofa
objects (bottom); and that the phrase “you should have”
indicates a verification action (top).

6.4 Human Evaluation
We evaluate the accuracy with which human participants

followed the natural language instructions in terms of the
Manhattan distance d between the desired destination (i.e.,
the last pose of the target path) and the participant’s loca-
tion when s/he finished the scenario. Figure 5 compares the
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Figure 5: Participants’ distances from the goal.

accuracy of the participants’ paths when following human-
generated instructions with those corresponding to instruc-
tions that our method produced. We report the fraction
of times that participants finished within different distances
from the goal.3 The results demonstrate that participants
reached the desired position 4% more often when follow-
ing instructions generated using our method compared to
the human instruction baseline. When they didn’t reach
the destination, participants reached a location within one
vertex away 8% more often given our instructions. Mean-
while our method yields a failure rate (d > 2) that is 6%
lower, though the difference is not statistically significant,
as confirmed by a p-value of 0.131 relative to a standard
significance level of 0.05. Of scenarios in which participants
reached the destination, the total time required to interpret
and follow our method’s instructions is 9.52 s less than those
generated by humans.

Figure 6 presents the participants’ responses to the survey
questions that query their experience following the instruc-
tions. By using IRL to learn a content selection policy for
constructing CAS structures, our method generates instruc-
tions that convey enough information to follow the command
and were rated as providing too little information 15% less
frequently than the human-generated baseline (Fig. 6(a)).
Meanwhile, participants felt that our instructions were eas-
ier to follow (Fig. 6(b)) than the human-generated baselines
(72% vs. 52% rated as “easy” or “very easy” for our method
vs. the baseline). Participants were more confident in their
ability to follow our method’s instructions (Fig. 6(c)) and
felt that they had to backtrack less often (Fig. 6(d)). Mean-
while, both types of instructions were confused equally often
as being machine-generated (Fig. 6(e)), however participants
were less sure of who generated our instructions.

Figure 7 compares the paths that participants took when
following our instructions with those that they took given
the reference human-generated directions for one scenario.
In particular, five participants failed to reach the destina-
tion when provided with the human-generated instruction.
Two of the participants went directly to location 1, two par-
ticipants navigated to location 2, and one participant went
to location 2 before backtracking and taking a right to lo-
cation 1. We attribute the failures to the ambiguity in the
human-generated instruction that references “fish walled ar-
eas,” which could correspond to most of the hallways in this
portion of the map (as denoted by the pink-colored lines).
On the other hand, each of the five participants followed the
intended path (shown in green) and reached the goal when
following the instruction generated using our method.

7. CONCLUSION
We presented a model for natural language generation in

the context of providing indoor route instructions that ex-
ploits a structured approach to produce unambiguous, easy
to follow and grammatically correct human-like route in-

3We note that the d = 0 accuracy for the human-generated
instructions is consistent with that reported elsewhere [9].
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Figure 6: Participants’ survey response statistics.
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turn right. walk forward twice. turn left. move to the wall”

Figure 7: Paths followed by five participants given
human-generated (red) and our (green) directions.

structions. Currently, our model generates natural language
route instructions for the shortest path to the goal. However,
there are situations in which a longer path may afford in-
structions that are more straightforward [48] or that increase
the likelihood of reaching the destination [22]. Another in-
teresting direction for future work would be to integrate a
model of instruction followers [41] with our architecture in
an effort to learn to generate instructions that are easier to
follow. Such an approach would permit training the model
in a reinforcement learning setting, directly optimizing over
task performance.
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[12] H. Cuayáhuitl, N. Dethlefs, L. Frommberger, K.-F. Richter,
and J. Bateman. Generating adaptive route instructions us-
ing hierarchical reinforcement learning. In Proc. Int’l Conf.
on Spatial Cognition, pages 319–334, 2010.

[13] A. C. Curry, D. Gkatzia, and V. Rieser. Generating and eval-
uating landmark-based navigation instructions in virtual en-
vironments. In Proc. Europ. Workshop on Natural Language
Generation (ENLG), pages 90–94, September 2015.

[14] R. Dale, S. Geldof, and J.-P. Prost. Using natural language
generation in automatic route. J. Research and Practice in
Information Technology, 37(1):89, 2005.

[15] R. Deits, S. Tellex, P. Thaker, D. Simeonov, T. Kollar, and
N. Roy. Clarifying commands with information-theoretic
human-robot dialog. J. of Human-Robot Interaction, 2(2):
58–79, 2013.

[16] M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G.
Pierce, and H. P. Beck. The role of trust in automation
reliance. Int’l J. of Human-Computer Studies, 58(6):697–
718, June 2003.

[17] T. Fong, C. Thorpe, and C. Baur. Collaboration, dialogue,
and human-robot interaction. In Int’l Symp. of Robotics
Research (ISRR), November 2001.

[18] R. Goeddel and E. Olson. DART: A particle-based method
for generating easy-to-follow directions. In Proc. IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems (IROS), pages
1213–1219, 2012.

[19] A. Graves, M. Abdel-rahman, and G. Hinton. Speech
recognition with deep recurrent neural networks. In Proc.
IEEE Int’l Conf. on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6645–6649, 2013.

[20] V. Groom and C. Nass. Can robots be teammates?: Bench-
marks in human-robot teams. Interaction Studies, 8(3):483–
500, 2007.

[21] B. J. Grosz. Collaborative systems. AI Magazine, 17(2):
67–85, 1996.

[22] S. Haque, L. Kulik, and A. Klippel. Algorithms for reliable
navigation and wayfinding. In Proc. Int’l Conf. on Spatial
Cognition (ICSC), pages 308–326, 2006.

[23] K. Hayaski, D. Sakamoto, T. Kanda, M. Shiomi, S. Koizumi,
H. Ishiguru, T. Ogasawara, and N. Hagita. Humanoid robots
as a passive-social medium: A field experiment at a train
station. In Proc. ACM/IEEE Int’l. Conf. on Human-Robot
Interaction (HRI), pages 137–144, March 2007.

[24] S. Hemachandra and M. Walter. Information-theoretic di-
alog to improve spatial-semantic representations. In Proc.
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems
(IROS), October 2015.

[25] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[26] T. Howard, S. Tellex, and N. Roy. A natural language plan-
ner interface for mobile manipulators. In Proc. IEEE Int’l
Conf. on Robotics and Automation (ICRA), 2014.

[27] A. M. Hund, M. Schmettow, and M. L. Noordzij. The impact
of culture and recipient perspective on direction giving in the
service of wayfinding. J. of Environmental Psychology, 32(4):
327–336, 2012.

[28] T. Kanda, T. Hirano, D. Eaton, and H. Ishiguro. Interactive
robots as social partners and peer tutors for children: A field
trial. J. Human-Computer Interaction, 19(1):61–84, June
2004.

[29] J. Kim and R. J. Mooney. Generative alignment and se-
mantic parsing for learning from ambiguous supervision. In
Proc. Int’l Conf. on Computational Linguistics, pages 543–
551, 2010.

[30] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[31] T. Kollar, S. Tellex, D. Roy, and N. Roy. Toward understand-
ing natural language directions. In Proc. ACM/IEEE Int’l.
Conf. on Human-Robot Interaction (HRI), pages 259–266,
2010.

[32] I. Konstas and M. Lapata. Unsupervised concept-to-text
generation with hypergraphs. In Proc. Conf. of the North
American Chapter of the Assoc. for Computational Linguis-
tics (NAACL), pages 752–761, 2012.

[33] L. Kunze, K. Kumar, and N. Hawes. Indirect object search
based on qualitative spatial relations. In Proc. IEEE Int’l
Conf. on Robotics and Automation (ICRA), 2014.



[34] C. Landsiedel, R. D. Nijs, K. KÃijhnlenz, D. Wollherr, and
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