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Abstract In order for robots to operate effectively in homes and workplaces,
they must be able to manipulate the articulated objects common within envi-
ronments built for and by humans. Kinematic models provide a concise repre-
sentation of these objects that enable deliberate, generalizable manipulation
policies. However, existing approaches to learning these models rely upon
visual observations of an object’s motion, and are subject to the effects of oc-
clusions and feature sparsity. Natural language descriptions provide a flexible
and efficient means by which humans can provide complementary information
in a weakly supervised manner suitable for a variety of different interactions
(e.g., demonstrations and remote manipulation). In this paper, we present a
multimodal learning framework that incorporates both vision and language
information acquired in situ to estimate the structure and parameters that de-
fine kinematic models of articulated objects. The visual signal takes the form
of an RGB-D image stream that opportunistically captures object motion
in an unprepared scene. Accompanying natural language descriptions of the
motion constitute the linguistic signal. We model linguistic information using
a probabilistic graphical model that grounds natural language descriptions
to their referent kinematic motion. By exploiting the complementary nature
of the vision and language observations, our method infers correct kinematic
models for various multiple-part objects on which the previous state-of-the-
art, visual-only system fails. We evaluate our multimodal learning framework
on a dataset comprised of a variety of household objects, and demonstrate a
23% improvement in model accuracy over the vision-only baseline.
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1 Introduction

Fig. 1 A robot manipulator
autonomously opens a drawer

using a kinematic model (vi-

sualized in the inset) acquired
using the proposed method.

As robots move off factory floors and into our
homes and workplaces, they face the challenge
of interacting with the articulated objects fre-
quently found in environments built by and for
humans (e.g., drawers, ovens, refrigerators, and
faucets). Typically, this interaction is predefined
in the form of a manipulation policy that must be
(manually) specified for each object that the robot
is expected to interact with. Such an approach
may be reasonable for robots that interact with a
small number of objects, but human environments
contain a large number of diverse objects. In an ef-
fort to improve efficiency and generalizability, re-
cent work employs visual demonstrations to learn
representations that describe the motion of these parts in the form of kine-
matic models that express the rotational, prismatic, and rigid relationships
between object parts [6, 18, 23, 39, 45]. These structured object-relative mod-
els, which constrain the object’s motion manifold, are suitable for trajectory
controllers [19, 45], provide a common representation amenable to transfer
between objects [46], and allow for manipulation policies that are more effi-
cient and deliberate than reactive policies (Fig. 1). However, such visual cues
may be too time-consuming to provide or may not be readily available, such
as when a user is remotely commanding a robot over a bandwidth-limited
channel (e.g., for disaster relief). Further, reliance solely on vision makes these
methods sensitive to common errors in data association, object segmentation,
and tracking (e.g., tracking features over time and associating them with the
correct object part) that occur as a result of clutter, occlusions, and a dearth
of visual features. Consequently, most existing systems require scenes to be
free of distractors and that object parts be labeled with fiducial markers.

Natural language utterances offer a flexible, bandwidth-efficient medium
that humans can readily use to convey knowledge of an object’s operation [46].
When paired with visual observations, free-form descriptions of an articulated
motion also provide a source of information that is complementary to visual
input. In similar fashion to existing work on learning manipulation policies
from Internet videos [54], the ability to learn kinematic models from narrated
demonstrations, either given in situ or via instructional videos [29, 43, 55],
provides an efficient, intuitive means for people to convey information to
robots, as the authors have shown in the context of map learning [49]. Natu-
ral language descriptions that accompany these demonstrations can be used
to overcome some of the limitations of using visual-only observations, e.g.,
by providing cues regarding the number of parts that comprise the object
or the motion type (e.g., rotational) between a pair of parts. However, fus-
ing visual and linguistic observations is challenging. For one, language and



A Multiview Approach to Learning Articulated Motion Models 3

Input: Narrated video

“A man opens and closes the cabinet drawers”

Output: Kinematic model & predicted motion

Fig. 2 Our framework learns the kinematic model that governs the motion of articulated

objects (lower-left) from narrated RGB-D videos. The method can then use this learned
model to subsequently predict the motion of an object’s parts (lower-right).

vision provide disparate observations of motion and exhibit different statis-
tical properties. Secondly, the two are often prone to uncertainty. RGB-D
observations are subject to occlusions (e.g., as the human interacts with the
object) and the objects often lack texture (e.g., the drawers in Fig. 2), which
makes feature detection challenging and feature correspondences subject to
noise. Meanwhile, free-form descriptions exhibit variability and are prone to
errors (e.g., confusing “left” and “right”). Further, language also tends to be
ambiguous with respect to the corresponding referents (i.e., object parts and
their motion) in the scene. For example “open” can suggest both rotational
and prismatic motion, and inferring the correct grounding requires reasoning
over the full description (e.g., “open the door” vs. “open the drawers”).

In order to overcome these challenges, we present a multimodal learning
framework that estimates the kinematic structure and parameters of com-
plex multi-part objects using both vision and language input. We address
the challenges associated with language understanding through a probabilis-
tic language model that captures the compositional and hierarchical structure
of natural language descriptions. Additionally, our method maintains a dis-
tribution over a sparse, structured model of an object’s kinematics, which
provides a common representation with which to fuse disparate linguistic
and visual observations.

Our effort is inspired by the recent attention that has been paid to the joint
use of vision and language as complementary signals for multiview learning
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in robotics [15, 25, 40, 46, 49, 56] and scene understanding [1, 8, 13, 21,
27, 41, 44, 48]. We leverage the joint advantages of these two modalities in
order to estimate the structure and parameters that define kinematic models
of complex, multi-part objects such as doors, desks, chairs, and appliances
from narrated examples such as those conveyed in instructional videos or
through demonstrations [3] in the form of a “guided tour of manipulation”
(Fig. 2), which provides an efficient and flexible means for humans to share
information with robots.

Our multimodal learning framework first extracts noisy observations of the
object parts and their motion separately from the vision- and language-based
observations. It then fuses these observations to learn a probabilistic model
over the kinematic structure and model parameters that best explain the
motion observed in the vision and language streams. Integral to this process
is an appropriate means of representing the ambiguous nature of observa-
tions gleaned from natural language descriptions. We treat language under-
standing as a symbol grounding problem and employ a probabilistic language
model [17] that captures the uncertainty in the mapping between words in
the description and their corresponding referents in the scene, namely the
object parts and their relative motion. We fuse these language-based obser-
vations with those extracted from vision to estimate a joint distribution over
the structure and parameters that define the kinematics of each object.

The contributions of this work include a multimodal approach to learning
kinematic models from vision and language signals and the integration of a
probabilistic language model that grounds natural language descriptions into
a structured representation of an object’s articulation manifold. By jointly
reasoning over vision and language cues, our framework is able to formulate a
complete object model without the need for an expressed environment model.
Our method requires no prior knowledge about the objects and operates in
situ, without the need for environment preparation (i.e., fiducials). Evalu-
ations on a dataset of video-text pairs demonstrate improvements over the
previous state-of-the-art, which only uses visual information.

2 Related Work

Recent work considers the problem of learning articulated models based upon
visual observations of demonstrated motion. Several methods formulate this
problem as bundle adjustment, using structure-from-motion methods to first
segment an articulated object into its compositional parts and to then esti-
mate the parameters of the rotational and prismatic degrees-of-freedom that
describe inter-part motion [18, 53]. These methods are prone to erroneous
estimates of the pose of the object’s parts and of the inter-part models as
a result of outliers in visual feature matching. Alternatively, Katz et al [22]
propose an active learning framework that allows a robot to interact with
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articulated objects to induce motion. This method operates in a determinis-
tic manner, first assuming that each part-to-part motion is prismatic. Only
when the residual error exceeds a threshold does it consider the alternative
rotational model. Further, they estimate the models based upon interactive
observations acquired in a structured environment free of clutter, with the
object occupying a significant portion of the RGB-D sensor’s field-of-view.
Katz et al [23] improve upon the complexity of this method while preserving
the accuracy of the inferred models. This method is prone to over-fitting to
the observed motion and may result in overly complex models to match the
observations. Hausman et al [14] similarly enable a robot to interact with
the object and describe a probabilistic model that integrates observations of
fiducials with manipulator feedback. Meanwhile, Sturm et al [45] propose a
probabilistic approach that simultaneously reasons over the likelihood of ob-
servations while accounting for the learned model complexity. Their method
requires that the number of parts that compose the object be known in
advance and that fiducials be placed on each part to enable the visual obser-
vation of motion. More recently, Pillai et al [39] propose an extension to this
work that uses novel vision-based motion segmentation and tracking that en-
ables model learning in situ, without prior knowledge of the number of parts
or the need for fiducial markers. Our approach builds upon this method with
the addition of natural language descriptions of motion as an additional ob-
servation mode in a multimodal learning framework. Meanwhile, Schmidt
et al [42] propose a framework that addresses the similar problem of tracking
articulated models that uses an articulated variation of the signed distance
function to identify the model that best fits observed depth data. Related,
Mart́ın-Mart́ın and Brock [30] consider the problem of perceiving articulated
objects and demonstrate how an estimate of kinematic structure facilitates
tracking and manipulation. The authors improve upon this work by integrat-
ing shape reconstruction, pose estimation, and kinematic estimation [31].

Related, there has been renewed attention to enabling robots to interpret
natural language instructions that command navigation [4, 7, 24, 32, 34] and
manipulation [17, 35, 38, 47] through symbol grounding and semantic pars-
ing methods. While most existing grounded language acquisition methods
abstract away perception by assuming a known symbolic world model, other
work jointly reasons over language and sensing [9, 12, 16, 33] for instruc-
tion following. Meanwhile, multimodal learning methods have been proposed
that use language and vision to formulate spatial-semantic maps of a robot’s
environment [15, 40, 49, 56] and to learn object manipulation policies [46].
Particularly relevant to our work, Sung et al [46] learn a neural embedding
of text, vision, and motion trajectories to transfer manipulation plans be-
tween similarly operating objects. Kollar et al [25] extend their framework
that jointly learns a semantic parsing of language and vision [27] to enable
robots to learn object and spatial relation classifiers from textual descriptions
paired with images. We similarly use language and vision in a joint learning
framework, but for the challenging task of learning object articulation in
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Fig. 3 Our multimodal articulation learning framework first identifies clusters of visual

features that correspond to individual object parts. It then uses these feature trajectories

to estimate the model parameters, assuming an initial estimate of the kinematic type asso-
ciated with each edge in the graph. The method grounds natural language descriptions of

the motion to their corresponding referents in the kinematic model and parameters through

a probabilistic language model, visualized as a factor graph. The vision and language ob-
servations are then fused to learn a distribution over the object’s kinematic model.

terms of kinematic motion models. Beyond robotics, there is a long history
of work that exploits the complementary nature of vision and language in
the context of multiview learning, dating back to the seminal SHRDLU pro-
gram [51]. This includes work for such tasks as image and video caption
synthesis [8, 21, 37, 44, 48, 52], large-vocabulary object retrieval [13], visual
coreference resolution [26, 41], and visual question-answering [2]. Particularly
related to our work are methods that use instructional videos paired with
language (text or speech) for weakly supervised learning [29, 55], extracting
procedural knowledge [43], and identifying manipulating actions [1, 46].

3 Multimodal Learning Framework

Given an RGB-D video paired with the corresponding natural language de-
scription (alternatively, an instruction or caption) of an articulated object’s
motion, our goal is to infer the structure and parameters of the object’s
kinematic model. Adopting the formulation proposed by Sturm et al [45],
we represent this model as a graph, where each vertex denotes a different
part of the object (or the stationary background) and edges denote the ex-
istence of constrained motion (e.g., a linkage) between two parts (Fig. 2).
More formally, we estimate a kinematic graph G = (VG, EG) that consists
of vertices VG for each object part and edges EG ⊂ VG × VG between parts
whose relative motion is kinematically constrained. Associated with each edge
(ij) ∈ EG is its kinematic type Mij ∈ {rotational,prismatic, rigid} as well as
the corresponding parameters θij , such as the axis of rotation and the range
of motion (see Fig. 3, lower-right). We take as input vision Dv and language
Dl observations of the type and parameters of the edges in the graph. Our
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method then uses this vision-language observation pair Dz = {Dv, Dl} to
infer the maximum a posteriori kinematic structure and model parameters
that constitute the kinematic graph:

Ĝ = arg max
G

p(G|Dz) (1a)

= arg max
G

p({Mij , θij |(ij) ∈ EG}|Dz) (1b)

= arg max
G

∏
(ij)∈EG

p(Mij , θij |Dz) (1c)

Due to the complexity of joint inference, we adopt the procedure described
by Sturm et al [45] and use a two-step inference procedure that alternates
between model parameter fitting and model structure selection steps (Fig. 3).
In the first step, we assume a particular kinematic model type between each
object i and j (e.g., prismatic), and then estimate the kinematic parameters
based on the vision data (relative transformation between the two objects)
and the assumed model type Mij . We make one such assumption for each
possible model type for each object pair.

In the model selection step, we then use the natural language description
to infer the kinematic graph structure that best expresses the observation.
While our previous work [39] provides visual observations of motion without
the need for fiducials, it relies upon feature tracking and segmentation that
can fail when the object parts lack texture (e.g., metal door handles) or when
the scene is cluttered. Our system incorporates language as an additional,
complementary observation of the motion, in order to improve the robustness
and accuracy of model selection.

3.1 Vision-guided Model Fitting

We parse a given RGB-D video of the objects’ motion (either performed
by a human or the robot via teleoperation) to arrive at a visual obser-
vation of the trajectory of each object part [39]. The method (Fig. 3,
“Construct Trajectories”) first identifies a set of 3D feature trajectories
{(f1

1 , f
2
1 , . . . , f

t
1), . . . (f1

n, f
2
n, . . . , f

t
n)} that correspond to different elements in

the scene, including the object parts, background, and clutter. Importantly,
both the number of elements and the assignment of points in the RGB-D
video to these elements are assumed to be unknown a priori. Further, many
of the objects that we encounter lack the amount of texture typically required
of SIFT [28] and KLT [5] features. Consequently, we utilize dense trajecto-
ries [50] through a strategy that involves dense sampling (via the Shi-Tomasi
criterion) for feature extraction followed by dense optical flow for propaga-
tion. We prune trajectories after a fixed length and subsequently sample new
features in order to reduce feature drift.
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Having extracted a set of features trajectories, the next step is then to
group features that correspond to the same scene element via motion seg-
mentation (Fig. 3, “Motion Segmentation”). For this purpose, we evaluate
the relative displacement between pairs of feature trajectories along with the
angle between their normals. We model the relative displacement and an-
gle as Gaussian in order to account for measurement noise. We then employ
density-based clustering [10] to identify rigidly associated feature trajecto-
ries. These clusters {C1, C2, . . . , Cm} denote the parsing of the scene into its
requisite elements, namely the inferred object parts and background.

Next, we estimate the 6-DOF pose xti of each cluster at each point in
time according to the set of features Zti assigned to each cluster Ci at time t
(Fig. 3, “Pose Estimation”). We treat this as a pose graph estimation prob-
lem, whereby we consider the relative transformation ∆t−1,t

i between succes-
sive time steps for each cluster based on the known correspondences between
features Zt−1

i and Zti .
1 We optimize the pose graph using iSAM [20], which

models the relative transformations as observations (constraints) in a factor
graph with nodes that denote cluster poses.

The resulting 6-DOF pose trajectories constitute the visual observation
of the motion Dv. Our framework uses these trajectories to estimate the
parameters of a candidate kinematic model during the model fitting step.
Specifically, we find the kinematic parameters that best explain the visual
data given the assumed model

θ̂ij = arg max
θij

p(Dv|M̂ij , θij), (2)

where Dv = (∆1
ij , ...,∆

t
ij),∀(ij) ∈ EG is the sequence of observed relative

transformations between the poses of two object parts i and j, and M̂ij is
the current estimate of their model type. We perform this optimization over
the joint kinematic structure defined by the edges in the graph [45].

3.2 Language-guided Model Selection

Methods that solely rely on visual input are sensitive to the effects of scene
clutter and the lack of texture, which can result in erroneous estimates for
the structure and parameters of the kinematic model [39]. An alternative is
to exploit audial information, provided in the form of utterances provided
by the operator, to help guide the process for inferring the relationships be-
tween objects in the environment. Specifically, we consider a natural language
description Dl that describes the motion observed in the video. Given this
description, we infer the maximum a posteriori set of affordances or relation-
ships between pairwise objects in the utterance. Note that we do not assume

1 We employ RANSAC [11] to improve robustness to erroneous corresponences.
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that valid captions provide an unambiguous description of all affordances, but
rather consider a distribution over the language observation, which provides
robustness to noisy, incomplete, or incorrect descriptions.

Following the notation from Paul et al [38], we formulate this problem
as one of inferring a distribution of symbols (Γ ) representing objects (ΓO),
relationships (ΓR), and affordances (ΓA) in the absence of an environment
model for each utterance. Object groundings are defined by an object type oi
from a space of object types O, relationship groundings are defined by a rela-
tionship type rk from a space of relationship types R. Affordance groundings
are defined by a pair of object types oi and oj , and relationship type rk:

ΓO = {γoi , oi ∈ O} (3a)

ΓR = {γrk , rk ∈ R} (3b)

ΓA = {γoi,oj ,rk , oi, oj ∈ O, rk ∈ R} (3c)

Examples of object types include “chair”, “desk”, and “door” which rep-
resent semantic classes of random variables inferred by visual perception.
Examples of relationship types include “prismatic” and “revolute” that rep-
resent translational and rotational motion. The set of all groundings is defined
as the union of these symbols:

Γ = {ΓO ∪ ΓD ∪ ΓA} (4)

Extracting the most probable set of groundings from language is chal-
lenging due to the diversity inherent in free-form language and the complex
relationships between the articulation of different objects. For example, the
verb “open” can be used to describe a person’s interaction with both a drawer
and a door, but the motion described in the former case is prismatic with
a cabinet, while it is rotational with a wall in the latter. We address these
challenges by adapting the Distributed Correspondence Graph (DCG) [17] to
the problem of affordance inference which formulates a probabilistic graphi-
cal model according to the parse structure of the sentence that is searched for
the most likely binary correspondence variable φi,j ∈ {True,False} between
linguistic elements in the command λi, groundings γi,j ∈ Γ , and expressed
groundings of child phrases Γci ∈ Γ . The DCG encodes the factors fi,j in
the graph using log-linear models whose weights are learned from a corpus of
annotated examples. We then perform inference over this model in a space of
correspondence variables to arrive at a distribution over the kinematic model
structure and parameters. Note that since inference is conducted without
an expressed environment model, the symbols express inferred relationships
between semantic classes of pairwise objects. These are interleaved with the
model constructed from visual perception to form a probabilistic model of
the environment. An example of the structure of the DCG for the utterance
“a man opens and closes the cabinet drawers” is illustrated in Figure 4.
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Fig. 4 The DCG for the utterance “a man opens and closes the cabinet drawers” con-

structed from the parse tree illustrated in Figure 3. This model enumerates all possible
groundings for each phrase and performs inference by searching over unknown correspon-

dences. The expressed groundings (groundings for factors with True-valued correspon-

dence variables) of factors connected to λ0 are used as language-based observations that
are fused with the visual observation. In this example, the model should infer a “prismatic”

relationship between objects of semantic classes “cabinet” and ”drawer”.

3.3 Combining Vision and Language Observations

The final step in our framework selects the kinematic graph structure M̂ =
{M̂ij ,∀(ij) ∈ EG} that best explains the vision and language observations
Dz = {Dv, Dl} from the space of all possible kinematic graphs. We do so
by maximizing the conditional posterior over the model type associated with
each edge in the graph (ij) ∈ EG:

M̂ij = arg max
Mij

p(Mij |Dz) (5a)

= arg max
Mij

∫
p(Mij , θij |Dz)dθij (5b)

Evaluating this likelihood is computationally prohibitive, so we use the
Bayesian Information Criterion (BIC) score as an approximation

BIC(Mij) = −2 log p(Dz|Mij , θ̂ij) + k log n, (6)

where θ̂ij is the maximum likelihood parameter estimate (Eqn. 2), k is the
number of parameters of the current model and n is the number of vision
and language observations. We choose the model with the lowest BIC score

M̂ij = arg min
Mij

BIC(Mij) (7)

as that which specifies the kinematics of the object.
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While our previous method [39] only considers visual measurements, our
new framework performs this optimization over the joint space of vision and
language observations. Consequently, the BIC score becomes

BIC(Mij) = −2
(

log p(Dv|Mij , θ̂ij) + log p(Dl|Mij , θ̂ij)
)

+ k log n, (8)

where we have made the assumption that the language and vision obser-
vations are conditionally independent given the model and parameter esti-
mates. We formulate the conditional likelihood of the linguistic observation
according to the grounding likelihood P (Φ = True|γ1, . . . , γn, Λ) from the
DCG language model. The grounding variables γi denote affordances that ex-
press different kinematic structures that encode the articulation of the object,
namely the relationship between its individual parts (Eqn. 3). For each candi-
date model, we use the likelihood of the corresponding groundings under the
learned DCG language model to compute the BIC score for the correspond-
ing affordance. We then estimate the overall kinematic structure by solving
for the minimum spanning tree of the graph, where we define the cost of each
edge as costij = − log p(Mij , θij |Dz). Such a spanning tree constitutes the
kinematic graph that best describes the vision and language observations.

4 Results

We evaluate our framework using a dataset of 78 RGB-D videos in which a
user manipulates a variety of common household and office objects (e.g., a
microwave, refrigerator, and filing cabinet). Each video is accompanied with 5
textual descriptions provided by different human subjects using a web-based
crowd-sourcing platform. We split the dataset into separate training and test
sets consisting of 22 and 56 videos, respectively. AprilTags [36] were placed
on each of the object parts in the test set to determine ground-truth motion.
We train our language grounding model on a corpus of 50 video descriptions
relative to the training set composed of 28 unique symbols composed of dif-
ferent object and/or relation types. Our language grounding model requires
that every word in a given training sentence is aligned with the corresponding
symbol. Such alignment is not required at test time.

Of the 56 test videos, 25 involve single-part objects and 31 involve multi-
part objects. The single-part object videos are used to demonstrate that
the addition of language observations can only improve the accuracy of the
learned kinematic models. The extent of these improvements on single-part
objects is limited by the relative ease of inference of single degree-of-freedom
motion. In the case of multi-part objects, the larger space of candidate kine-
matic graphs makes vision-only inference challenging, as feature tracking er-
rors may result in erroneous estimates of the graph structure.
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4.1 Evaluation Metrics

We estimate the ground-truth kinematic models by performing MAP infer-
ence based upon the motion trajectories observed using AprilTags. We denote
the resulting kinematic graph as G∗. The kinematic type and parameters for
each object part pair are denoted as M∗ij and θ∗ij , respectively. Let Ĝ, M̂ij , θ̂ij
be the estimated kinematic graph, kinematic type, and parameters for each
object pair from the RGB-D video, respectively.

The first metric that we consider evaluates whether the vision component
estimates the correct number of parts. We determine the ground-truth num-
ber of parts as the number of AprilTags observed in each video, which we
denote as N∗. We indicate the number of parts (motion clusters) identified by
the visual pipeline as Nv. We report the average success rate when using only
visual observations as Sv = 1

K

∑K
k=1 1(Nk

v = Nk∗), where K is the number
of videos for each object type.

Next, we consider two metrics that assess the ability of each method
to estimate a graph with the same kinematic model as the ground truth
G∗. The first metric requires that the two graphs have the same struc-
ture, i.e., M̂ij = M∗ij ,∀(ij) ∈ EĜ = EG∗ . This equivalence requires that
vision-only inference yields the correct number of object parts and that
the model selection framework selects the correct kinematic edge type for
each pair of object parts. We report this “hard” success rate Sh in terms
of the fraction of demonstrations for which the model estimate agrees with
the ground-truth. Note that this is bounded from above by fraction for
which the vision component estimates the correct number of parts. The
second “soft” success rate (denoted by Ss) employs a relaxed requirement
whereby we only consider the inter-part relationships identified from vision,
i.e., M̂ij = M∗ij ,∀(ij) ∈ EĜ ⊂ EG∗ . In this way, we consider scenarios for
which the visual system detects fewer parts than are in the ground-truth
model. In our experiments, we found that Ĝ is a sub-graph of G∗, so we only
require that the model type of the edges in this sub-graph agree between both
graphs. The metric reports the fraction of total demonstrations for which the
estimated kinematic graph is a correct sub-graph of the ground-truth kine-
matic graph.

Once we have the same kinematic models for both Ĝ and G∗, we can
compare the kinematic parameters θ̂ij to the ground-truth values θ∗ij for

each inter-part model M̂ij . Note that for the soft metric, we only compare
kinematic parameters for edges in the sub-graph, i.e., ∀(ij) ∈ EĜ ⊂ EG∗ . We
define the parameter estimation error for a particular part pair as the angle
between the two kinematic parameter axes

eij = arccos
θ̂ij · θ∗ij
‖θ̂ij‖‖θ∗ij‖

, (9)
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Table 1 Overall performance of our framework on video-description pairs.

Vision-Only Our Framework

Object K N∗ Nv Sv Sh Ss Sh Ss eparam

Single-
Part

Door 9 1 1(9) 9/9 5/9 5/9 9/9 9/9 1.86◦

Chair 5 1 1(4), 3(1) 4/5 1/5 2/5 4/5 5/5 3.34◦

Refrigerator 5 1 1(5) 5/5 5/5 5/5 5/5 5/5 5.74◦

Microwave 4 1 1(3), 2(1) 3/4 3/4 4/4 3/4 4/4 2.02◦

Drawer 2 1 1(2) 2/2 0/2 0/2 2/2 2/2 –

Multi-

Part

Chair 4 2 1(2), 2(2) 2/4 1/4 5/8 2/4 6/8 3.05◦

Monitor 7 2 1(7) 0/7 0/7 6/14 0/7 7/14 7.27◦

Bicycle 7 3 1(1), 2(4), 3(2) 2/7 0/7 13/21 0/7 13/21 11.33◦

Drawer 11 2 1(6), 2(4), 3(1) 4/11 3/11 10/22 4/11 15/22 0.11◦

Door 2 2 2(2) 2/2 0/2 2/4 2/2 4/4 –

where we use the directional and rotational axes for prismatic and rotational
degrees-of-freedom, respectively. We measure the overall parameter estima-
tion error eparam for an object as the average parameter estimation error over
each edge in the object’s kinematic graph. We report this error further av-
eraged over the number of demonstrations. We do not report the estimation
error for the object classes Drawer (Single-Part) and Door (Multi-Part) be-
cause the demonstrations for those classes do not contain the fiducial markers
needed to compute the ground-truth.

4.2 Results and Analysis

Table 1 provides a summary that compares the performance of our multi-
modal learning method against that of the vision-only baseline [39], which
the authors have previously compared favorably to alternative state-of-the-
art formulations [23]. We limit our comparison to methods that similarly do
not assume that the number of parts is known a priori and that do not require
the use of fiducial markers. The table indicates the number of demonstrations
K, the ground-truth number of parts for each object N∗, a list of the number
of parts identified using visual trajectory clustering for each demonstration
Nv, and the fraction of videos for which the correct number of parts was
identified Sv. The number in parenthesis under Nv indicates the number of
demonstrations for which a specific number of parts Nv was identified. We
then present the hard Sh and soft Ss model selection rates for our method as
well as for the baseline. The denominators listed under Sh and Ss indicate the
number of parts in each demonstration. In the case of a single-part object,
this matches the number of demonstrations K for that object. In the case
of a multi-part object, while the denominator for Sh matches the number
of demonstrations K, the denominator for Ss indicates the total number of



14 Andrea F. Daniele, Thomas M. Howard, and Matthew R. Walter

parts (i.e., K ∗N∗). Our method bests the vision-only baseline in estimating
the full kinematic graph for five of the eight object classes, matching its per-
formance on the remaining three objects. Specifically, our framework yields
accurate estimates of the full kinematic graphs for thirteen more demonstra-
tions than the vision-only baseline, nine more for single-part objects and four
more for multi-part objects, corresponding to a 23% absolute improvement.
Similarly, we are able to estimate a valid sub-graph of the ground-truth kine-
matic graph for eighteen more demonstrations than the vision-only baseline
(eleven for single-part and seven for multi-part objects), corresponding to a
19% absolute improvement. One notable object on which both methods have
difficulty is the bicycle for which the trajectory clustering method was unable
to identify the presence of the third part (the wheel) due to the sparsity of
visual features. Consequently, neither method estimated the full kinematic
graph for any video. Similarly, clustering failed to identify the three parts
comprising the monitor in all videos, however our framework exploits lan-
guage to estimate an accurate sub-graph for one more video.

We then evaluate the accuracy of the parameters estimated by our method
by reporting the parameter estimation error for each object, averaged over
the set of videos. Note that it is difficult to compare against the error of
the vision-only baseline since it does not yield accurate kinematic graphs for
several of the videos. When the kinematic graph estimates agree, however,
the parameter estimation errors are identical for the two methods, since they
both estimate the parameters from the visual data (Eqn. 2).

5 Conclusion and Future Work

We have described a method that uses a joint combination of vision- and
language-based observations to learn accurate probabilistic models that de-
fine the structure and parameters of articulated objects. Our framework
treats linguistic descriptions of a demonstrated motion as a complementary
observation of the structure of kinematic linkages. We evaluate our frame-
work on a series of RGB-D video-description pairs involving the manipula-
tion of common household and office objects. The results demonstrate that
exploiting language as a form of weak supervision improves the accuracy of
the inferred model structure and parameters. While this evaluation considers
videos paired with free-form descriptions, the method does not rely on any
assumptions that preclude its application to robotic systems. Future work
includes incorporating semantic segmentation as a means of assigning per-
ceived labels to inferred clusters, using the description to mitigate noise in the
visual recognition. Additionally, kinematic models provide a common repre-
sentation that is suited to generalization across different object instances. We
are extending our model to predict kinematic models of novel (i.e., unseen)
articulated objects, using natural language as a means of knowledge transfer.
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