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Abstract— We propose an algorithm that enables robots to
improve their spatial-semantic representation of an environ-
ment by engaging users in dialog during a guided tour. The
algorithm selects the best information gathering actions in the
form of targeted questions that reduce the ambiguity over the
grounding of user-provided natural language descriptions (e.g.,
“The kitchen is down the hallway”). These questions include
those that query the robot’s local surround (e.g., “Are we in
front of the kitchen?”) as well as areas distant from the robot
(e.g., “Is the lounge near the conference room?”). Our algorithm
treats dialog as an optimization problem that seeks to balance
the information-theoretic value of candidate questions with a
measure of cost associated with dialog. In this manner, the
algorithm determines the best questions to ask based upon the
expected entropy reduction, while accounting for the burden on
the user. We evaluate entropy reduction for a joint distribution
over a hybrid metric, topological, and semantic representation
of the environment learned from user-provided descriptions and
the robot’s sensor data during the guided tour. We demonstrate
that, by asking deliberate questions of the user, the method
significantly improves the accuracy of the learned map.

I. INTRODUCTION

Robots are increasingly being deployed in human-
occupied environments. In order to be effective partners,
robots need to reason over representations of these envi-
ronments that model the spatial, topological, and semantic
properties (e.g., room types and names) that people associate
with their environment. An efficient means of learning these
representations is through a guided tour in which a human
provides natural language descriptions of the environment [1,
2, 3, 4, 5]. With these approaches, the robot takes a passive
role, whereby it infers information from the descriptions that
it fuses with its onboard sensor stream.

The challenge to learning is largely one of resolving
the high-level knowledge that language conveys with the
low-level observations from the robot’s sensors. Human
descriptions tend to be ambiguous, with several possible
interpretations (groundings) for a particular environment. For
example, the user may describe the location of the kitchen
as being “down the hallway,” yet there may be several
hallways nearby, each leading to a number of different
rooms. Furthermore, grounding language typically requires a
complete map, however, the robot may not yet have visited
the regions that the user is referring to. The user may be
describing a location known to the robot or a new location
outside the field-of-view of its sensors.
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Fig. 1. A user gives a tour to a robotic wheelchair designed to assist resi-
dents in a long-term care facility. (Left) The guide provides an ambiguous
description of the kitchen’s location. (Right) When the robot is near one of
the likely locations, it asks the guide a question to resolve the ambiguity.

In this paper, we propose an active approach whereby
the robot asks targeted questions of the user as a means of
gathering information (Fig. 1). Engaging the user in dialog
requires choosing which question to ask and when to ask
it, while balancing the benefits of asking questions with the
cost that comes from interrupting the tour and burdening the
guide. There are three primary challenges to using dialog
as an information gathering action. First, the robot needs to
ask questions that provide enough context to the guide to be
understood. Second, the questions should be structured such
that the answers are as informative as possible. Third, the
decision of if and when to ask questions should account for
the social cost incurred by engaging the user in dialog.

We address these challenges by modeling human-robot
dialog during the tour as a decision process. During the
tour, the robot maintains a distribution over a semantic
graph [3, 4], a metric, topological, and semantic representa-
tion of the environment, using a Rao-Blackwellized particle
filter. Taking an information-theoretic approach, the algo-
rithm decides whether to follow the guide or ask questions
at each timestep in order to update the distribution. The
algorithm reasons over the natural language descriptions and
the current learned map to identify potential questions that
best reduce ambiguity in the map. The algorithm considers
egocentric (situated) and allocentric (non-situated) binary
(yes/no) questions that express spatial relations between pairs
of regions. These regions may be local to the robot in the
case of egocentric dialog (e.g., “Is the lab on my right?”)



or distant in the case of allocentric dialog (e.g., “Is the
lounge next to the conference room?”). We associate a cost
with each question that reflects the burden on the user and
a reward based on the answer’s expected information gain.
We formulate the decision process as a QMDP [6], where
we evaluate actions as a Markov Decision Process (MDP)
for each possible configuration of the world (particle), and
select the best action using the QMDP heuristic. This allows
us to balance the value of the information gained by asking
questions with their associated cost and only ask useful ques-
tions. We outline experiments that demonstrate the ability of
our approach to reduce the ambiguity in natural language
descriptions and, in turn, learn more accurate semantic maps
of the environment than the current state-of-the-art.

II. RELATED WORK

Several approaches exist that construct semantic environ-
ment models using traditional robot sensors [7, 1, 2, 8],
while others have looked at additionally integrating natural
language descriptions to improve the semantic representa-
tions [3, 9, 4]. Duvallet et al. [10] build upon this approach
in order to follow instructions without any prior knowledge
of the environment by exploiting environment knowledge
implicit in the command and treating this knowledge as
observations in a language-based mapping algorithm. With
most of these techniques, however, the robot only passively
receives observations, whether they are from traditional sen-
sors or user-provided descriptions.

Related work endows robots with the ability to ask ques-
tions of the user in the context of following guided tours [11],
executing route instructions [12], and interpreting a user’s
commands [13]. Kruijff et al. [11] outline a question-asking
procedure mainly to determine robust room segmentation
by asking about the presence of doorways. However, they
do not consider allocentric descriptions, maintain multiple
hypotheses, reason about entropy when choosing questions,
or consider uncertainty over groundings. More recently, Deits
et al. [13] looked at question-asking from an information-
theoretic perspective in the scenario of following natural
language manipulation commands. They determine the best
questions to ask based upon their ability to reduce the entropy
over the grounding for a given command. However, they do
not reason over when to ask the questions, which instead
immediately follow the corresponding command. While we
use a similar information gain metric to drive our approach,
we formulate the problem as a decision problem, where
the robot has to decide between continuing the tour or
interrupting the user to ask a question. In our case, a question
can simultaneously refer to areas that the user described at
distant points in time. This necessitates that we consider
when it is most meaningful to ask the question and how it
should be structured so as to provide sufficient context. Tellex
et al. [14] propose an improved dialog method that employs
a learned probabilistic language understanding model to ask
questions that are easier for the user to understand and whose
answers are more informative. With regards to improving the
map, we use a similar reward metric to Stachniss et al. [15],

who decide the best exploration-based motion actions that
improve the entropy over the map.

III. SEMANTIC MAPPING ALGORITHM

During the guided tour, the robot constructs a spatial-
semantic representation based on the algorithm we outlined
in Hemachandra et al. [4]. Next, we reiterate our represen-
tation of the environment and the mechanism that we use
to integrate natural language descriptions, and highlight how
ambiguity in the descriptions can affect the utility of the
information inferred from natural language.

A. Spatial-Semantic Representation

We define the semantic graph St = {Gt, Xt, Lt} as a
tuple containing topological, metric, and semantic represen-
tations of the environment. The topology Gt is composed
of nodes ni that denote the robot’s trajectory through the
environment (with a fixed 1 m spacing) and edges that denote
metric constraints (e.g., via odometry). We associate a set of
observations with each node that include laser scans zli and
distributions over the semantic scene class ai inferred from
laser scans ali and camera images aci . The algorithm assigns
nodes to regions Rα = {n1, .., nm} that represent spatially
coherent areas in the environment intended to be compatible
with human concepts (e.g., rooms and hallways). We do so
via spectral clustering using the overlap between laser scans
to express the similarity between pairs of nodes [4].

The vector Xt consisting of the pose xi of each node
ni constitutes the metric map, which takes the form of a
pose graph [16] according to the structure of the topology.
The semantic map Lt is modeled as a factor graph with
variables that represent the type (e.g., office or lounge) and
colloquial name (e.g., “Carrie’s office”) of each region in the
environment. The algorithm infers this information using the
aforementioned scene classifiers as well as the user’s natural
language descriptions Λt [4].

We maintain a distribution over the semantic graph using
a Rao-Blackwellized particle filter, where each particle S(i)

t

consists of a sampled topology, analytical distributions over
the metric and semantic maps, and an associated weight w(i)

t .

B. Grounding Natural Language Descriptions

We consider two types of natural language descriptions
that the guide provides the robot, those that refer to the
robot’s current region (egocentric) and those that describe
non-local, possibly distant regions in the environment (al-
locentric). We parse each utterance into its corresponding
Spatial Description Clause (SDC), a structured language
representation that includes a figure γF , spatial relation r,
and a (possibly null) landmark γL [17]. For example, the
allocentric description “the lounge is down the hallway”
results in an SDC in which the figure is the “lounge,” the
spatial relation is “down,” and the landmark is the “hallway.”
With egocentric descriptions, the figure is implicitly the
robot’s current position and there is a null landmark.

In order to ground each expression Λk, the algorithm iden-
tifies the likelihood that each region is the landmark based on



its semantic distribution. We normalize these likelihoods to
compute the landmark grounding probability for each region

p(γL = Rj |Λk) =
p(φLRj

= T|Λk)∑
Rk

p(φLRk
= T|Λk)

, (1)

where γL is a grounding variable identifying the landmark
region and φLRj

is a binary correspondence variable that
is TRUE if region Rj is the landmark. For each potential
landmark region, the algorithm then calculates the likelihood
of each region in the map being the figure (i.e., γF = Ri
and φFRi

= T) based on a model for the spatial relation
r. We arrive at the overall figure grounding likelihood by
marginalizing over the landmarks.

p(φFRi
=T|Λk)=

∑
Rj

p(φFRi
=T|γL=Rj ,Λk)p(γL=Rj |Λk)

(2)
We normalize this likelihood for each potential figure region

p(γF = Ri|Λk) =
p(φFRi

= T|Λk)∑
Rk

p(φFRk
= T|Λk)

. (3)

We use this likelihood to update the semantic knowledge
associated with figure region Ri in the map. However, the
information gained from the description is diluted when the
figure or landmark groundings are uncertain.

Our previous approach [3, 4] commits to a description
once the likelihood of its grounding exceeds a threshold.
Here, we improve upon this by continuously re-grounding
the language when relevant regions of the map change. These
changes can be in the form of updates to the metric position
of the figure or landmark regions (e.g., due to a loop closure),
or the addition of new potential landmark or figure regions
to the map as they are visited.

IV. ACTION SELECTION ALGORITHM

Algorithm 1 outlines the process by which the robot
updates its representation and chooses the optimal action A∗t .
At each time step, the algorithm first updates the distribution
over the semantic graph based on new odometry ut, sensor
observations zlt and at, natural language descriptions Λt, and
the answer zAt to the last question that was asked At−1.
This includes reevaluating previous language descriptions
and question-answer pairs based on newly visited regions.

Next, the algorithm formulates the guided tour as a de-
cision process and selects the best action to take, which
can either be to follow the user or to ask a particular
question. We define the set of candidate questions according
to the allocentric descriptions since their grounding is more
ambiguous than egocentric descriptions. We model the value
of the robot’s next state using an information gain-based
metric such that the robot values asking useful questions.
We define the information gain as the reduction in entropy
in the groundings for the natural language description based
on the question At asked and the answer zAt+1 received at
the next time step. We associate a cost with these questions
to model the social burden of asking a question.

Algorithm 1: Semantic Mapping and Action Selection

Input: St−1 =
{
S
(i)
t−1

}
, and

(
ut, z

l
t, at,At−1, zAt ,Λt

)
,

where S(i)
t−1 =

{
G

(i)
t−1, X

(i)
t−1, L

(i)
t−1, w

(i)
t−1

}
Output:

{
A∗t , St =

{
S
(i)
t

}}
1) Update the distribution over the semantic graph.

for i = 1 to n do
a) Employ proposal distribution to propagate the

graph sample G(i)
t based on ut, Λt and at.

b) Update the Gaussian distribution over the node
poses X(i)

t conditioned on the topology.
c) If At−1 was a question, add

{
At−1, z

A
t

}
to the

corresponding description.
d) Reevaluate language descriptions and update the

semantic layer L(i)
t .

e) Update the particle weights.
end

2) Normalize the weights and resample if needed.

3) Select the best action A∗t (Eqn. 5).

We define the state as the robot’s representation of the
environment, i.e., the semantic graph St. If the robot asks
a question and receives an answer, the algorithm updates
the semantic graph St based on the question-answer tuple{
At, zAt+1

}
. When the robot chooses to ask a question, it

will stop and wait for the answer before continuing to follow
the user. As such, the next state St+1 depends only on
St, the robot’s question, and the guide’s response. Since
each question queries the figure region referenced by a
description, the update to the semantic graph modifies only
the distribution over this grounding. If the robot chooses to
follow the guide, the algorithm updates the semantic graph
according to subsequent observations and descriptions. In
this work, we do not predict the change in state that results
from following the guide since it would require reasoning
over the unobserved part of the world.

The algorithm utilizes a Rao-Blackwellized particle filter
to maintain the semantic graph distribution, which we repre-
sent as a collection of weighted particles St = {S(i)

t }. Thus,
we model the action selection as a MDP for each particle
S
(i)
t and infer the optimal action given the distribution over

the semantic graph using the QMDP heuristic [6].
The Q value for each particle S(i)

t is defined as

Q(S
(i)
t ,At)=

∑
S

(i)
t+1

γV (S
(i)
t+1) p(S

(i)
t+1|S

(i)
t ,At)−C(At), (4)

where γ = 1 is a discount factor, V (S
(i)
t+1) is the value

of the state at the next timestep, and C(At) is the cost
associated with action At, each of which we define shortly.
For question-asking actions, we represent the value of the
next state in terms of the information gain associated with
getting an answer to a question that seeks to resolve the figure



grounding for a particular description. This information-
theoretic metric biases the decision process to value actions
that in expectation reduce the uncertainty over the language
groundings in the semantic graph.

At each time step, the robot chooses the best action A∗t
according to the QMDP heuristic

A∗t = arg max
At

∑
S

(i)
t

p(S
(i)
t )Q(S

(i)
t ,At), (5)

where p(S
(i)
t ) is the particle weight w(i)

t . The following
paragraphs explain this process in detail.

A. Action Set
The available actions include the FOLLOWPERSON action

AF and the set of valid question-asking actions. We focus
on questions with a limited set of answers (“yes” and “no”),
which allows us to more easily model the information gain
for each question and answer pair, and reason over the like-
lihood of receiving each answer given the question. We use
a template to compose questions for each grounding figure
entity in a natural language description. These templates can
be categorized into two basic types:

I Egocentric Questions: This template chooses from a
set of spatial relations (“at,” “near,” “away,” “in front,”
“behind,” “left,” or “right”) and a grounding variable to
create a question (e.g., “Is the kitchen in front of me?”).

II Allocentric Questions: This template defines questions
in terms of spatial relations between non-local figure
and landmark regions in the environment (e.g., “Is the
lounge next to the conference room?”). We select land-
mark regions that have a high likelihood of a particular
semantic label and generate questions that reference
other regions in relation to these landmarks.

The robot can only use egocentric questions to ask about
spatial regions in its immediate vicinity. As such, the ability
to receive useful information is limited to instances when the
robot is near a potential hypothesized location. Allocentric
questions allow the robot to reduce its uncertainty even when
a hypothesized location is not within view. However, the need
for the user to situate this question in their understanding of
the environment may impose a higher mental burden.

B. Value Function
We define the value of the next state in Equation 4 as a

function of the information gain resulting from an action

V (S
(i)
t+1) = f(I(At, zAt+1)). (6)

In the case of question-asking actions, the next state St+1

depends only on St, the asked question At, and the user’s
answer zAt . Thus, the space of possible next states S(i)

t+1 for
semantic graph particle S(i)

t is limited by the set of question
and answer pairs.

We assume that there is no information gain for the
FOLLOWPERSON action AF , since the motion is assumed
not to affect the distribution over the language grounding.
Thus, the associated Q value (Eqn. 4) only expresses the
cost of the action.

C. Information Gain

We define the information gain I(At, zAt ) for a question-
answer pair as the reduction in entropy H over the figure
grounding variable γF for a description Λk provided by the
guide.1

I(At, zAt ) = H(γF |Λk)−H(γF |Λk,At, zAt ) (7)

We calculate the new entropy H(γF |Λk,At, zAt ) for the
updated distribution over the figure grounding based on the
question and answer pair

p(γF=Ri|Λk,At, zAt )=
p(zAt |At, Ri) p(γF=Ri|Λk)∑
Rj

p(zAt |At, Rj)p(γF=Rj |Λk)
(8)

where p(zAt |At, Ri) is the likelihood of the answer zAt
to question At referring to region Ri. We compute the
probability of a “yes” answer as the likelihood that region
Ri is consistent with the landmark and spatial relation for
the question (Eqn. 9).

D. Answer Likelihood

We define the answer probability by introducing a latent
random variable v that specifies whether the question is valid
given the referenced region (p(zAt |v,At, Ri))

p(zAt |At, Ri) =
∑
v∈0,1

p(zAt |v,At, Ri) p(v|At, Ri). (9)

The prior p(v|At, Ri) expresses the likelihood that the
question is contextually relevant to figure region Ri given
the user’s location. In our experiments, we only considered
regions sufficiently close to the user2 to be contextually valid.
We use this to limit the entropy calculation (Eqn. 8) to
regions for which the question is expected to be meaningful.

When question At (e.g., “Is the kitchen in front of me?”)
using spatial relation r is valid (v = 1) for a potential
grounding region Ri, we define the likelihood of receiving
a “yes” answer as

p(zAt =“yes”|v=1,At, Ri) = p(φFRi
=T|γL=RL, r), (10)

where RL is the landmark region specified in the question
(null for egocentric questions). We represent this likelihood
using probabilistic spatial language models learned from
natural language corpora [17], in the same manner as with
the user’s descriptions (Sec. III-B).

E. Transition Likelihood

For a question At about a figure region γF that was
originally described in the description Λk, the transition
likelihood for a single particle p(S(i)

t+1|S
(i)
t ,At) is equivalent

to the likelihood of receiving a particular answer given the
state and the question-asking action. In order to arrive at the
overall likelihood, we calculate the probability of receiving
the answer for each potential region (Eqn. 9) and marginalize

1The information gain calculation is limited to grounding regions in the
environment that have currently been explored.

2In the experiments presented in the paper, we use 15 m as the threshold.
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Fig. 2. Experiment I: Language groundings for the expression “The lounge
is down the hallway.” Values in red denote the grounding likelihood without
questions, while those in black express the likelihood with questions.
Question (answer): Q1: “Is the lounge near me?” (“No”); Q2: “Is the lounge
near me?” (“No”); Q3: “Is the lounge near me?” (“Yes”); Q4: “Is the lounge
near me?” (“Yes”); Q5: “Is the lounge near the conference room?” (“Yes”).
The ground truth region boundary is in red. The robot’s locations at the
time of descriptions and questions are denoted with black arrows. Path color
denotes region segmentation while pie charts denote a region’s type.

over the regions based on their prior likelihood of being the
figure grounding (Eqn. 3).

p(S
(i)
t+1|At, S

(i)
t ) = p(zAt |At, S

(i)
t ) (11a)

=
∑
Rj

p(zAt |At, S
(i)
t , γF = Rj) p(γF = Rj |Λk) (11b)

We include the description Λk to make the dependence on
language explicit. This results in higher transition likelihoods
for new states with figure regions that both have a higher
grounding likelihood for the original description as well as
an increased likelihood for the answer.

F. Cost Function

While questions are useful in resolving ambiguity in the
map, they also require the user’s time and effort. We account
for the latter with a hand-crafted cost function C(At) that
encodes the burden of asking a given question at each
timestep. The cost is a function of the following features:

i. Time since the last question was asked
ii. Time since last question was asked about the grounding

We use a linear combination of these features to arrive at
the cost function. We set the weights such that they balance
the burden of asking questions with reducing the ambiguity
in the description groundings. We additionally associate a
fixed (negative) cost with the person-following action AF
such that only a reasonably high expected information gain
will result in a question being asked.

The conference room
 is down the hallway
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Q4

 0% (13%) 0% (13%)

 0% (13%) 0% (13%) 0% (12%)
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Fig. 3. Experiment I: Language groundings for the expression “The
conference room is down the hallway.” Values in red denote the grounding
likelihood without questions, while those in black express the likelihood
with questions. Question (answer): Q1: “Is the conference room near me?”
(“Yes”); Q2: “Is the conference room behind me?” (“No”); Q3: “Is the
conference room near me?” (“Yes”); Q4: “Is the conference room near me?”
(“No”); Q5: “Is the conference room near me?” (“Yes”). The ground truth
region boundary is in red. The robot’s locations at the time of descriptions
and questions are denoted with black arrows. Path color denotes region
segmentation while pie charts denote a region’s type.

G. Integrating Answers to the Representation

Each question and answer modifies the distribution over
the grounding variable γF . In turn, an informative answer
will improve the semantic graph distribution. We use the
question-answer pair and the corresponding language distri-
bution Λk to calculate the grounding likelihood (Eqn. 8) and
subsequently, the information gain (Eqn. 7). Unlike the case
of the entropy calculation, which only considers contextually
valid regions, we consider all potential groundings, including
regions outside the meaningful area for the question.

When new valid grounding regions are added, we reeval-
uate both the original description as well as the likelihood of
generating the received answer for each new region, and up-
date the language grounding. Figure 2 shows the grounding
likelihoods before and after asking three questions.

V. RESULTS

We evaluated our algorithm on two indoor datasets in
which a human gives a robotic wheelchair (Fig. 1) [2]
narrated tours of different floors of MIT’s Stata Center. For
these experiments, we purposefully injected natural language
descriptions at locations where their groundings are ambigu-
ous. Dataset I consists of seven egocentric descriptions that
the algorithm grounds to the robot’s current region, and three
allocentric expressions that describe regions with relation to
either landmarks (e.g., “The elevator lobby is down the hall”)
or the robot’s location (e.g., “The lounge is behind you”).
Dataset II consists of two egocentric descriptions that the
algorithm correctly grounds to the robot’s current region, and
three allocentric expressions that describe regions relative to



TABLE I
EXPERIMENT I: ENTROPY OVER FIGURE GROUNDINGS WITH AND WITHOUT QUESTIONS

Without Questions With Questions

# of Random Our Method

Dataset Utterance Entropy Accuracy Questions Entropy Accuracy Entropy Accuracy

I (A) “The lounge is down the hallway” (Fig. 2) 2.100 15.3% 5 1.301 54.6% 0.050 92.5%
(B) “The elevator lobby is down the hallway” 1.396 24.1% 1 1.148 35.7% 0.000 83.8%
(C) “The lounge is behind you” 0.414 83.1% 1 0.422 80.5% 0.126 87.3%

II (D) “The lab is down the hall” 2.047 20.3% 4 1.612 37.9% 0.384 90.3%
(E) “The conference room is down the hallway” (Fig. 3) 2.154 11.3% 5 1.252 44.3% 0.226 89.3%
(F) “The lounge is in front of us” 1.199 23.3% 2 1.086 24.2% 0.254 43.8%

either landmarks or the robot’s pose. We ran the algorithm
on the datasets offline in real-time with a human providing
answers to the questions. The algorithm operated with four
particles, which were sufficient to accurately capture valid
topologies in these relatively small environments.

We quantify the results using two metrics, the reduction
of entropy and improvement in accuracy for the language
grounding of each utterance. We express the accuracy of
each grounding k in terms of the spatial overlap ORi

of
each inferred figure region with its ground truth location.
We weight the overlap by the grounding likelihood and sum
to arrive at the accuracy score

Sk =
∑
Ri

ORi
p(γf = Ri|Λk, {A, zA}). (12)

The score penalizes situations in which the groundings are
assigned to regions outside the ground truth region or the
grounded regions contain only a part of the ground truth
region (i.e., due to improper segmentation).

A. Experiment I: Egocentric and Allocentric Questions

The first experiment that we consider enables the algo-
rithm to ask both egocentric and allocentric questions. For
comparison, we consider two baselines. The first considers
the case in which the robot can not ask questions, which is
equivalent to our previous semantic mapping algorithm [4].
For the second baseline, the robot asks the same number of
questions as our method, but the questions are constructed
from figure regions, landmark regions, and spatial relations
chosen at random. For the first dataset, the robot asked a
total of seven questions, including one allocentric question.
On the second dataset, the robot asked eleven questions of
the guide, including one allocentric question.

Table I compares the performance of our algorithm with
the two baselines. By asking targeted questions, our method
significantly reduces the entropy over the figure groundings
while increasing their accuracy. On average, there is a 86%
reduction in the entropy and a 309% improvement in the
accuracy of the figure groundings compared to the baseline
that does not ask questions. When compared against asking
random questions, we see a 67% reduction in entropy and a
138% improvement in accuracy on average. This supports the
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Fig. 4. Experiment II: Language groundings for the utterance “The
elevator lobby is down the hallway.” Values in red denote the grounding
likelihood without questions, while those in black express the likelihood
with questions. Question (answer): Q1: “Is the elevator lobby near the lab?”
(“No”); Q2: “Is the elevator lobby near the conference room?” (“No”). The
ground truth region boundary is in red. The robot’s locations at the time of
descriptions and questions are denoted with black arrows. Path color denotes
region segmentation while pie charts denote a region’s type.

claim that deliberately choosing when and which question to
ask is integral to our algorithm’s success.

B. Experiment II: Allocentric Questions Only

We also applied the algorithm to the first dataset with the
restriction that the system only ask allocentric questions. By
only allowing the robot to ask allocentric questions, we better
demonstrate the potential to reduce the ambiguity even when
the robot doesn’t revisit the locations it is uncertain about.
However, the reduction in entropy depends upon the presence
of salient landmarks (which came from language annotations
in this experiment). Table II compares the performance of
only asking allocentric questions with asking both egocentric
and allocentric questions. The robot is still able to reduce the
ambiguity in the map, but not to the level that it achieves
by asking both types of questions. The reasons are two-fold:
firstly, there are only a few salient landmarks that can be
used to generate valid questions; secondly, allocentric ques-
tions were only generated using the “near” spatial relation
limiting the available set of useful questions. Figure 4 shows
the resulting grounding likelihoods for the utterance “The
elevator lobby is down the hallway.”



TABLE II
FIGURE GROUNDING ENTROPY WITH EGOCENTRIC AND ALLOCENTRIC

QUESTIONS (NUMBER OF QUESTIONS IN PARENTHESES)

Entropy Accuracy

Utterance Question Type Question Type
Both Allocentric Both Allocentric

(A) 0.050 (5) 1.632 (1) 92.5% 70.0%
(B) 0.000 (1) 0.000 (2) 83.8% 96.4%
(C) 0.126 (1) 0.441 (0) 87.3% 78.5%

VI. CONCLUSION

We described a framework that enables a robot to engage a
human in dialog to improve its learned semantic map during
a guided tour. The method takes an information-theoretic ap-
proach to deciding when and which questions to ask in order
to best reduce ambiguity in its model of the environment.
We evaluated the algorithm on a pair of experiments that
demonstrate that by asking targeted questions, the algorithm
is able to reduce the entropy and improve the accuracy of
the semantic map compared to asking no questions as well
as to a baseline in which random questions were asked.

While the framework results in more accurate environment
models, there are limitations to the proposed method. First,
the framework currently assumes that the figure region that
the user refers to when answering a question is in the
robot’s current model of the environment, which is not
necessarily the case. Instead, the framework should model
the likelihood that the figure grounds to unvisited regions in
the environment (e.g., via a learned spatial prior). Second,
the cost function is integral to the decision of whether or not
to ask a question. We currently define this cost in terms of a
linear combination of hand-selected features and weights. A
more effective approach would be to employ a richer function
that captures the complex set of factors that influence the
effort in answering questions. This cost function should be
developed and learned based on user studies. Third, the
space of actions can be expanded beyond questions to allow
the robot to physically explore the environment as another
means of resolving ambiguity. These, together with human-
subject studies to better understand the generalizability and
effectiveness of the algorithm are directions for future work.
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