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Abstract

Self-supervised representation learning has witnessed
significant leaps fueled by recent progress in Contrastive
learning, which seeks to learn transformations that embed
positive input pairs nearby, while pushing negative pairs
far apart. While positive pairs can be generated reliably
(e.g., as different views of the same image), it is difficult
to accurately establish negative pairs, defined as samples
from different images regardless of their semantic content
or visual features. A fundamental problem in contrastive
learning is mitigating the effects of false negatives. Con-
trasting false negatives induces two critical issues in rep-
resentation learning: discarding semantic information and
slow convergence. In this paper, we study this problem in
detail and propose novel approaches to mitigate the effects
of false negatives. The proposed methods exhibit consis-
tent and significant improvements over existing contrastive
learning-based models. We achieve new state-of-the-art
performance on ImageNet evaluations, achieving 5.8% ab-
solute improvement in top-1 accuracy over the previous
state-of-the-art when finetuning with 1% labels, as well as
transferring to downstream tasks.

1. Introduction
With the universal adaptability of deep neural networks,

representation learning has become the backbone of most
modern AI agents, in which good pretrained representa-
tions have proven essential to improving performance on
downstream tasks [16, 20, 49, 27]. While conventional ap-
proaches use labeled data to pretrain visual representations,
there has been a recent surge in self-supervised representa-
tion learning [19, 15, 36, 45, 38, 8, 50, 30]. In fact, self-
supervised visual representation learning has been closing
the gap with, and in some cases even surpassing its super-
vised counterpart [9, 22, 11, 10]. Notably, most state-of-the-
art self-supervised visual representation learning methods
are converging around, and fueled by, the central concept of
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Figure 1. False negatives in contrastive learning. Without knowl-
edge of labels, automatically selected negative pairs could actually
belong to the same semantic category, creating false negatives.

contrastive learning [44, 23, 24, 42, 34, 22, 9].
In contrastive learning, the embedding space is governed

by two opposing forces, the attraction of positive pairs and
repellence of negative pairs, effectively actualized through
the contrastive loss. Without labels, recent breakthroughs
in self-supervised visual representation learning rely on the
instance discrimination task in which positive pairs are de-
fined as different views of the same image, while negative
pairs are formed by sampling views from different images,
regardless of their semantic information [22, 9, 34]. Fig-
ure 1 illustrates this process. Positive pairs generated from
different views of the same image are generally accurate
since they are likely to carry similar semantic content or vi-
sual features. However, the creation of valid negative pairs
is far more difficult. The common approach of defining neg-
ative pairs as samples from different images ignores their
semantic content. For example, two images of a dog are
considered a negative pair, as demonstrated in Figure 1.

By contrasting these undesirable negative pairs, the ar-
chitecture is encouraged to discard their common features
in the learned embedding, which are indeed the common se-
mantic content, e.g., dog features in the previous example.
We define those undesirable negative samples as false neg-
atives, i.e., negative pairs from the same semantic category.
Besides disregarding the semantic information, false neg-
atives also hinder the convergence of contrastive learning-
based objectives due to the appearance of contradicting ob-
jectives. For instance, as shown in Figure 1, the dog’s head
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Figure 2. Overview of the proposed framework. Left: Original definition of the anchor, positive, and negative samples in contrastive
learning. Middle: Identification of false negatives (blue). Right: false negative cancellation strategies, i.e. elimination and attraction.

on the left is attracted to its fur (positive pair), but is repelled
from similar fur of another dog image on the right (negative
pair), creating contradicting objectives.

While recent efforts focus on improved architectures [9,
10, 22] and data augmentation [9, 43], relatively little work
considers the effects of negative samples, especially that of
false negatives. Most existing methods focus on mining
hard negatives [39, 25], or most recently, increasing posi-
tive samples to counter-balance the negatives [12]. How-
ever, there has been little effort to identify false negatives.

False negatives remain a fundamental problem in con-
trastive self-supervised learning. Without labels, this prob-
lem is very hard to adequately resolve, as it boils down to
a chicken-and-egg problem, where we want to learn good
semantic representations, but may need certain semantic
information to start with. Nevertheless, in this paper, we
attempt to study this problem in detail and propose novel
ideas to overcome its limitations, as overviewed in Figure
2. Particularly, the contributions of the paper are as follows:

• We propose simple yet effective strategies to find po-
tential false negatives in contrastive learning. Without
any labels, the proposed method effectively finds false
negatives with ∼40% accuracy among 1000 human-
defined semantic categories on ImageNet [40]. Our
work is the first to address this problem.

• We propose and study the effect of two different strate-
gies to improve the contrastive loss based on the esti-
mated false negatives, namely, false negative elimina-
tion and attraction.

• We show that the proposed methods consistently
and significantly improve over existing contrastive
learning-based approaches across a wide range of set-
tings, e.g., with or without momentum contrast [22].
Further, we show that our methods are effectively com-
plementary with the recent multi-crop augmentation
strategy in terms of both accuracy and computational

efficiency: Adding false negative cancellation on top
of multi-crop incurs negligible computational over-
head, while doubling the improvement (4% in Ima-
geNet linear evaluation).

• The improved model establishes new state-of-the-art
results for contrastive learning-based methods across
all evaluations on ImageNet, as well as transferring to
downstream tasks. Notably, the model achieves 5.8%
absolute improvement of Top-1 accuracy in the semi-
supervised setting with 1% labels on ImageNet.

2. Related Work
Early work on self-supervised learning employs proxy

tasks to guide the learned embeddings, such as predict-
ing the angle of a rotated image [19], the relative loca-
tion of patches [15], or organizing shuffled patches to re-
cover the original image much like solving a jigsaw puz-
zle [36]. Other proxy tasks include recovering an image
from a corrupted version [45], predicting part of the image
from context [38, 8] or generating one view of an image
from another, e.g., split-brain auto-encoder [50] or coloriza-
tion [31, 51, 30]. While these approaches have been effec-
tive, the proxy tasks are fairly heuristic and lack generality.

Other works use clustering-based methods for self-
supervised representation learning [1, 3, 47]. Caron et al.
[6] iteratively improve the learned representations by clus-
tering samples (e.g., k-means) and using these clusters as
pseudo-labels. They then train the network to classify sam-
ples based on these pseudo-labels. Our attraction-based ap-
proach to false negative cancellation is similar to clustering
methods, as they both attempt to group visually connected
samples. However, the formulation and context differs.

We take a contrastive learning-based approach to self-
supervised representation learning. Earlier work in this area
includes CPC [44, 23], Deep InfoMax [24, 2], and con-
trastive multiview coding [42]. Recognizing that contrastive
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loss requires a large set of negative samples, PIRL [34]
maintains a memory bank of previous representation of all
images, which limits scalability. MoCo v1 [22] addresses
this problem by maintaining a momentum encoder and a
limited queue of previous samples. SimCLR v1 [9] eschews
a momentum encoder in favor of a large batch size, and pro-
poses updates to the projection head and data augmentation.

Realizing the important role of negative samples in con-
trastive learning, a few recent methods have investigated
ways to improve negative sampling. These include increas-
ing the sampling of hard negatives (i.e., those that are close
to the anchor) [39, 25], and using more positive samples to
counter-balance the effects of undesirable negatives [12].

Inspired by contrastive learning, recent methods seek to
predict one positive view from another. However, they are
not categorized as contrastive learning as they have differ-
ent formulations at their core and do not contrast against
negative samples, a defining element of contrastive learn-
ing. SwAV [7] is an online clustering-based method that
employs swapping prediction of different views from an im-
age, while BYOL [21] employs a momentum encoder as a
prediction target for another view from the main encoder.

3. Method
3.1. Contrastive Learning

The goal of contrastive learning is to learn a transfor-
mation that brings positive pairs “nearby” in an embedding
space while pushing negative pairs apart. This is done by
minimizing a contrastive loss that, for each anchor image
i, measures the (negative) similarity between its embedding
zi and that of its positive match zj relative to the similarity
between the anchor embedding of k ∈ {1, . . . ,M} negative
matches:

li = − log
exp(sim(zi, zj)/τ)∑M

k=1 1[k 6=i] exp(sim(zi, zk)/τ)
, (1)

where sim(u, v) is a similarity function, e.g., the L2 nor-
malized cosine similarity sim(u, v) = uT v/‖u‖‖v‖, and τ
is a temperature parameter.

Without known correspondence, self-supervised meth-
ods commonly define positive pairs as different augmenta-
tions of the same image and negative pairs as samples from
different images. Consider a batch of N images, each aug-
mented to form N positive pairs for a total of 2N images.
Methods like SimCLR use samples from the same batch as
negative pairs (i.e., M = 2N examples for each anchor i),
while MoCo uses samples from a momentum encoder to
avoid the use of a large batch size.

3.2. False Negative Cancellation

Regardless of whether the negative samples are drawn
from the same batch or the output of a momentum encoder,

they are samples from different images that may or may not
possess similar semantic content or visual features. Conse-
quently, it is possible that some samples k have the same
semantic content as the anchor i, and are thus false nega-
tives. As discussed earlier, false negatives give rise to two
critical problems in contrastive learning: they discard se-
mantic information and slow convergence.

Our method seeks to mitigate these problems. In partic-
ular, we propose a strategy to identify false negatives and
an approach that uses these false negatives to improve con-
trastive learning. The following discussion describes how
we might incorporate knowledge of false negatives in con-
trastive learning. We discuss the process of identifying false
negatives in Section 3.2.3.

Supposing we can find the false negatives, we propose
two strategies that use them to improve contrastive learning.

3.2.1 False Negative Elimination

The simplest strategy for mitigating the effects of false neg-
atives is to not contrast against them. This amounts to the
following modification to the contrastive objective (1):

lelim
i = − log

exp(sim(zi, zj)/τ)∑2N
k=1 1[k 6=i,k/∈Fi] exp(sim(zi, zk)/τ)

, (2)

where Fi is the set of the detected false negatives with re-
spect to an anchor i.

3.2.2 False Negative Attraction

While eliminating false negatives alleviates the undesire-
able effects of contrasting against them, it ignores informa-
tion available in what are actually true positives. Minimiz-
ing the original contrastive loss (Eqn. 1) only seeks to attract
an anchor to different views of the same image. Including
true positives drawn from different images would increase
the diversity of the training data and, in turn, has the po-
tential to improve the quality of the learned embeddings.
Indeed, Khosla et al. [26] show that supervised contrastive
learning (i.e., where an anchor is attracted to samples hav-
ing the same semantic label) can be more effective than the
traditional supervised cross-entropy loss. Thus, we propose
to treat the false negatives that have been identified as true
positives and attract the anchor to this set. This yields the
following expression for the contrastive loss:

latt
i = − 1

1 + |Fi|

(
log

exp(sim(zi, zj)/τ)∑2N
k=1 1[k 6=i] exp(sim(zi, zk)/τ)

+
∑
f∈Fi

log
exp(sim(zi, zf )/τ)∑2N

k=1 1[k 6=i] exp(sim(zi, zk)/τ)

)
(3)

We note that compared to simply ignoring the detected
false negatives (2), the attraction strategy is more sensitive
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Figure 3. Finding false negatives with the support views. Negative
samples (main views, right) may not have as reliable similarity
with the anchor itself (red) as they do with other augmented views
of the same image (support views). For instance, the dog’s face in
the support view (left, blue) is closer to the negative sample (right,
blue) in terms of the facial orientation than the anchor (red).

to the quality of the candidate false negatives. Encourag-
ing embeddings that erroneously attract false positives can
degrade the quality of the learned representations.

3.2.3 Finding False Negatives

Unfortunately, the process of identifying false negatives is
fundamentally difficult, amounting to a chicken-and-egg
problem—without labels, the learned semantic informa-
tion could be used to establish valid and invalid correspon-
dences, yet the correctness of these embeddings depends on
the ability to identify correspondences. We propose a new
approach to identify false negatives based on the following
observations:

• False negatives are samples from different images with
the same semantic content, therefore they should hold
certain similarity (e.g., dog features).

• A false negative may not be as similar to the anchor as
it is to other augmentations of the same image, as each
augmentation only holds a specific view of the object.

The above observations mean that we may be able to ap-
proximate a false negative with more augmented views of
the anchor. As an example, consider Figure 3 where we treat
the picture of the dog’s head on the left (“main views,” in
red) as the anchor image. The support views on the left are
other augmented views generated from the same image and
serve as positive matches. The picture of the dog’s head on
the far right (“main view,” in blue) is not an augmented ver-
sion of the anchor. Consequently, while it is similar to the
anchor image, it would thus be treated as a negative match
by contemporary self-supervised methods (i.e., it is a false
negative). However, we see that this image is more simi-
lar to the augmented view of the anchor (“support view,” in
blue) than it is to the anchor with respect to the orientation
of the dog’s face. Similarly, the head and fur of the dog are
expected to be a positive pair. While the false negative fur
on the far right (orange) could look different than the head

anchor, it should be more similar to the fur in the support
views (orange).

Motivated by these observations, we propose a strategy
for identifying candidate false negatives that follows as:

1. For each anchor i, generate a support set Si = {zsi }
that contains other support views from the same image
besides the two main views.

2. Compute similarity scores, scoresm,i = sim(zm, z
s
i ),

between a negative sample zm and each sample zsi in
the support set.

3. Aggregate the computed scores for each negative sam-
ple, scorem,i = aggregates∈S(scoresm,i).

4. Define a set of potential false negatives Fi as the neg-
ative samples that are most similar to the support set
based on the aggregated scores, Fi = best(scorei),
where scorei = {scorem,i|m} is the set of scores for
each negative sample with respect to anchor i.

For each element in the above procedure, there are several
considerations one can make, including the choice of the
similarity function, the strategy for aggregating scores, and
the manner in which the most similar samples are defined.
In this work, we investigate the following options:

Similarity Function We use the cosine similarity function,
since it is used in the contrastive loss during pretraining.

Aggregation Strategy We consider both mean aggrega-
tion, scorem,i =

1
|S|
∑|S|

s=1 sim(zm, z
s
i ), and max aggrega-

tion, scorem,i = maxs∈{1,...,|S|} sim(zm, z
s
i ), and discuss

their effects in Section 4.

Screening Strategy We consider two choices for the most
similar samples, one that considers the top-k matches,
best(scorei) = {zm|scorem,i ∈ top(scorei, k)}, and one
that considers those above a threshold t, best(scorei) =
{zm|scorem,i > t}. A top-k strategy may be preferred
given information about the approximate number of false
negatives, while thresholding may be better suited when a
dynamic adaptation is expected. We also consider a strategy
that combines top-k and and thresholding, best(scorei) =
{zm|scorem,i ∈ top(scorei, k) & scorem,i > t}.

4. Experimental Results
4.1. Ablation Studies

We use the same configuration as SimCLR v2 for pre-
training and evaluation. The base encoder is ResNet-50
with a 3-layer MLP projection head. Data augmentation
includes random crops, color distortion, and Gaussian blur.
For each experiment, we pretrain for 100 epochs on the Im-
ageNet ILSVRC-2012 training set, then freeze the encoder
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Figure 4. A comparison of top-1 accuracy (left) between false neg-
ative elimination and SimCLR; and (right) top-1 accuracy across
filtering thresholds in false negative cancellation.

and train a linear classifier on top, which is then evaluated
on the ImageNet evaluation set. We pretrain on 128 Cloud
TPUs with a batch size of 4096. We use the LARS opti-
mizer with a learning rate of 6.4 and a cosine decay sched-
ule, and a weight decay of 1× 10−4.

4.1.1 False Negative Cancellation Strategies

We evaluate the effects of various approaches to false neg-
ative mitigation, including the choice of cancellation strat-
egy, aggregation score, and screening strategies, and draw
the following conclusions.

False negative elimination consistently improves con-
trastive learning across crop sizes, and the gap is higher
for bigger crops. Figure 4 (left) demonstrates that the in-
clusion of false negative elimination yields top-1 accuracy
that is strictly better than that of the SimCLR baseline ac-
cross the full range of crop ratios. We postulate that the big-
ger gap for larger crop sizes is due to the increased chance of
having common semantic content in big crops, which leads
to a higher ratio of false negatives. It is also worth noting
that in Figure 4 (left), we only eliminate a negligible num-
ber of two potential false negatives among 8190 (batch size
4096) negative samples for each anchor, but it could affect
top-1 accuracy by as much as 1%. This supports the signif-
icant effect of false negatives in contrastive learning.

Having a support set helps in finding false negatives
regardless of the cancellation strategy, with greater ben-
efits with the attraction strategy. Figure 5 contrasts the
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Figure 5. False negative cancellation with and without support set
across top-k choices for different mitigation strategies. The dashed
line denotes the performance of the SimCLR baseline. The results
use mean aggregation in scoring potential false negatives.
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Figure 6. False negative cancellation with mean and max aggre-
gation across support sizes and top-k for the false negative (left)
elimination and (right) attraction strategies.

top-1 accuracy when we compare negative samples to a sup-
port set (Section 3.2.3) to the case in which we only com-
pare negative samples to the anchor itself. The use of a
support set results in larger performance gains when using
false negative attraction (∼2%) compared to the false nega-
tive elimination strategy (∼0.2%). Further, while the elim-
ination strategy improves performance relative to the Sim-
CLR baseline whether or not a support set is used, attracting
false negatives found without support set actually hurts per-
formance (Figure 5, right). This likely results from the fact
that embeddings learned with attraction strategy are more
sensitive to invalid false negatives (discussed next), justify-
ing the use of a support set to reliably find false negatives.

The attraction strategy is much more sensitive to the
quality of the found false negatives compared to the
elimination strategy. This property is consistently con-
firmed through Figure 5 (right) as previously discussed, and
Figure 4 (right), where the attraction strategy only works
with more reliable false negatives, those having very high
similarity scores, while the elimination method is not very
sensitive to the thresholds.

Max aggregation significantly and consistently out-
performs mean aggregation for the attraction strategy,
while the gains are less pronounced with false negative
elimination. Figure 6 demonstrates that max aggregation
outperforms mean aggregation for all support sizes and top-
k values in the attraction strategy, with a gap in some cases
greater than 1%. This may be due to the fact that false
negatives are similar to a strict subset of the support set, in
which case considering all elements as in mean aggregation
corrupts the similarity score. The difference is more pro-
nounced for the attraction strategy, which is more sensitive
to invalid false negatives.

Filtering by top-k tends to perform better than by a
threshold, while a combination of both provides the best
balance. As seen in Figure 7, the best choice of top-k is
better than the best threshold. A strategy that combines the
two approaches achieves greater accuracy, with the excep-
tion of false negative attraction at top-4, for which there is a
negligible degradation in performance.

False negative attraction is superior to elimination
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Figure 8. A comparison of top-1 accuracy (left) for different false
negative cancellation strategies relative to the SimCLR baseline
and (right) the use of the primary and momentum encoders.

SimCLR FN Elimination / Gain FN Attraction / Gain

66.41 67.43 / +1.02 68.16 / +1.75

Table 1. Top-1 accuracy improvement of false negative cancella-
tion strategies over the SimCLR baseline.

when the detected false negatives are valid. As shown
in Figure 8 (left) and Table 1, false negative elimination im-
proves upon SimCLR by 1.02%, while false negative attrac-
tion results in a 1.75% improvement. These results use max
aggregation, a support size of eight, top-4 for false negative
attraction, and top-8 filtering for elimination.

4.1.2 With Multi-crop

Caron et al. [7] propose a multi-crop data augmentation
strategy that increases the number of positive views at-
tracted to each anchor image, improving the quality of the
learned embeddings. Multi-crop is closely related and com-
plementary to false negative attraction in multiple facets,
from principle to computational efficiency. While multi-
crop attracts more positive samples, false negative attrac-
tion tries to attract samples that would otherwise be erro-
neously treated as negatives. The positive samples should
be more reliable than the false negatives we attempt to find;
however, multi-crop lacks semantic feature diversity, as it
never attracts samples from different images. Because of
these characteristics, multi-crop and false negative attrac-
tion offer complementary advantages. Furthermore, they
can share computational overhead by using a common sup-
port set. Thus far, we have only used the support set to find
false negatives, but they can also be used as additional pos-
itive views for multi-crop. In doing so, we may be able to

Method Accuracy (Diff.) Time (Diff.)

SimCLR 66.41 2.63
SimCLR + Multi-crop 68.50 (+2.09) 7.40 (+4.77)
SimCLR + Multi-crop + FN Att. 70.42 (+1.92) 7.50 (+0.10)

Table 2. Complementary performance and computational effi-
ciency of multi-crop and false negative attraction.
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Figure 9. False negative cancellation with (left) multi-crop and
(right) momentum encoder.

double the performance without noticeable overhead if the
respective improvements are complementary.

Figure 9 and Table 2 demonstrate the advantages of
using false negative cancellation together with multi-crop
data augmentation. Adding multi-crop improves the perfor-
mance of the SimCLR baseline by 2.09%, while incurring
an additional 4.77 hours of computational overhead. Fur-
ther adding false negative attraction on top of multi-crop
yields a 1.92% absolute improvement in accuracy (i.e., sim-
ilar to the 2.09% gain provided by multi-crop), while incur-
ring only 0.1 hours of computation time.

4.1.3 With Momentum Encoders

Thus far, we have identified false negatives in the current
batch from a single encoder. However, other methods may
store negative samples in a memory bank, or encoded by
a momentum encoder. Here, we investigate the behaviors
of the proposed method in these settings. Momentum con-
trast [22] employs two encoders, the main encoder and mo-
mentum encoder, and a memory bank where negative sam-
ples are stored alongside the samples from the current batch.
This offers more options for finding false negatives, i.e.,
whether to use the support set from the main encoder or
the momentum encoder, or whether to find negatives from
samples in the current batch or all samples in memory. Fig-
ure 8 (right) indicates that it is better to generate the support
set using samples from the momentum encoder compared
to the main encoder. Further, finding false negatives in the
memory bank yields greater top-1 accuracy than drawing
false negatives from the current batch.

Figure 9 and Table 3 show that our method works across
different configurations, with or without the presence of ei-
ther momentum contrast or multi-crop. Notably, the perfor-
mance gain from false negative cancellation in the presence

6



Baseline + FN Cancel Diff.

SimCLR 66.41 68.16 +1.75
SimCLR + Multi-crop 68.50 70.42 +1.92
SimCLR + Multi-crop + Momentum 69.16 71.43 +2.27

Table 3. Top-1 accuracy improvement of false negative cancella-
tion for different baselines.

Model Epochs Time (h) Acc. (%)

SimCLR 100 2.63 66.41
SimCLR 1000 26.22 70.34
Improved Model 100 7.50 70.42

Table 4. Computational efficiency and accuracy.

of momentum contrast is even higher at 2.27%.

4.1.4 With True Labels & False Negatives Accuracy

We now consider the effectiveness of our false negative de-
tection and cancellation strategy relative to the ideal setting
in which we have access to ground-truth labels, which pro-
vides an upper-bound on performance. Figure 10 presents
the top-1 accuracy when using false negative cancellation
combined with multi-crop data augmentation as well as the
accuracy that results from false negative cancellation using
ground-truth labels. As expected, cancelling false negatives
helps substantially (8.18%) when true labels are used. How-
ever, we close half the gap by just using multi-crop and the
false negatives our method finds, increasing top-1 accuracy
by 4.01% over the SimCLR baseline.

To better understand the extent to which we are able
to identify false negatives, Figure 10 (right) plots the ac-
curacy of the false negative detections over 100 epochs of
pretraining. We see that the false negative detection accu-
racy steadily increases, reaching approximately 40% accu-
racy by 100 epochs. Note that the false negatives accuracy
is computed based on human-defined semantic labels, with
1000 categories in ImageNet. The chance of finding a false
negative for an anchor at random is just 0.1%.

Baseline SimCLR
FN Cancellation + Multi-crop

FN Cancellation With True Labels
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Figure 10. A visualization of (left) top-1 accuracy with false nega-
tive cancellation using detected vs. ground-truth labels and (right)
the accuracy of false negative detection.

4.1.5 Computational Efficiency

Table 4 compares the computational cost of our false neg-
ative cancellation strategy compared to the SimCLR base-
line. As expected, we can see that for the same number
of epochs, the process of detecting and incorporating false
negatives incurs additional computational time. However,
to achieve the same accuracy, SimCLR requires more than
three times the amount of computation (26.22 h and 1000
epochs) than our framework (7.50 h and 100 epochs).

4.2. Comparison with State-of-the-Art

We compare our improved model with false negative
cancellation to other state-of-the-art methods on standard
ImageNet evaluations and transfer to downstream tasks.

Pretraining Settings We use similar configurations as
SimCLR v2. Specifically, we use ResNet-50 as the base
encoder, with a 3-layer MLP projection head. We use a
65k memory buffer for the momentum encoder, with a mo-
mentum of 0.999. Following Tian et al. [43], we use ran-
dom crops, color distortion, Gaussian blur, and RandAug-
ment [14] for data augmentation. We also adopt multi-

Method top-1 top-5

Supervised 76.5
Representation Learning
Contrastive learning
MoCo v1 [22] 60.6 —
PIRL [34] 63.6 —
PCL [32] 65.9 —
SimCLR v1 [9] 69.3 89.0
MoCo v2 [11] 71.1 —
SimCLR v2 [10] 71.7 90.4
InfoMin [43] 73.0 91.1
FNC (ours) 74.4 91.8
Others
BYOL [21] 74.3 91.6
SwAV [7] 75.3 —

Table 5. ImageNet linear evaluation.

1% 10%
Method top-1 top-5 top-1 top-5

Supervised 25.4 56.4 48.4 80.4
Semi-supervised
UDA [48] — 68.8 — 88.5
FixMatch [41] — 71.5 — 89.1
Representation Learning
Contrastive learning
PIRL [34] 30.7 60.4 57.2 83.8
PCL [32] — — 75.6 86.2
SimCLR v1 [9] 48.3 75.5 65.6 87.8
SimCLR v2 [10] 57.9 82.5 68.4 89.2
FNC (ours) 63.7 85.3 71.1 90.2
Others
BYOL [21] 53.2 78.4 68.8 89.0
SwAV [7] 53.9 78.5 70.2 89.9

Table 6. ImageNet semi-supervised evaluation.
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Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation
SimCLR v1 [9] 68.4 90.6 71.6 37.4 58.8 50.3 50.3 80.5 74.5 83.6 90.3 91.2
SimCLR v2 [10] 73.9 92.4 76.0 44.7 61.0 54.9 51.1 81.2 76.5 85.0 91.2 93.5
BYOL [21] 75.3 91.3 78.4 57.2 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1
FNC (ours) 74.4 93.0 76.8 54.0 63.2 68.8 61.3 83.0 76.3 89.0 93.5 94.9
Finetuned
SimCLR v1 [9] 88.2 97.7 85.9 75.9 63.5 91.3 88.1 84.1 73.2 89.2 92.1 97.0
SimCLR v2 [10] 88.2 97.5 86.0 74.9 64.6 91.8 87.6 84.1 74.7 89.9 92.3 97.2
BYOL [21] 88.5 97.8 86.1 76.3 63.7 91.6 88.1 85.4 76.2 91.7 93.8 97.0
FNC (ours) 88.3 97.7 86.8 76.3 64.2 92.0 88.5 84.7 76.0 90.9 93.6 97.5

Table 7. Transfer learning on classification task using ImageNet-pretrained ResNet models across 12 data sets.

Method AP50

Supervised 81.3
MoCo v2 [11] 82.5
SwAV [7] 82.6
FNC (ours) 82.8

Table 8. Transfer learning on Pascal VOC object detection.

crop [7] with a support size of eight, which is shared with
false negative cancellation. We use the attraction strategy
with max aggregation for false negative cancellation, while
the top-k is set to 10 and a threshold of 0.7 is used for filter-
ing the scores. We pretrain for 1000 epochs on 128 Cloud
TPUs with a batch size of 4096. We use the LARS op-
timizer with a learning rate of 6.4, a cosine schedule for
decaying the learning rate, and a weight decay of 1× 10−4.

4.2.1 ImageNet Evaluation

Our evaluation on ImageNet follows a protocol similar to
that of SimCLR v2. Specifically, we conduct linear eval-
uation, in which a linear classifier is trained on top of the
frozen pretrained features, and consider semi-supervised
settings, in which we finetune the network with 1% and
10% labels available. We use a batch size of 1024 with a
0.16 learning rate, while weight decay is removed. We fine-
tune for 90 epochs in linear evaluation, 60 epochs for 1%,
and 30 epochs for 10% labels in semi-supervised settings.

Table 5 presents the linear evaluation results. Our
method achieves state-of-the-art performance for con-
trastive learning-based models with a top-1 accuracy of
74.4%, a 2.7% improvement over SimCLR v2 and a 1.4%
boost from the previous best. Among all approaches, our
method is second only to SwAV [7], a clustering-based
method, and is even better than BYOL [21], a recent state-
of-the-art method that only uses positive samples.

Table 6 presents the results in the semi-supervised set-
ting, in which our proposed model not only exceeds other
contrastive learning-based methods, but also achieves the
best performance among all models across all measures.
Notably, in the 1% labels setting, our method significantly

improves over the previous best to achieve 63.7% top-1 ac-
curacy (a 5.8% absolute improvement).

4.2.2 Transferring Features

Image Classification Following SimCLR, we perform
the same evaluations on 12 classification datasets:
Food [5], CIFAR10 [29], CIFAR100 [29], Birdsnap [4],
SUN397 [46], Cars [28], Aircraft [33], VOC2007 [17],
DTD [13], Pets [37], Caltech-101 [18], and Flowers [35].
We follow the same setup as in SimCLR. As Table 7 demon-
strates, our approach achieves a significant improvement
in performance among contrastive learning-based methods
(i.e., SimCLR v1 and SimCLR v2) in both settings. In lin-
ear evaluation, our method outperforms SimCLR v1 on all
12 datasets and is better than SimCLR v2 on all but one
dataset. In finetuning, the proposed model outperforms both
SimCLR v1 and v2 on all but one dataset, and matches that
of BYOL, with each being superior on about half of the
datasets.

Object Detection To further evaluate the transferabil-
ity of the learned embeddings, we finetune the model
on PASCAL VOC object detection. We use similar set-
tings as in MoCo [22], where we finetune on the VOC
trainval07+12 set using Faster R-CNN with a R50-C4
backbone, and evaluate on VOC test2007. We train for
34K iterations with batch size 16. The learning rate is set to
0.02, which is reduced by a factor of 10 after 20K and 28K
iterations. As Table 8 reveals, our proposed method outper-
forms both MoCo v2, SwAV, and the supervised baseline.

5. Conclusion
In this work, we address a fundamental problem in

contrastive self-supervised learning that has not been ad-
equately studied, identifying false negatives, and propose
strategies to utilize this ability to improve contrastive learn-
ing frameworks. In addition to bringing novel insights to
this topic through in-depth experimental analysis, our pro-
posed method significantly boosts existing models, and sets
new performance standards for contrastive self-supervised
learning methods.
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