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Abstract— This paper addresses the problem of autonomous
manipulation of a priori unknown palletized cargo with a
robotic lift truck. More specifically, we describe coupled per-
ception and control algorithms that enable the vehicle to engage
and drop off loaded pallets relative to locations on the ground or
arbitrary truck beds. With little prior knowledge of the objects
with which the vehicle is to interact, we present an estimation
framework that utilizes a series of classifiers to infer the objects’
structure and pose from individual LIDAR scans. The different ~ Fig- 1. The prototype forkift that is the host platform fdret mobile
classifiers share a low-level shape estimation algorithm that uses quelzgglitr'\%neﬂgggihsmumm:esalretfep?cﬁ% J}Z?nvsg'?rtgdrﬁog“;;ﬁg
a linear program to_ robustly segment input data to generate them onto the ground or the bed of a truck. The rendering orighédepicts
a set of weak candidate featurgs. We present and analyze .the the corresponding output of the pallet and truck estimatigoréghms.
performance of the segmentation and subsequently describe
its role in our estimation algorithm. We then evaluate the
performance of the motion controller that, given an estimate

for a pallet's pose, we employ to safely engage a pallet. We small-object manipulation strategies, it is not possile t
conclude with a validation of our algorithms for a set of real ,q6 manipulator compliance or feedback control strategies
world pallet and truck interactions. . . . . .
to ease insertion. Even small forklifts designed for indoor
. INTRODUCTION warehouses can exert tons of force; the tines are extremely
We have developed a robotic forklift for autonomous maligid and cannot be instrumented with the tactile sensing
terials handling in the outdoor, semi-structured envirenta Necessary for feedback control strategies for manipuiatio
typical of disaster relief and military storage warehoudés As a result, attempting to _msert tines mcorrectly_can dgena
The system performs typical warehouse tasks under the high- destroy the pallet (or its load) before the failure can be
level direction of a human supervisor, notably picking updetected and corrected.
transporting, and placing palletized cargo between trezlsb ~ In addition, a pallet's appearance is also variable. The
and ground locations in the environment. Integral to thehysical pallet structure is quite sparse, roughly 1 m sguar
system is the robot’s ability to accurately localize andekaf With a height of 15cm and inserts that are each 30 cm wide.
manipulate unknown pallets despite their variable gegmetrA view of a candidate pallet location is dominated largely by
the uneven terrain, and the unknown truck geometry. LIDAR returns from the pallet's load as well as the surface
Successfully picking up a pallet from a truck with aon which the pallet lies. Similarly, a truck's undercareag
2700kg forklift, given perfect information regarding thecomprises most of the view of a vertically-scanning LIDAR,
poses of the robot, pallet, and truck, is relatively easy. IWith limited returns arising from the vertical and horizaht
real settings, the challenges lie in accurately contrgline  faces of the truck bed. Further complicating the problem of
nonholonomic lift truck so as to safely insert the tines with accurately detecting and estimating the pallet and truslepo
the pallet’s slots. With littlea priori information, however, is the fact that, while they are themselves rigid, the férkli
the system must also detect the pallet and the truck bed, afiiles and carriage, to which the LIDARs are mounted, are
subsequently maintain an accurate estimate for theirtsmeic not rigidly attached to the vehicle, which limits the acayra
and pose while approaching and engaging the pallet. Thegkextrinsic calibration.
tasks are made difficult by variability in pallet and truck This paper presents a coupled perception and control
geometry together with the limited sensing available. Fostrategy that addresses these challenges, enabling the for
example, while certain features of cargo pallets are ptesdift to manipulate unknown pallets within semi-structured
across most pallets (i.e., roughly rectilinear, generfifly, outdoor environments. We first introduce the overall raboti
usually two insertion points designed for forklift tineshe  platform, briefly describing the aspects that are pertitent
dense geometry of pallets is highly variable. The forkliftour mobile manipulation work. We then describe a general
must use onboard sensing to recover the pallet geomesirategy for pattern detection that identifies candidatedr
in order to correctly insert the lifting tines; unlike manystructure within noisy 2D LIDAR scans. We next describe




algorithms for pallet and truck estimation that utilizesthi
pattern recognition tool to detect returns from the pallet
structure and truck bed using weak to strong classifiers.
The algorithms utilize positive detections as inputs to a se
of filters that maintain estimates for the pallet and truck
poses throughout engagement. We then describe the control
strategy that we use to servo the poses of the vehicle and
tines. Finally, we present the results of a series of vabdat
tests that demonstrate the accuracy and limitations of our
mobile manipulation strategy.

I1. RELATED WORK Fig. 2. Forklift being commanded via the tablet PC to pick up Bepa
' that is stationed on a truck bed.

There has been considerable work in developing mobile
manipulators to accomplish useful tasks in populated envi-
ronments. This work has largely focused on the problems &r object detection as well as a forward-facing camera
planning and control [2], [3], which are not inconsiderabléhat provides images to a remote user's command interface.
for a robot with many degrees of freedom and many actuatol¥e estimate the vehicle’s pose via dead-reckoning based
capable of exerting considerable force and torque. Thes®on wheel encoder velocity measurements together with
approaches have genera“y taken one of two approach@ﬂentaﬂon measurements from an integrated GPS/IMU.
either assume a high-fidelity kinodynamic model and apply Pallet detection relies upon a single Hokuyo UTM laser
sophisticated search to solve for a feasible control plga [4range finder with a 30m range and a 140degree field-of-
[6], or use reactive policies with substantial sensing andiew. The unit is mounted at the elbow of one of the forklift's
feedback control (either visual [7] or tactile [8], [9]) tvaid  tines and scans in a horizontal plane situated slightly @abov
the requirements of a model. the tine’s top surface. Meanwhile, the truck bed estimation
Meanwhile, there has been extensive work addressing taégorithms that follow utilize a pair of UTM laser range
problem of object segmentation, classification, and estiméinders (30m range, 270 degree FOV) mounted to the left
tion based upon range data. In particular, early work b@nd right sides of the carriage assembly with a vertical scan
Hebertet al. [10] describes algorithms for object detectionplane. All three LIDARs move in tilt and height with the
and recognition with an outdoor robot using laser scafarriage.
data. Hoffman and Jain [11] present a method, based onThe forklift operates autonomously based upon high-level
range data, to detect and classify the faces comprising 3tirectives from a user who commands the system via a
objects. Similarly, Newmaret al. [12] propose a model- hand-held tablet computer [1], [19]. In the case of pallet
driven technique that leverages prior knowledge of objecngagement tasks, the user can direct the platform to pick
surface geometry to jointly classify and estimate surfacep a pallet from the ground or a truck bed, or to place a pallet
structure. These techniques require range images of tBea specified, unoccupied location on the ground or truck.
scene, which, in the case of our platform, are subject tbhe user indicates the desired pallet to engage by circting i
systematic error due to the pliancy of the forklift struetto ~ Within the image from the vehicle’s forward-facing camera,
which the LIDARs are mounted. Researchers have extendeédnich is displayed on the tablet (Figite 2). Similarly, tseu
the robustness of range image segmentation [13] and objédentifies a desired pallet placement location by circlihg t
model parameter estimation [14], [15] using randomize&egion in the camera image.
sampling to accommodate range images with many outliers.In the subsequent sections, we explain how the robot
The specific problem of developing an autonomous lifeutonomously manipulate pallets given directives of this
truck that is able to pick up and transport loaded palletorm.
is not new. The same is true of pallet detection and local-
ization methods, which have been studied in the perception
community due to pallets’ sparse structure. Most of this
work, however, differs significantly from our own, in that In this section, a novel efficient algorithm that identifies
it assumes a clean, highly-structured environment, doés ribe closest edge in LIDAR data is proposed. Two closest
generalize across varying pallet geometry [16]-[18], anddge detection problems are studied. In the relatively l&mp
does not consider the challenging problem of placing pallefirst case, the orientation of the edge is assumed to be known
onto and picking pallets off of unknown truck beds. and the distance of the edge to the sensor is estimated. In the
second variant, both the orientation and the distance of the
edge are identified. Inspried by similar problems in leagnin
Our platform is a 2700kg Toyota forklift with drive-by- with kernel methods [20], the first variant of the problem is
wire modifications enabling computer-based control of théormulated as a linear program, the dual of which is shown
vehicle and mast (i.e., tine height and forward/backwdty ti to be solvable inO(nmin{v,logn}) time, wheren is the
actuation. The platform is equipped with laser range findersumber of points and is a problem-specific parameter. Note

IV. FAST CLOSESTEDGE DETECTION
FROM LASER RANGE FINDER DATA

IIl. SYSTEM OVERVIEW



the distancep of the line with normala to the origin such
that p is maximum and the line separates all pointsiAin
from the origin. Notice that a fi@e algorithm that computes
the distance oft; from the origin for alli € 7 and returns
the minimum distance solves this problem. Notice also that
this algorithm runs in timeD(n). Indeed, it can be shown
that any deterministic algorithm that solves this probleas h
to run in time Q(n). However, due to the noise embedded
in the laser range finder data, especially for LIDAR returns
Fig. 3. A graphical representation of the closest edge teteproblem — arising from the corners, this solution may provide noisy
fo_r 2D laser returns from a pallet face. The three grey paamesoutliers  jnformation. Precisely for this reason, the aforementibne
with respect to the linéa, p). . . .
formulation of the closest edge detection problem includes
an extra term in the objective function so as to filter out
that solving the original linear program with, for instantiee ~ Such noise. The rest of this section details an algorithrh tha
interior point algorithm require®(n3?) time in the worst Solves the closest edge detection problem while incurring
case [21]; hence, exploiting the structure of the dual mogr SMall éxtra computational cost.
results in significant computational savings, facilitgtieal- 1€ closest edge detection problem can be formulated as
time implementation for robotics applications. For thesset: & Mathematical program as follows:

variant of the probl.em, a heuristic algorithm, which uses th maximize p — %Eiel &, 1)
algorithm for the first variant a constant number of times, biectto  d > ‘ VieT 5
is provided. Both algorithms are used as a basis to detect subjectto  d; = p —&i, PEL )
pallets and trucks in Sectiofig V ald] VI, respectively. §& >0, VieT, (3)
A. Closest Edge Detection with Known Orientation wherep € R and§; € R are the decision variables, and

Consider the first variant of the closest edge detectich € & IS @ parameter such that=1/C'. The parameted,
problem. To define the problem more formally, lat — is the distance of point; to the origin when projected along
(1,29, .. 20} = {w:dicr, whereT = {1,2,....n}, be @ €. di = (a,z;). o ,
the set of points in the two dimensional Euclidean space FOF computational purposes, it is useful to consider the
R2, representing the data sampled from a planar laser range@! of the linear prograni (I-3):
finder. FigurdB presents a simple example with laser returns minimize Y, di\i, 4)
that are representative of those from a pallet face. Without subjectto Y. A =1, Viel ®)
loss of generality, let the sensor lie in the origin of this ! i€ M *1 v )

Euclidean space and be oriented such that its normal vector 0<Ai<y, Viel, (6)

is [1, 0]T. Let a € R? denote a_normglized vector, .., where \; are called the dual variables. L6t™, &5, .., €5)
[a|l = 1. Informally, the problem is to find the distange pe an optimal solution to the linear prograf{1-3) and
of the line to the origin such that all data pointsih except (AX,...,\%) be the optimal solution of the dual linear

a few outliers, are separated from the origin by this ””eprogram [B). The optimal primal solution can be recovered

More p;ems;]el?/(,j for Erl]” points:; € X, except a few outlle_rs, from the dual solution ag* = quez Aid;.
(a,z;) > p holds, where(., -) denotes the dot product, i.e., The dual linear program is particularly interesting for
(a, z) denotes the distance of to the origin when projected computational purposes. Strictly speaking,

along the vectom. Let & denote the distance of point;

to the separating I_ine if the distance fr_om the originato Proposition IV.1 Algorithm[3 runs inO(n min{logn, v})
(prOJe_cted along) is less tharp; other_vwse let§; be zero. tme and solves the dual linear prograf[{-6).
That is¢; = max (p — (a,;),0) (see Figurél3).

Given a line described by a normaland distancep, a Algorithm [, DUALSOLVE, takes the parameter, the
point z; with & > 0 is called anoutlier with respect to the normal vectora, and the setY as an input and returns
line (a, p). We formulate theclosest edge detection probleman indexed sef{\;};cz of values for the dual variables.
as maximization of the following functiorp — C' >, &, DUALSOLVE employs two primitive functionsSORT takes
where C' is a problem dependent constant parameter, thah indexed sefy; }.cz as an input, wherg; € R, and returns
represents the trade-off between two objectives: maxingizi a sorted sequence of indices such thaty 7y < y7¢11)
the distancep of the separating line to the origin andfor all j € {1,2...,|Z|}. MIN, meanwhile, returns the index
minimizing the total distancg _,_; &; of the outliers to line j of the minimum element in a given index set, ig:.,< y;/
(a, p). Notice thatC' = 0 will render p = oo, in which case for all j' € 7.
all data points will be outliersC — oo, on the other hand,  Firstly, notice that the elementary operations in
will allow no outliers in a feasible solution. DUALSOLVE require only additions, multiplications,

To further motivate, first let us consider the case with nand evaluations of cross products, none of which require
outliers C' — oo) and the relatively easy problem of findingthe computation of any trigonometric function. Apart



from its theoretical computational guarantees ensured [yhe proofs of these propositions are technical and are ednitt
Proposition[1V1, this particular property of Algorithid 1 for lack of space.
makes it fast in practice as well. Secondly, notice also that

with Algorithm [I one can solve the mathematical progral

(T{3). Let us denote this procedure witliSTFIND(v, a, X)

(see Algorithm[2). ClearlyDISTFIND also runs in time

O(nmin{logn,v}).

Algorithm 1: DUALSOLVE (v, a, X)

for all i € 7 do
for all 1 € Z do
| d; :=<a,x; >;
D = {d;}iet;
if log|D| < v then
J := SO0RT(D);
for j:=1to |v| do
| Az =1/v;
Ag(wi+n =1 = v]/v;
else
for i :=1to |v] do
§ := MIN(D);
)‘j = ]./V,
D:=D\{d;};
j = MIN(D);
L Aj=1—v]/v;
return {\; }iez

Algorithm 2: DISTFIND(v, a, X)

for all i € Z do

| di =<a,z; >,
{A\i}iez := DUALSOLVE(v, a, X);
p = Dier Nidi

- Closest Edge Detection with Unknown Orientation

If the orientation is not known, then we invoke
DUALSOLVE a constant number of times for a set
{ai}ieq1,2,....ny of normal vectors, each oriented with angle
0; relative to the X-axis, wherd; are uniformly placed
on the interval betweer; = 0., and #; = 0,., (see
Algorithm [3). After each invocation tdDUALSOLVE, a
weighted average; of the data points is computed where
the dual variables returned froPUALSCLVE are used as
weights. Using a least squares method, a line segment is
fitted to the resulting pointgz;},cq1,2,...ny and returned
as the closest edge as the tupté o', w’), wherez’ is the
position of the mid-pointg’ is the orientation, and’ is the
width of the line segment.

Algorithm 3: EDGEFIND(v, X, Oimin, Omax; IV)

for j:=1to N do

0:= omin + (amax - omin)j/N;

a := (cos(#),sin(0));

{\i}iez := DUALSOLVE(v, a, X);

zj 1= Ziel’ Nt
(7 ad w') = LINEFIT({zj}je{lgw,N});
return (z/,a’,w’)

C. The Hierarchical Classification Framework

Pallet and truck perception algorithms that we introduce
in the next two sections ruml STFI ND or EDGEFI ND
over sets{ X} }rex Of data points to extract a séffy }rex
of featuresfrom the data. In most cases, these features
correspond to real-world structure, such as the existefce o
slots in an edge returned BDGEFI ND, or the height of the
truck bed detected usingl STFI ND.

The next sections present pallet and truck detection al- The data setst;, can be LIDAR returns from different

gorithms, which employ th®l STFI ND algorithm heavily.

sensors, or returns from the same sensor but acquired at

The valuev influences the effectiveness of the detectioflifferent time intervals. In some caseX are acquired
algorithms. Although the choice of is generally problem- from a single scan of the same sensor, B, is de-

dependent, we present a couple of its interesting progertigérmined from the featuregy, fs, ...

before moving on with detection algorithms.

Proposition IV.2 min;c7 d; < p*.

, [ of the data sets
Xy, Xa,y ..., X. Yet, no matter how the data sefd’ }rex

are selected, the seff;}reic of features are generated
using intuitive algorithms that employ eithéd STFI ND

or EDGEFI ND. These features are then compared with a

This proposition merely states that the distance returryed mominal set{ f; },cx of features, for instance by computing
DI STFI ND is never less than the distance of any of thehe distancé|{ fi}rex — { fx }xex || according to some norm;
points in X to the origin. That is, the line that separates théf the distance is within acceptable limits, the ety }rex
origin from the data points either passes through at least oof data sets is marked as including the object that is to be
of the data points, or there exists at least one data point thgerceived from the LIDAR data.

is an outlier with respect to the line. The following proposi
tion indicates an important relation between the number of

outliers and the parametet

V. PALLET ESTIMATION

The algorithms described in Sectibnl IV are next used to
design effective heuristic methods to detect pallets from a

Proposition IV.3 The parameter is an upper bound on the single LIDAR scan. The detection method is then used as

number of outliers with respect to the the liig p*).

the basis for batch detection and subsequent filtering.



The algorithms described in this section can be used f@tpaiiet, apaliet, Wpallet, Wieft, Wright, Lleft, Tright), Where zjer and
estimating both the pose and shape of pallets of variousign are the distance of the center of left and right slot
types and sizes. Most pallets used in industrial applioatio locations computed directly from the featurgs, ..., fs;
have distinctive features that are visible in LIDAR scansptherwise it reports no pallet detection. The nominal value
namely two slots (each 20cm to 40 cm wide) and an overallf the features as well as their acceptable bounds were hand-
widths varying from 0.9 m to 1.5 m. Moreover, the two slotguned in this work; however, they can, in principle, be |learn
generally have the same width and are offset symmetricalfyom training data. We leave this for future work.
with respect to the mid-point of the pallet face. Our pallet For batch detection, we actively scan the volume of
estimation algorithms first identify the closest edge in @nterest by actuating the lift truck’s mast and collectiradlgt
single laser range finder scan, then look for these distindetections at various heights. A classification algorithent
features in the edge. The features are identified by invokirfgst checks whether there is a set of detections that span
calls toDI STFI ND and EDGEFI ND. a height consistent with that of typical pallets and that are

As a step prior to online filtering, we would like to extractmutually consistent in terms of Mahalanobis distance. If so
the aforementioned features and detect pallets that li@wit the batch detection algorithm outputs the pallet detection
the volume of interest. Since our main interest is onlin@averaged over this set of detections as well as the detection
filtering, the detection is carried out using only a singlarsc heights. Subsequently, we initialize a Kalman filter over
(see Figurél4) instead of accumulated laser scans. Howewre pallet detection states with this average detectioms an
assuming that the pallet roll angle is close to the that of thepdate the filter with any new detections. An active scanning
lift truck during active scanning, several detections oted operation is shown in Figuilg 5.
at different heights can be used for batch detection pugose
as well, with essentially no modifications of the detection -
algorithm. Indeed, this strategy is employed in this work. b

Given a single LIDAR scan, the pallet detection algorithm e, a
works as follows. Lett’ be the set of LIDAR points obtained el
from the laser range finder sensor mounted on the tine elbow. == o
First, the algorithm culls the points withi&’ that lie within
the region of interest, forming a subs& (see Figuré14). @
Subsequently(zpaliet, Gpaliet, Wpallet) := EDGEFIND is applied .=
to X to detect the closest edge, which constitutes a candidate
pallet face. The resulting width estimate constitutes trst fi )
classification featuref; = (wpale). Second, the algorithm . . Xy
forms a subsef] of X} that contains all those points ifi;
that lie in a box centered af; of lengthe, width w}, and
orientationa) (see the blue box ifl4). We use= 20cm.

Third, from X] four sets of pointsts, X3, X, and X are . & "
extracted. IntuitivelyX; is the set of all those points A’ %

that are to the left of the box and are at least 25cm away

from the center of the box. Similarly, is the set of all those (b) ©

points in x| that are at least 25cm right of center. The setgig 4. (a) A single pallet scan and the user gesture prajeote the
X3 and X5 are the complements of; and Xy, respectively world indicating boundaries of the region of interest (pinp) Points in

i i i the region of interest as well as the line detection and tsecated box.
EEIGQSIIZ%)ISIE: S;Irz]tt?hgfsatlgffi 3@;5)?3{:5:?;:5?2 ggact”gc) Thg data set&’; with 7 = 2, 3,4, 5 and their origins shown as red dots.
away from the center. Similarly, the points &y and X are
translated such that their origins are to the right of the box VI. TRUCK BED ESTIMATION
and 25 cm away from the center. Subsequently, the algorithm This section describes our truck detection algorithms. Our
runs theDl STFI ND function on&; for all i = 2,3,4,5 and approach to truck estimation employs a Kalman filter to
notes the distance returned by theSTFI ND algorithm as estimate the location of the truck bed online. The user pen
the featuref; associated with data sat. These features are gesture projected into the world provides an initial coiodit
denoted agfa = (5fh), f3 = (O, fa = (/) @and fs =  for the Kalman filter. Data acquired from the two LIDARs
(dneqn)- Note that, intuitively,/3, is the distance from thfar  mounted vertically on both sides of the mast are used for
side of theleft slot to the center of the pallet face and similardetection of the truck bed’s height, distance, and orieriat
intuition applies to other features. Finally, the algamith which in turn are used to update the Kalman filter. The truck
computes the widthwer and wrigny Of the left and right bed estimate is used in conjunction with the user pen gesture
slots. Note that this threshold strategy can be implementad estimate the drop off location, when placing a pallet on
within the framework of Section TVAC. If the features are inthe truck bed.
acceptable bounds with respect to the prespecified nominalThe truck detection algorithm also operates within the
set of values, then the algorithm outputs the pallet degecti framework described in Sectien IM-C. From the laser range




Fig. 6. Truck bed detection algorithm depicted with raw déaése-colored
€Y by height) acquired from the sensor mounted on the right ofhst.

\ no detection. The heighitycx of the truck bed is computed
\ \ as the average Ofjerr and hyigne. The locationzyyck on the
@\ other hand, is the intersection of the line that passes gffrou
(c)

N
(d) zleft @nd zighy With the user pen-gesture ray projected on the

plane of truck bed height and parallel to the ground (see

\ o \ | / \ / Figure(®).

\ \-"_ = \ A Kalman filter is initialized with (zP1o, afror, hPion),
N =3 e whereh% is a prior on the truck bed height setto 1 m in our

©) ® ) experiments, and/ro and al% are the prior position and

orientation obtained from the user gesture as follows.tFirs

Fig. 5. Pallet detection algorithm as a pallet on a truck sdating actively @ Circle center is fitted to the user pen-gesture and prajecte

scannedd. (b-c)hIDAR Ejeéurns fr(c(;m)the undercarriage angargxek bed are as a ray in to the worldzy o, is the intersection of this ray
rejected as pallet candidates. (d-f) LIDAR returns from et face are prior
parallel to the grounda

. . prior
identified as the pallet. (g)The load on the pallet is colyertled out as a with the plane of helghhtruck truck’

candidate pallet face. on the other hand, is the unit vector oriented from the bot

to 2P o The filter is updated with each positive detection.

Figure[T shows a pallet drop off operation, in which truck
finder mounted to the left of the mast, two features, thbed estimation is used to determine the drop-off location.
distance of the sensor to the truck bed and the height of the
truck bed are extracted. The same features are also extract
for the sensor that is mounted to the right of the mast
Subsequently, these features are compared with lower a
upper bounds as well as each other to ensure consisteng
If found to be within the limits, the detection algorithm
outputs the truck bed detection as the height, position, and (a)
the orientation of the truck bed.

Strictly speaking, letXiex and Xigne be the point sets
acquired via the laser range finder sensor mounted to t
left and right of the mast. Left; be the set of all those
points in X that are at least 25 cm above the ground. Th
truck bed detection algorithm us@3STFIND to detect the
distancedie; of these points to the sensor, which forms the © @

left p '
element of the first featuré; = (dier) for classification. Let Fig. 7. Truck bed estimation. (a) The initial estimate of theckr bed
; be the set of all those points in s that are at leaste 3t ECE I |0 0SEe B BEEE (e e s
and at mostler + ¢ away from the sensor. Moreover, let theine truck, the sensors get LIDAR returns from the truck bed, tae Kalman
points in X5 be translated such that their centerlig; away filter is updated accordingly. (d) The bot drops off the patethe part of
from sensor and 5m above the ground (see Fiflire 6). Nefte tuck bed indicated by the user pen gesture.
the algorithm employ®l STFI ND to determine the distance
hiert Of these points from the ground, which is noted as the
second featurgs = (hiett). Similarly, we employ the same
procedure withXgn to obtain the setsts and X, and two This section presents a feedback control algorithm that can
additional featuresfs = (diignt) and fiu = (hrignt). Finally, be used to steer the robot from an initial position and hegadin
the algorithm checks whether all the extracted features ate a final position and heading. The algorithm is tailored and
within acceptable bounds, and for differences between thened for precise pallet engagement operations. In the next
features observed via the left sensor and those observeection, we provide experimental results using this cdietro
with the right sensor, in which case it outputs the truck beth closed-loop operation with the pallet and truck percapti
detection(ziuck, atruck, Prruck); Otherwise, the detector outputs algorithms presented in the previous sections.

VIl. CONTROL ALGORITHMS



Let zinitar @nd ainiiar be the robot’s initial position and u
orientation, wherejnitia) is a coordinate Euclidean plane and ° .
ainitial 1S @ normalized two-dimensional vector. Similarly, let ° ﬁ R ;;
“final @nd aginal be the desired final position and orientation |

of the robot. (In our applicatiorfinal andasinal represent the ¢, e I y ,
pallet position and orientation.) Without loss of genayali ~. e
let ztinat = (0,0) be the origin of the coordinate system and - S /
afinal = (1,0) be oriented toward thé&(-axis (see Figurgl8). : o2 &
Similarly, lete, be the distance ofiija tO zfinal @long the : .
direction orthogonal tasing and letey be the angle between °+ = = o+ = = « 7 T
the vectorsainitar and asinal, 1.€., €9 = COS'l(ainitiaI  Ufinal)- (a) Relative Angle (Truck) (b) Cross Track Error (Truck)

Finally, let § be the steering control input to the robot. In
this work, we use the following steering control strategy fo -
pallet engagement operations: 7

§ = K, tan™ (e,) + Kyey, 7

(meters)

o

where K, and K, are controller parameters. Assuming a’,
Dubins vehicle model [22] of the robot as in

Z = (cosb,sin®), (8)

O = tan™(0), @
(c) Relative Angle (Ground) (d) Cross Track Error (Ground)

ER
X (meters)

the nonlinear control law{7) can be shown to converge such

. . Fig. 9. Results of the validation tests for pallet engageséom[(a) [(B) a
thate, — 0 andey — 0 holds, if —7/2 < ey < m/21iS ;4 ped anf[ B[ (#)) the ground. Each path represents twt'sdrajectory

initially satisfied [23]. during a successful pickup. A red ‘x’ denotes the initialifioa of the robot
for a failed engagement. Arrows indicate the robot’s forwdir@ction. All

Ginitial poses are shown relative to that of the pallet, centeredeadrtigin with the
¥y eg front face along thec-axis. The trajectories are colored according 4 (a),
T‘ the relative angle between the pallet and the robo{ @)f{d}the cross
track error immediately prior to insertion.
e Y
Yy
- l 7777777 H ‘X 8

5

Fig. 8. lllustration of the controller algorithm )
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VIIl. EXPERIMENTAL RESULTS

This section analyzes the pallet engagement system de-
scribed above. The closed-loop pallet engagement softwe
was tested extensively on the hardware described in Se
tion [l at two testing sites, one on the MIT campus, in
Cambridge, MA, and the second at Fort Belvoir, a U.S. Army
base in Virginia. Both testing sites have packed gravef,u
terrain with small rocks and mud. In these experiments, we
commanded the bot to pick up pallets from different location ~ (©) Relative Angle (Ground)  (d) Cross Track Error (Ground)
on the ground as well as from truck beds, and recordegy. 10. Histograms that depict the resulting error immedjapeior to the
the lateral position and orientation of the robot with respe forkiift inserting the tines in the pallet slots, for a sarief tests. Figures

i , and[(d) correspond to the relative angle between theclehiforward
to the paIIet in each test as reported by the robot's de irection and the pallet normal for engagements off of a trutk aff of the

reckoning module. Note that the experiments were conductgghund, respectively. The histogramgn] (b) fnd (d) presenfinal lateral
with different types of pallets and, within each type, thesross track error for the successful engagements.

pallets varied in their geometry (i.e., width, slot locatio
and slot width). The pose of the pallet relative to the truck

0

1 8 90 2 10 12

3 4 5 6 4 6 ]
Final Relative Angle (degrees) Final Cross Track Error (cm)

and the truck’s pose relative to the forklift also varied.

and they occur when the bot starts longitudinally 7.5 meters

Figure[® shows a plot of the success and failures of thend/or laterally 3 meters or more away from the pallet. In

pallet pickup tests, together with final relative angle arubs

most of these cases, the resolution of the laser range finder

track error in each experiment (see Fidure 10 for histogyamseems insufficient for the data to include returns from the
Note that most of the failures are due to pallet detectiompallet surface. In some other cases, we have seen pallet



engagements where the bot ended up pushing the pall@] J. Park and O. Khatib, “Robust haptic teleoperation of abiteo

and turning up to 10degrees; we classified these cases as Manipulation platform,” in Experimental Robotics IXser. STAR

fail In th . hich th I isible duri Springer Tracts in Advanced Robotics, M. Ang and O. Khatibds.E

ailures. In the cases in which the pallet was visible during 5006 "vol. 21, pp. 543-554.
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