
A Perception-Driven Autonomous Urban Vehicle

John Leonard1, Jonathan How1, Seth Teller1, Mitch Berger1, Stefan Campbell1,
Gaston Fiore1, Luke Fletcher1, Emilio Frazzoli1, Albert Huang1, Sertac Karaman1,
Olivier Koch1, Yoshiaki Kuwata1, David Moore1, Edwin Olson1, Steve Peters1,
Justin Teo1, Robert Truax1, Matthew Walter1, David Barrett2, Alexander Epstein2,
Keoni Maheloni2, Katy Moyer2, Troy Jones3, Ryan Buckley3, Matthew Antone4,
Robert Galejs5, Siddhartha Krishnamurthy5, and Jonathan Williams5

1 MIT, Cambridge, MA 02139
jleonard@mit.edu

2 Franklin W. Olin College
Needham, MA 02492
david.barrett@olin.edu

3 Draper Laboratory
Cambridge, MA 02139
tbjones@draper.com

4 BAE Systems Advanced Information Technologies
Burlington, MA 01803
matthew.antone@baesystems.com

5 MIT Lincoln Laboratory
Lexington, MA 02420
galejs@ll.mit.edu

Abstract. This paper describes the architecture and implementation of an autonomous
passenger vehicle designed to navigate using locally perceived information in preference to
potentially inaccurate or incomplete map data. The vehicle architecture was designed to han-
dle the original DARPA Urban Challenge requirements of perceiving and navigating a road
network with segments defined by sparse waypoints. The vehicle implementation includes
many heterogeneous sensors with significant communications and computation bandwidth to
capture and process high-resolution, high-rate sensor data. The output of the comprehensive
environmental sensing subsystem is fed into a kino-dynamic motion planning algorithm to
generate all vehicle motion. The requirements of driving in lanes, three-point turns, parking,
and maneuvering through obstacle fields are all generated with a unified planner. A key aspect
of the planner is its use of closed-loop simulation in a Rapidly-exploring Randomized Trees
(RRT) algorithm, which can randomly explore the space while efficiently generating smooth
trajectories in a dynamic and uncertain environment. The overall system was realized through
the creation of a powerful new suite of software tools for message-passing, logging, and vi-
sualization. These innovations provide a strong platform for future research in autonomous
driving in GPS-denied and highly dynamic environments with poor a priori information.

1 Introduction

In November 2007 the Defense Advanced Research Projects Agency (DARPA) con-
ducted the DARPA Urban Challenge Event (UCE), which was the third in a se-
ries of competitions designed to accelerate research and development of full-sized

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 163–230.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

164 J. Leonard et al.

Fig. 1. Talos in action at the National Qualifying Event.

autonomous road vehicles for the Defense forces. The competitive approach has
been very successful in porting a substantial amount of research (and researchers)
from the mobile robotics and related disciplines into autonomous road vehicle re-
search (DARPA, 2007). The UCE introduced an urban scenario and traffic inter-
actions into the competition. The short aim of the competition was to develop an
autonomous vehicle capable of passing the California driver’s test (DARPA, 2007).
The 2007 challenge was the first in which automated vehicles were required to obey
traffic laws including lane keeping, intersection precedence, passing, merging and
maneuvering with other traffic.

The contest was held on a closed course within the decommissioned George Air
force base. The course was predominantly the street network of the residential zone
of the former Air force base with several graded dirt roads added for the contest.
Although all autonomous vehicles were on the course at the same time, giving the
competition the appearance of a conventional race, each vehicles was assigned in-
dividual missions. These missions were designed by DARPA to require each team
to complete 60 miles within 6 hours to finish the race. In this race against time,
penalties for erroneous or dangerous behavior were converted into time penalties.
DARPA provided all teams with a single Route Network Definition File (RNDF)
24 hours before the race. The RNDF was very similar to a digital street map used
by an in-car GPS navigation system. The file defined the road positions, number of
lanes, intersections, and even parking space locations in GPS coordinates. On the
day of the race each team was provided with a second unique file called a Mis-
sion Definition File (MDF). This file consisted solely of a list of checkpoints (or
locations) within the RNDF which the vehicle was required to cross. Each vehicle
competing in the UCE was required to complete three missions, defined by three
separate MDFs.

Team MIT developed an urban vehicle architecture for the UCE. The vehicle
(shown in action in Figure 1) was designed to use locally perceived information

A Perception-Driven Autonomous Urban Vehicle 165

in preference to potentially inaccurate map data to navigate a road network while
obeying the road rules. Three of the key novel features of our system are: (1) a
perception-based navigation strategy; (2) a unified planning and control architec-
ture, and (3) a powerful new software infrastructure. Our system was designed
to handle the original race description of perceiving and navigating a road net-
work with a sparse description, enabling us to complete national qualifying event
(NQE) Area B without augmenting the RNDF. Our vehicle utilized a powerful and
general-purpose Rapidly-exploring Randomized Tree (RRT)-based planning algo-
rithm, achieving the requirements of driving in lanes, executing three-point turns,
parking, and maneuvering through obstacle fields with a single, unified approach.
The system was realized through the creation of a powerful new suite of software
tools for autonomous vehicle research, which our team has made available to the re-
search community. These innovations provide a strong platform for future research
in autonomous driving in GPS-denied and highly dynamic environments with poor
a priori information. Team MIT was one of thirty-five teams that participated in the
DARPA Urban Challenge NQE, and was one of eleven teams to qualify for the UCE
based on our performance in the NQE. The vehicle was one of six to complete the
race, finishing in fourth place.

This paper reviews the design and performance of Talos, the MIT autonomous
vehicle. Section 2 summarizes the system architecture. Section 3 describes the de-
sign of the race vehicle and software infrastructure. Sections 4 and 5 explain the set
of key algorithms developed for environmental perception and motion planning for
the Challenge. Section 6 describes the performance of the integrated system in the
qualifier and race events. Section 7 reflects on how the perception-driven approach
fared by highlighting some successes and lessons learned. Section 8 provides de-
tails on the public release of our team’s data logs, interprocess communications and
image acquisition libraries, and visualization software. Finally, Section 9 concludes
the paper.

2 Architecture

Our overall system architecture (Figure 2) includes the following subsystems:

• The Road Paint Detector uses two different image-processing techniques to fit
splines to lane markings from the camera data.

• The Lane Tracker reconciles digital map (RNDF) data with lanes detected by
vision and lidar to localize the vehicle in the road network.

• The Obstacle Detector uses Sick and Velodyne lidar to identify stationary and
moving obstacles.

• The low-lying Hazard Detector uses downward looking lidar data to assess the
drivability of the road ahead and to detect curb cuts.

• The Fast Vehicle detector uses millimeter wave radar to detect fast approaching
vehicles in the medium to long range.

• The Positioning module estimates the vehicle position in two reference frames.
The local frame is an integration of odometry and Inertial Measurement Unit

166 J. Leonard et al.

Fig. 2. System Architecture.

(IMU) measurements to estimate the vehicle’s egomotion through the local en-
vironment. The global coordinate transformation estimates the correspondence
between the local frame and the GPS coordinate frame. GPS outages and odom-
etry drift will vary this transformation. Almost every module listens to the Posi-
tioning module for egomotion correction or path planning.

• The Navigator tracks the mission state and develops a high-level plan to ac-
complish the mission based on the RNDF and MDF. The output of the robust
minimum-time optimization is a short-term goal location provided to the Motion
Planner. As progress is made the short-term goal is moved, like a carrot in front
of a donkey, to the achieve the mission.

• The Drivability Map provides an efficient interface to perceptual data, answer-
ing queries from the Motion Planner about the validity of potential motion paths.
The Drivability Map is constructed using perceptual data filtered by the current
constraints specified by the Navigator.

• The Motion Planner identifies, then optimizes, a kino-dynamically feasible ve-
hicle trajectory that moves towards the goal point selected by the Navigator
using the constraints given by the situational awareness embedded in the Driv-
ability Map. Uncertainty in local situational awareness is handled through rapid
replanning and constraint tightening. The Motion Planner also explicitly ac-
counts for vehicle safety, even with moving obstacles. The output is a desired
vehicle trajectory, specified as an ordered list of waypoints (position, velocity,
headings) that are provided to the low-level motion Controller.

A Perception-Driven Autonomous Urban Vehicle 167

• The Controller executes the low-level motion control necessary to track the
desired paths and velocity profiles issued by the Motion Planner.

These modules are supported by a powerful and flexible software architecture
based on a new lightweight UDP message passing system (described in Section 3.3).
This new architecture facilitates efficient communication between a suite of asyn-
chronous software modules operating on the vehicle’s distributed computer system.
The system has enabled the rapid creation of a substantial code base, currently ap-
proximately 140,000 source lines of code, that incorporates sophisticated capabili-
ties, such as data logging, replay, and 3-D visualization of experimental data.

3 Infrastructure Design

Achieving an autonomous urban driving capability is a difficult multi-dimensional
problem. A key element of the difficulty is that significant uncertainty occurs at
multiple levels: in the environment, in sensing, and in actuation. Any successful
strategy for meeting this challenge must address all of these sources of uncertainty.
Moreover, it must do so in a way that is scalable to spatially extended environments,
and efficient enough for real-time implementation on a rapidly moving vehicle.

The difficulty in developing a solution that can rise to these intellectual chal-
lenges is compounded by the many unknowns in the system design process. Despite
DARPA’s best efforts to define the rules for the UCE in detail well in advance of
the race, there was huge potential variation in the difficulty of the final event. It was
difficult at the start of the project to conduct a single analysis of the system that
could be translated to one static set of system requirements (for example, to pre-
dict how different sensor suites would perform in actual race conditions). For this
reason, Team MIT chose to follow a spiral design strategy, developing a flexible ve-
hicle design and creating a system architecture that could respond to an evolution of
the system requirements over time, with frequent testing and incremental addition
of new capabilities as they become available.

Testing “early and often” was a strong recommendation of successful par-
ticipants in the 2005 Grand Challenge (Thrun et al., 2006; Urmson et al., 2006;
Trepagnier et al., 2006). As newcomers to the Grand Challenge, it was imperative
for our team to obtain an autonomous vehicle as quickly as possible. Hence, we
chose to build a prototype vehicle very early in the program, while concurrently un-
dertaking the more detailed design of our final race vehicle. As we gained experience
from continuous testing with the prototype, the lessons learned were incorporated
into the overall architecture and our final race vehicle.

The spiral design strategy has manifested itself in many ways – most dramatically
in our decision to build two (different) autonomous vehicles. We acquired our proto-
type vehicle, a Ford Escape, at the outset of the project, to permit early autonomous
testing with a minimal sensor suite. Over time we increased the frequency of tests,
added more sensors, and brought more software capabilities online to meet a larger
set of requirements. In parallel with this, we procured and fabricated our race vehi-
cle Talos, a Land Rover LR3. Our modular and flexible software architecture was

168 J. Leonard et al.

designed to enable a rapid transition from one vehicle to the other. Once the final
race vehicle became available, all work on the prototype vehicle was discontinued,
as we followed the adage to “build one system to throw it away”.

3.1 Design Considerations

We employed several key principles in designing our system.

Use of many sensors. We chose to use a large number of low-cost, unactuated
sensors, rather than to rely exclusively on a small number of more expensive, high-
performance sensors. This choice produced the following benefits:

• By avoiding any single point of sensor failure, the system is more robust. It
can tolerate loss of a small number of sensors through physical damage, op-
tical obscuration, or software failure. Eschewing actuation also simplified the
mechanical, electrical and software systems.

• Since each of our many sensors can be positioned at an extreme point on the
car, more of the car’s field of view (FOV) can be observed. A single sensor, by
contrast, would have a more limited FOV due to unavoidable occlusion by the
vehicle itself. Deploying many single sensors also gave us increased flexibility
as designers. Most points in the car’s surroundings are observed by at least one
of each of the three exteroceptive sensor types. Finally, our multi-sensor strat-
egy also permits more effective distribution of I/O and CPU bandwidth across
multiple processors.

Minimal reliance on GPS. We observed from our own prior research, and other
teams’ prior Grand Challenge efforts, that GPS cannot be relied upon for high-
accuracy localization at all times. That fact, along with the observation that humans
do not need GPS to drive well, led us to develop a navigation and perception strategy
that uses GPS only when absolutely necessary, i.e., to determine the general direc-
tion to the next waypoint, and to make forward progress in the (rare) case when road
markings and boundaries are undetectable. One key outcome of this design choice
is our “local frame” situational awareness, described more fully in Section 4.1.

Fine-grained, high-bandwidth CPU, I/O and network resources. Given the short
time (18 months, from May 2006 to November 2007) available for system develop-
ment, our main goal was simply to get a first pass at every required module working,
and working solidly, in time to qualify. Thus we knew at the outset that we could not
afford to invest effort in premature optimization, i.e., performance profiling, mem-
ory tuning, etc. This led us to the conclusion that we should have many CPUs, and
that we should lightly load each machine’s CPU and physical memory (say, at half
capacity) to avoid non-linear systems effects such as process or memory thrashing.
A similar consideration led us to use a fast network interconnect, to avoid operating
regimes in which network contention became non-negligible. The downside of our
choice of many machines was a high power budget, which required an external gen-
erator on the car. This added mechanical and electrical complexity to the system,
but the computational flexibility that was gained justified this effort.

A Perception-Driven Autonomous Urban Vehicle 169

Asynchronous sensor publish and update; minimal sensor fusion. Our vehicle
has sensors of six different types (odometry, inertial, GPS, lidar, radar, vision), each
type generating data at a different rate. Our architecture dedicates a software driver
to each individual sensor. Each driver performs minimal processing, then publishes
the sensor data on a shared network. A “drivability map” API (described more fully
below) performs minimal sensor fusion, simply by depositing interpreted sensor
returns into the map on an “as-sensed” (just in time) basis.

“Bullet proof” low-level control. To ensure that the vehicle was always able to
make progress, we designed the low-level control using very simple, well proven
algorithms that involved no adaptation or mode switching. These control add-ons
might give better performance, but they are difficult to verify and validate. The dif-
ficulty being that a failure in this low-level control system would be critical and
it is important that the motion planner always be able to predict the state of the
controller/vehicle with a high degree of confidence.

Strong reliance on simulation. While field testing is paramount, it is time consum-
ing and not always possible. Thus we developed multiple simulations that interfaced
directly with the vehicle code that could be used to perform extensive testing of the
software and algorithms prior to testing them on-site.

3.2 Race Vehicle Configuration

The decision to use two different types of cars (the Ford Escape and Land Rover
LR3) entailed some risk, but given the time and budgetary constraints, this ap-
proach had significant benefits. The spiral design approach enabled our team to
move quickly up the learning curve and accomplish many of our “milestone 2” site
visit requirements before mechanical fabrication of the race vehicle was complete.

Size, power and computation were key elements in the design of the vehicle. For
tasks such as parking and the execution of U-turns, a small vehicle with a tight turn-
ing radius was ideal. Given the difficulty of the urban driving task, and our desire
to use many inexpensive sensors, Team MIT chose a large and powerful computer

(a) (b)

Fig. 3. Developed vehicles. (a) Ford Escape rapid prototype. (b) Talos, our Land Rover LR3
race vehicle featuring five cameras, 15 radars 12 Sick lidars and a Velodyne lidar.

170 J. Leonard et al.

system. As mentioned above, this led our power requirements to exceed the capa-
bilities of aftermarket alternator solutions for our class of vehicles, necessitating the
use of a generator.

Our initial design aim to use many inexpensive sensors was modified substan-
tially midway through the project when resources became available to purchase a
Velodyne HDL-64 3D lidar. The Velodyne played a central role for the tasks of
vehicle and hazard detection in our final configuration.

The Land Rover LR3 provided a maneuverable and robust platform for our race
vehicle. We chose this vehicle for its excellent maneuverability and small turning
radius and large payload capacity. Custom front and roof fixtures were fitted, per-
mitting sensor positions to be tuned during system development. Wherever possible
the fixtures were engineered to protect the sensors from collisions.

The stock vehicle was integrated with the following additional components:

• Electronic Mobility Controls (EMC) drive-by-wire system (AEVIT)
• Honda EVD6010 internal power generator
• 2 Acumentrics uninterruptible power supplies
• Quanta blade server computer system (the unbranded equivalent of Fujitsu

Primergy BX600)
• Applanix POS-LV 220 GPS/INS
• Velodyne HDL-64 lidar
• 12 Sick lidars
• 5 Point Grey Firefly MV Cameras
• 15 Delphi Radars

The first step in building the LR3 race vehicle was adapting it for computer-driven
control. This task was outsourced to Electronic Mobility Controls in Baton Rouge,
Louisiana. They installed computer-controlled servos on the gear shift, steering col-
umn, and a single servo for throttle and brake actuation. Their system was designed
for physically disabled drivers, but was adaptable for our needs. It also provided
a proven and safe method for switching from normal human-driven control to au-
tonomous control.

Safety of the human passengers was a primary design consideration in integrat-
ing the equipment into the LR3. The third row of seats in the LR3 was removed,
and the entire back end was sectioned off from the main passenger cabin by an
aluminum and Plexiglas wall. This created a rear “equipment bay” which held the
computer system, the power generator, and all of the power supplies, interconnects,
and network hardware for the car. The LR3 was also outfitted with equipment and
generator bay temperature readouts, a smoke detector, and a passenger cabin carbon
monoxide detector.

The chief consumer of electrical power was the Quanta blade server. The server
required 240V as opposed to the standard 120V and could consume up to 4000Watts,
dictating many of the power and cooling design decisions. Primary power for the
system came from an internally mounted Honda 6000 Watt R/V generator. It draws
fuel directly from the LR3 tank and produces 120 and 240VAC at 60 Hz. The genera-
tor was installed in a sealed aluminum enclosure inside the equipment bay; cooling

A Perception-Driven Autonomous Urban Vehicle 171

air is drawn from outside, and exhaust gases leave through an additional muffler
under the rear of the LR3.

The 240VAC power is fed to twin Acumentrics rugged UPS 2500 units which
provide backup power to the computer and sensor systems. The remaining gener-
ator power is allocated to the equipment bay air conditioning (provided by a roof-
mounted R/V air conditioner) and non-critical items such as back-seat power outlets
for passenger laptops.

3.2.1 Sensor Configuration
As mentioned, our architecture is based on the use of many different sensors, based
on multiple sensing modalities. We positioned and oriented the sensors so that most
points in the vehicle’s surroundings would be observed by at least one sensor of
each type: lidar, radar, and vision. This redundant coverage gave robustness against
both type-specific sensor failure (e.g., difficulty with vision due to low sun angle) or
individual sensor failure (e.g., due to wiring damage).

We selected the sensors with several specific tasks in mind. A combination of
“skirt” (horizontal Sick) 2-D lidars mounted at a variety of heights, combined with
the output from a Velodyne 3-D lidar, performs close-range obstacle detection.
“Pushbroom” (downward-canted Sick) lidars and the Velodyne data detect drivable
surfaces. Out past the lidar range, millimeter wave radar detects fast approaching
vehicles. High-rate forward video, with an additional rear video channel for higher-
confidence lane detection, performs lane detection.

Ethernet interfaces were used to deliver sensor data to the computers for most
devices. Where possible, sensors were connected as ethernet devices. In contrast
to many commonly used standards such as RS-232, RS-422, serial, CAN, USB or
Firewire, ethernet offers, in one standard: electrical isolation, RF noise immunity,
reasonable physical connector quality, variable data rates, data multiplexing, scala-
bility, low latencies and large data volumes.

The principal sensor for obstacle detection is the Velodyne HDL-64, which was
mounted on a raised platform on the roof. High sensor placement was necessary
to raise the field of view above the Sick lidar units and the air conditioner. The
velodyne is a 3D laser scanner comprised of 64 lasers mounted on a spinning head.
It produces approximately a million range samples per second, performing a full
360 degree sweep at 15Hz.

The Sick lidar units (all model LMS 291-S05) served as the near-field detection
system for obstacles and the road surface. On the roof rack there are five units an-
gled down viewing the ground ahead of the vehicle, while the remaining seven are
mounted lower around the sides of the vehicle and project outwards parallel to the
ground plane.

Each Sick sensor generates an interlaced scan of 180 planar points at a rate of
75Hz. Each of the Sick lidar units has a serial data connection which is read by a
MOXA NPort-6650 serial device server. This unit, mounted in the equipment rack
above the computers, takes up to 16 serial data inputs and outputs TCP/IP link.

172 J. Leonard et al.

The Applanix POS-LV navigation solution was used to for world-relative posi-
tion and orientation estimation of the vehicle. The Applanix system combines dif-
ferential GPS, a one degree of drift per hour rated IMU and a wheel encoder to
estimate the vehicle’s position, orientation, velocity and rotation rates. The posi-
tion information was used to determine the relative position of RNDF GPS way-
points to the vehicle. The orientation and rate information were used to estimate
the vehicle’s local motion over time. The Applanix device is interfaced via a
TCP/IP link.

Delphi’s millimeter wave OEM automotive Adaptive Cruise Control radars were
used for long-range vehicle tracking. The narrow field of view of these radars (around
18◦) required a tiling of 15 radars to achieve the desired 240◦ field of view. The
radars require a dedicated CAN bus interface each. To support 15 CAN bus net-
works we used 8 internally developed CAN to ethernet adaptors (EthCANs). Each
adaptor could support two CAN buses.

Five Point Grey Firefly MV color cameras were used on the vehicle, providing
close to a 360◦ field of view. Each camera was operated at 22.8 Hz and produced
Bayer-tiled images at a resolution of 752x480. This amounted to 39 MB/s of im-
age data, or 2.4 GB/min. To support multiple parallel image processing algorithms,
camera data was JPEG-compressed and then re-transmitted over UDP multicast to
other computers (see Section 3.3.1). This allowed multiple image processing and
logging algorithms to operate on the camera data in parallel with minimal latency.

The primary purpose of the cameras was to detect road paint, which was then
used to estimate and track lanes of travel. While it is not immediately obvious that
rearward-facing cameras are useful for this goal, the low curvature of typical ur-
ban roads means that observing lanes behind the vehicle greatly improves forward
estimates.

The vehicle state was monitored by listening to the vehicle CAN bus. Wheel
speeds, engine RPM, steering wheel position and gear selection were monitored
using a CAN to Ethernet adaptor (EthCAN).

3.2.2 Autonomous Driving Unit
The final link between the computers and the vehicle was the Autonomous Driving
Unit (ADU). In principle, it was an interface to the drive-by-wire system that we
purchased from EMC. In practice, it also served a critical safety role.

The ADU was a very simple piece of hardware running a real-time operating
system, executing the control commands passed to it by the non-real-time computer
cluster. The ADU incorporated a watchdog timer that would cause the vehicle to
automatically enter PAUSE state if the computer generated either invalid commands
or if the computer stopped sending commands entirely.

The ADU also implemented the interface to the buttons and displays in the cabin,
and the DARPA-provide E-Stop system. The various states of the vehicle (PAUSE,
RUN, STANDBY, E-STOP) were managed in a state-machine within the ADU.

A Perception-Driven Autonomous Urban Vehicle 173

3.3 Software Infrastructure

We developed a powerful and flexible software architecture based on a new
lightweight UDP message passing system. Our system facilitates efficient communi-
cation between a suite of asynchronous software modules operating on the vehicle’s
distributed computer system. This architecture has enabled the rapid creation of a
substantial code base that incorporates data logging, replay, and 3-D visualization
of all experimental data, coupled with a powerful simulation environment.

3.3.1 Lightweight Communications and Marshalling
Given our emphasis on perception, existing interprocess communications infrastruc-
tures such as CARMEN (Thrun et al., 2006) or MOOS (Newman, 2003) were not
sufficient for our needs. We required a low-latency,high-throughputcommunications
framework that scales to many senders and receivers. After our initial assessment of
existing technologies, we designed and implemented an interprocess communica-
tions system that we call Lightweight Communications and Marshaling (LCM).

LCM is a minimalist system for message passing and data marshaling, targeted at
real-time systems where latency is critical. It provides a publish/subscribe message
passing model and an XDR-style message specification language with bindings for
applications in C, Java, and Python. Messages are passed via UDP multicast on a
switched local area network. Using UDP multicast has the benefit that it is highly
scalable; transmitting a message to a thousand subscribers uses no more network
bandwidth than does transmitting it to one subscriber.

We maintained two physically separate networks for different types of traffic. The
majority of our software modules communicated via LCM on our primary network,
which sustained approximately 8 MB/s of data throughout the final race. The sec-
ondary network carried our full resolution camera data, and sustained approximately
20 MB/s of data throughout the final race.

While there certainly was some risk in creating an entirely new interprocess
communications infrastructure, the decision was consistent with our team’s over-
all philosophy to treat the DARPA Urban Challenge first and foremost as a research
project. The decision to develop LCM helped to create a strong sense of ownership
amongst the key software developers on the team. The investment in time required
to write, test, and verify the correct operation of the LCM system paid off for itself
many times over, by enabling a much faster development cycle than could have been
achieved with existing interprocess communication systems. LCM is now freely
available as a tool for widespread use by the robotics community.

The design of LCM, makes it very easy to create logfiles of all messages trans-
mitted during a specific window of time. The logging application simply subscribes
to every available message channel. As messages are received, they are timestamped
and written to disk.

To support rapid data analysis and algorithmic development, we developed a log
playback tool that reads a logfile and retransmits the messages in the logfile back
over the network. Data can be played back at various speeds, for skimming or careful
analysis. Our development cycle frequently involved collecting extended datasets

174 J. Leonard et al.

with our vehicle and then returning to our offices to analyze data and develop al-
gorithms. To streamline the process of analyzing logfiles, we implemented a user
interface in our log playback tool that supported a number of features, such as ran-
domly seeking to user-specified points in the logfile, selecting sections of the logfile
to repeatedly playback, extracting portions of a logfile to a separate smaller logfile
and the selected playback of message channels.

3.3.2 Visualization
The importance of visualizing sensory data as well as the intermediate and final
stages of computation for any algorithm cannot be overstated. While a human ob-
server does not always know exactly what to expect from sensors or our algorithms,
it is often easy for a human observer to spot when something is wrong. We adopted
a mantra of “Visualize Everything” and developed a visualization tool called the
viewer. Virtually every software module transmitted data that could be visualized in
our viewer, from GPS pose and wheel angles to candidate motion plans and tracked
vehicles. The viewer quickly became our primary means of interpreting and under-
standing the state of the vehicle and the software systems.

Debugging a system is much easier if data can be readily visualized. The LCGL
library was a simple set of routines that allowed any section of code in any process
on any machine to include in-place OpenGL operations; instead of being rendered,
these operations were recorded and sent across the LCM network (hence LCGL),
where they could be rendered by the viewer.

LCGL reduced the amount of effort to create a visualization to nearly zero, with
the consequence that nearly all of our modules have useful debugging visualizations
that can be toggled on and off from the viewer.

3.3.3 Process Manager and Mission Manager
The distributed nature of our computing architecture necessitated the design and
implementation of a process management system, which we called procman. This
provided basic failure recovery mechanisms such as restarting failed or crashed pro-
cesses, restarting processes that have consumed too much system memory, and mon-
itoring the processor load on each of our servers.

To accomplish this task, each server ran an instance of a procman deputy, and
the operating console ran the only instance of a procman sheriff. As their names
suggest, the user issues process management commands via the sheriff, which then
relays commands to the deputies. Each deputy is then responsible for managing
the processes on its server independent of the sheriff and other deputies. Thus, if
the sheriff dies or otherwise loses communication with its deputies, the deputies
continue enforcing their last received orders.

Messages passed between sheriffs and deputies are stateless, and thus it is possi-
ble to restart the sheriff or migrate it across servers without interrupting the deputies.

The mission manager interface provided a minimalist user interface for loading,
launching, and aborting missions. This user interface was designed to minimize the
potential for human error during the high-stress scenarios typical on qualifying runs

A Perception-Driven Autonomous Urban Vehicle 175

and race day. It did so by running various “sanity checks” on the human-specified
input, displaying only information of mission-level relevance, and providing a mini-
mal set of intuitive and obvious controls. Using this interface, we routinely averaged
well under one minute from the time we received the MDF from DARPA officials
to having our vehicle in pause mode and ready to run.

4 Perception Algorithms

Team MIT implemented a sensor rich design for the Talos vehicle. This section de-
scribes the algorithms used to process the sensor data. Specifically the Local Frame,
Obstacle Detector, Hazard Detector and Lane Tracking modules.

4.1 The Local Frame

The Local Frame is a smoothly varying coordinate frame into which sensor infor-
mation is projected. We do not rely directly on the GPS position output from the
Applanix because it is subject to sudden position discontinuities upon entering or
leaving areas with poor GPS coverage. We integrate the velocity estimates from the
Applanix to get position in the local frame.

The local frame is a Euclidean coordinate system with arbitrary origin. It has
the desirable property that the vehicle always moves smoothly through this coor-
dinate system—in other words, it is very accurate over short time scales but may
drift relative to itself over longer time scales. This property makes it ideal for regis-
tering the sensor data for the vehicle’s immediate environment. An estimate of the
coordinate transformation between the local frame and the GPS reference frame is
updated continuously. This transformation is only needed when projecting a GPS
feature, such as an RNDF waypoint, into the local frame. All other navigation and
perceptual reasoning is performed directly in the local frame.

A single process is responsible for maintaining and broadcasting the vehicle’s
pose in the local frame (position, velocity, acceleration, orientation, and turning
rates) as well as the most recent local-to-GPS transformation. These messages are
transmitted at 100Hz.

4.2 Obstacle Detector

The system’s large number of sensors provided a comprehensive field-of-view and
provided redundancy both within and across sensor modalities. Lidars provided
near-field obstacle detection (Section 4.2.1), while radars provided awareness of
moving vehicles in the far field (Section 4.2.7).

Much previous work in automotive vehicle tracking has used computer vision
for detecting other cars and other moving objects, such as pedestrians. Of the work
in the vision literature devoted to tracking vehicles, the techniques developed by
Stein and collaborators (Stein et al., 2000; Stein et al., 2003) are notable because
this work provided the basis for the development of a commercial product – the

176 J. Leonard et al.

Mobileye automotive visual tracking system. We evaluated the Mobileye system; it
performed well for tracking vehicles at front and rear aspects during highway driv-
ing, but did not provide a solution that was general enough for the high-curvature
roads, myriad aspect angles and cluttered situations encountered in the Urban Chal-
lenge. An earlier effort at vision-based obstacle detection (but not velocity estima-
tion) employed custom hardware (Bertozzi, 1998).

A notable detection and tracking system for urban traffic from lidar data was de-
veloped by Wang et al., who incorporated dynamic object tracking in a 3D SLAM
system (Wang, 2004). Data association and tracking of moving objects was a pre-
filter for SLAM processing, thereby reducing the effects of moving objects in cor-
rupting the map that was being built. Object tracking algorithms used the interacting
multiple model (IMM) (Blom and Bar-Shalom, 1988) for probabilistic data associ-
ation. A related project addressed the tracking of pedestrians and other moving ob-
jects to develop a collision warning system for city bus drivers (Thorpe et al., 2005).

Each UCE team required a method for detecting and tracking other vehicles. The
techniques of the Stanford Racing Team (Stanford Racing Team, 2007) and the Tar-
tan Racing Team (Tartan Racing Team, 2007) provide alternative examples of suc-
cessful approaches. Tartan Racing’s vehicle tracker built on the algorithm of Mertz et
al. (Mertz et al., 2005), which fits lines to lidar returns and estimates convex corners
from the laser data to detect vehicles. The Stanford team’s object tracker has similar-
ities to the Team MIT approach. It is based first on filtering out vertical obstacles and
ground plane measurements, as well as returns from areas outside of the Route Net-
work Definition File. The remaining returns are fit to 2-D rectangles using particle fil-
ters, and velocities are estimated for moving objects (Stanford Racing Team, 2007).
Unique aspects of our approach are the concurrent processing of lidar and radar data
and a novel multi-sensor calibration technique.

(a) (b)

Fig. 4. Sensor fields of view (20m grid size). (a) Our vehicle used seven horizontally-mounted
180◦ planar lidars with overlapping fields of view. The 3 lidars at the front and the 4 lidars at
the back are drawn separately so that the overlap can be more easily seen. The ground plane
and false positives are rejected using consensus between lidars. (b) Fifteen 18◦ radars yield a
wide field of view.

A Perception-Driven Autonomous Urban Vehicle 177

Our obstacle detection system combines data from 7 planar lidars oriented in a
horizontal configuration, a roof-mounted 3D lidar unit, and 15 automotive radars.
The planar lidars were Sick units returning 180 points at one degree spacing, with
scans produced at 75Hz. We used Sick’s “interlaced” mode, in which every scan
is offset 0.25 degree from the previous scan; this increased the sensitivity of the
system to small obstacles. For its larger field-of-view and longer range, we used the
Velodyne “High-Definition” lidar, which contains 64 lasers arranged vertically. The
whole unit spins, yielding a 360-degree scan at 15Hz.

Our Delphi ACC3 radar units are unique among our sensors in that they are al-
ready deployed on mass-market automobiles to support so-called “adaptive cruise
control” at highway speeds. Since each radar has a narrow 18◦ field of view, we
arranged fifteen of them in an overlapping, tiled configuration in order to achieve a
256◦ field-of-view.

The planar lidar and radar fields of view are shown in Figure 4. The 360◦ field
of view of the Velodyne is a ring around the vehicle stretching from 5 to 60m.
A wide field of view may be achieved either through the use of many sensors (as
we did) or by physically actuating a smaller number of sensors. Actuated sensors
add complexity (namely, the actuators, their control circuitry, and their feedback
sensors), create an additional control problem (which way should the sensors be
pointed?), and ultimately produce less data for a given expenditure of engineering
effort. For these reasons, we chose to use many fixed sensors rather than fewer
mechanically actuated sensors.

The obstacle tracking system was decoupled into two largely independent sub-
systems: one using lidar data, the other using radar. Each subsystem was tuned in-
dividually for a low false-positive rate; the output of the high-level system was the
union of the subsystems’ output. Our simple data fusion scheme allowed each sub-
system to be developed in a decoupled and parallel fashion, and made it easy to
add or remove a subsystem with a predictable performance impact. From a reliabil-
ity perspective, this strategy could prevent a fault in one subsystem from affecting
another.

4.2.1 Lidar-Based Obstacle Detection
Our lidar obstacle tracking system combined data from 12 planar lidars (Figure 5)
and the Velodyne lidar. The Velodyne point cloud was dramatically more dense
than all of the planar lidar data combined (Figure 6), but including planar lidars
brought three significant advantages. First, it was impossible to mount the Velodyne
device so that it had no blind spots (note the large empty area immediately around
the vehicle): the planar lidars fill in these blind spots. Second, the planar lidars
provided a measure of fault tolerance, allowing our system to continue to operate
if the Velodyne failed. Since the Velodyne was a new and experimental sensor with
which we had little experience, this was a serious concern. The faster update rate of
the planar lidars (75Hz versus the Velodyne’s 15Hz) also makes data association of
fast-moving obstacles easier.

178 J. Leonard et al.

Fig. 5. Lidar subsystem block diagram. Lidar returns are first classified as “obstacle”,
“ground”, or “outlier”. Obstacle returns are clustered and tracked.

Each lidar produces a stream of range and angle tuples; this data is projected
into the local coordinate system using the vehicle’s position in the local coordinate
system (continuously updated as the vehicle moves) and the sensor’s position in the
vehicle’s coordinate system (determined off-line).The result is a stream of 3D points
in the local coordinate frame, where all subsequent sensor fusion takes place.

The lidar returns often contain observations of the ground and of obstacles. (We
define the ground to be any surface that is locally traversable by our vehicle.) The
first phase of our data processing is to classify each return as either “ground”, “ob-
stacle”, or “outlier”. This processing is performed by a “front-end” module. The
planar lidars all share a single front-end module whereas the Velodyne has its own

Fig. 6. Raw data. Left: camera view of an urban scene with oncoming traffic. Middle: cor-
responding horizontal planar lidar data (“pushbroom” lidars not shown for clarity). Right:
Velodyne data.

A Perception-Driven Autonomous Urban Vehicle 179

specialized front-end module. In either case, their task is the same: to output a stream
of points thought to correspond only to obstacles (removing ground and outliers).

4.2.2 Planar Lidar Front-End
A single planar lidar cannot reliably differentiate between obstacles and non-flat
terrain (see Figure 7). However, with more than one planar lidar, an appreciable
change in z (a reliable signature of an obstacle) can be measured.

This strategy requires that any potential obstacle be observable by multiple planar
lidars, and that the lidars observe the object at different heights. Our vehicle has
many planar lidars, with overlapping fields of view but different mounting heights,
to ensure that we can observe nearby objects more than once (see Figure 4). This
redundancy conveys an additional advantage: many real-world surfaces are highly
reflective and cannot be reliably seen by Sick sensors. Even at a distance of under
2m, a dark-colored shiny surface (like the wheel well of a car) can scatter enough
incident laser energy to prevent the lidar from producing a valid range estimate.
With multiple lasers, at different heights, we increase the likelihood that the sensor
will return at least some valid range samples from any given object. This approach
also increases the system’s fault tolerance.

Before classifying returns, we de-glitch the raw range returns. Any returns that
are farther than 1m away from any other return are discarded; this is effective at
removing single-point outliers.

The front-end algorithm detects returns that are near each other (in the vehicle’s
XY plane). If two nearby returns arise from different sensors, we know that there
is an obstacle at the corresponding (x,y) location. To implement this algorithm, we
allocate a two-dimensional grid at 25cm resolution representing an area of 200×
200m centered around the vehicle. Each grid cell has a linked list of all lidar returns
that have recently landed in that cell, along with the sensor ID and timestamp of
each return. Whenever a new return is added to a cell, the list is searched: if one of
the previous returns is close enough and was generated by a different sensor, then

Fig. 7. Obstacle or hill? With a single planar lidar, obstacles cannot be reliably discriminated
from traversable (but hilly) terrain. Multiple planar lidars allow appreciable changes in z to
be measured, resolving the ambiguity.

180 J. Leonard et al.

both returns are passed to the obstacle tracker. As this search proceeds, returns older
than 33ms are discarded.

One difficulty we encountered in developing the planar lidar subsystem is that
it is impossible to mount two lidars so that they are exactly parallel. Even small
alignment errors are quickly magnified at long ranges, with the result that the actual
change in z is not equal to the difference in sensor mounting height. Convergent
sensors pose the greatest problem: they can potentially sense the same object at
the same height, causing a false positive. Even if the degree of convergence can be
precisely measured (so that false positives are eliminated), the result is a blind spot.
Our solution was to mount the sensors in slightly divergent sets: this reduces our
sensitivity to small obstacles at long ranges (since we can detect only larger-than-
desired changes in z), but eliminates false positives and blind spots.

4.2.3 Velodyne Front-End
As with the planar lidar data, we needed to label each Velodyne range sample as
belonging to either the ground or an obstacle. The high density of Velodyne data
enabled us to implement a more sophisticated obstacle-ground classifier than for the
planar lidars. Our strategy was to identify points in the point cloud that are likely
to be on the ground, then fit a non-parametric ground model through those ground
points. Other points in the cloud that are far enough above the ground model (and
satisfy other criteria designed to reject outliers) are output as obstacle detections.

Although outlier returns with the planar lidars are relatively rare, Velodyne data
contains a significant number of outlier returns, making outlier rejection a more sub-
stantial challenge. These outliers include ranges that are both too short and too long,
and are often influenced by the environment. Retro-reflectors wreak havoc with the
Velodyne, creating a cloud of erroneous returns all around the reflector. The sen-
sor also exhibits systematic errors: observing high-intensity surfaces (such as road
paint) causes the range measurements to be consistently too short. The result is that
brightly painted areas can appear as curb-height surfaces. The Velodyne contains
64 individual lasers, each of which varies from the others in sensitivity and range
offset; this variation introduces additional noise.

Fig. 8. Ground candidates and interpolation. Velodyne returns are recorded in a polar grid
(left: single cell is shown). The lowest 20% (in z height) are rejected as possible outliers;
the next lowest return is a ground candidate. A ground model is linearly interpolated through
ground candidates (right), subject to a maximum slope constraint.

A Perception-Driven Autonomous Urban Vehicle 181

Our ground estimation algorithm estimates the terrain profile from a sequence
of “candidate” points that locally appear to form the ground. The system generates
ground candidate points by dividing the area around the vehicle into a polar grid.
Each cell of the grid collects all Velodyne hits landing within that cell during four
degrees of sensor rotation and three meters of range. If a particular cell has more
than a threshold number of returns (nominally 30), then that cell will produce a
candidate ground point. Due to the noise in the Velodyne, the candidate point is not
the lowest point; instead, the lowest 20% of points (as measured by z) are discarded
before the next lowest point is accepted as a candidate point.

While candidate points often represent the true ground, it is possible for elevated
surfaces (such as car roofs) to generate candidates. Thus the system filters candi-
date points further by subjecting them to a maximum ground-slope constraint. We
assume that navigable terrain never exceeds a slope of 0.2 (roughly 11 degrees).
Beginning at our own vehicle’s wheels (which, we hope, are on the ground) we
process candidate points in order of increasing distance from the vehicle, rejecting
those points that would imply a ground slope in excess of the threshold (Figure 8).
The resulting ground model is a polyline (between accepted ground points) for each
radial sector (Figure 9).

Explicit ground tracking serves not only as a means of identifying obstacle points,
but improves the performance of the system over a naive z = 0 ground plane model
in two complementary ways. First, knowing where the ground is allows the height of
a particular obstacle to be estimated more precisely; this in turn allows the obstacle
height threshold to be set more aggressively, detecting more actual obstacles with
fewer false positives. Second, a ground estimate allows the height above the ground
of each return to be computed: obstacles under which the vehicle will safely pass
(such as overpasses and tree canopies) can thus be rejected.

Fig. 9. Ground model example. On hilly terrain, the terrain deviates significantly from a
plane, but is tracked fairly well by the ground model.

182 J. Leonard et al.

Given a ground estimate, one could naively classify lidar returns as “obstacles” if
they are a threshold above the ground. However, this strategy is not sufficiently ro-
bust to outliers. Individual lasers tend to generate consecutive sequences of outliers:
for robustness, it was necessary to require multiple lasers to agree on the presence
of an obstacle.

The laser-to-laser calibration noise floor tends to lie just under 15cm: constantly
changing intrinsic variations across lasers makes it impossible to reliably measure,
across lasers, height changes smaller than this. Thus the overlying algorithm cannot
reliably detect obstacles shorter than about 15cm.

For each polar cell, we tally the number of returns generated by each laser that is
above the ground by an “evidence” threshold (nominally 15cm). Then, we consider
each return again: those returns that are above the ground plane by a slightly larger
threshold (25cm) and are supported by enough evidence are labelled as obstacles.
The evidence criteria can be satisfied in two ways: by three lasers each with at least
three returns, or by five lasers with one hit. This mix increases sensitivity over any
single criterion, while still providing robustness to erroneous data from any single
laser.

The difference between the “evidence” threshold (15cm) and “obstacle” thresh-
old (25cm) is designed to increase the sensitivity of the obstacle detector to low-
lying obstacles. If we used the evidence threshold alone (15cm), we would have
too many false positives since that threshold is near the noise floor. Conversely, us-
ing the 25cm threshold alone would require obstacles to be significantly taller than
25cm, since we must require multiple lasers to agree and each laser has a differ-
ent pitch angle. Combining these two thresholds increases the sensitivity without
significantly affecting the false positive rate.

All of the algorithms used on the Velodyne operate on a single sector of data,
rather than waiting for a whole scan. If whole scans were used, the motion of the
vehicle would inevitably create a seam or gap in the scan. Sector-wise processing
also reduces the latency of the system: obstacle detections can be passed to the
obstacle tracker every 3ms (the delay between the first and last laser to scan at a
particular bearing), rather than every 66ms (the rotational period of the sensor).
During the saved 63ms, a car travelling at 15m/s would travel almost a meter. Every
bit of latency that can be saved increases the safety of the system by providing earlier
warning of danger.

4.2.4 Clustering
The Velodyne alone produces up to a million hits per second; tracking individual
hits over time is computationally prohibitive and unnecessary. Our first step was
in data reduction: reducing the large number of hits to a much smaller number of
“chunks.” A chunk is simply a record of multiple, spatially close range samples. The
chunks also serve as the mechanism for fusion of planar lidar and Velodyne data:
obstacle detections from both front ends are used to create and update chunks.

A Perception-Driven Autonomous Urban Vehicle 183

Fig. 10. Lidar obstacle detections. Our vehicle is in the center; nearby (irregular) walls are
shown, clustered according to physical proximity to each other. Two other cars are visible:
an oncoming car ahead and to the left, and another vehicle following us (a chase car). The
red boxes and lines indicated estimated velocities. The long lines with arrows indicated the
nominal travel lanes – they are included to aid interpretation, but were not used by the tracker.

One obvious implementation of chunking could be through a grid map, by tal-
lying hits within each cell. However, such a representation is subject to significant
quantization effects when objects lie near cell boundaries. This is especially prob-
lematic when using a coarse spatial resolution.

Instead, we used a representation in which individual chunks of bounded size
could be centered arbitrarily. This permitted us to use a coarse spatial decimation
(reducing our memory and computational requirements) while avoiding the quan-
tization effects of a grid-based representation. In addition, we recorded the actual
extent of the chunk: the chunks have a maximum size, but not a minimum size. This
allows us to approximate the shape and extent of obstacles much more accurately
than would a grid-map method. This floating “chunk” representation yields a better
approximation of an obstacle’s boundary without the costs associated with a fine-
resolution gridmap.

Chunks are indexed using a two-dimensional look-up table with about 1m resolu-
tion. Finding the chunk nearest a point p involves searching through all the grid cells
that could contain a chunk that contains p. But since the size of a chunk is bounded,
the number of grid cells and chunks is also bounded. Consequently, lookups remain
an O(1) operation.

For every obstacle detection produced by a front-end, the closest chunk is found
by searching the two-dimensional lookup table. If the point lies within the closest
chunk, or the chunk can be enlarged to contain the point without exceeding the
maximum chunk dimension (35cm), the chunk is appropriately enlarged and our
work is done. Otherwise, a new chunk is created; initially it will contain only the
new point and will thus have zero size.

Periodically, every chunk is re-examined. If a new point has not been assigned to
the chunk within the last 250ms, the chunk expires and is removed from the system.

184 J. Leonard et al.

Clustering Chunks Into Groups

A physical object is typically represented by more than one chunk. In order to com-
pute the velocity of obstacles, we must know which chunks correspond to the same
physical objects. To do this, we clustered chunks into groups; any two chunks within
25cm of one another were grouped together as the same physical object. This clus-
tering operation is outlined in Algorithm 1.

Algorithm 1. Chunk Clustering
1: Create a graph G with a vertex for each chunk and no edges
2: for all c ∈ chunks do
3: for all chunks d within ε of c do
4: Add an edge between c and d
5: end for
6: end for
7: Output connected components of G.

This algorithm requires a relatively small amount of CPU time. The time re-
quired to search within a fixed radius of a particular chunk is in fact O(1), since
there is a constant bound on the number of chunks that can simultaneously ex-
ist within that radius, and these chunks can be found in O(1) time by iterating
over the two-dimensional lookup table that stores all chunks. The cost of merging
subgraphs, implemented by the Union-Find algorithm (Rivest and Leiserson, 1990),
has a complexity of less than O(log N). In aggregate, the total complexity is less than
O(Nlog N).

4.2.5 Tracking
The goal of clustering chunks into groups is to identify connected components so
that we can track them over time. The clustering operation described above is re-
peated at a rate of 15Hz. Note that chunks are persistent: a given chunk will be
assigned to multiple groups, one at each time step.

At each time step, the new groups are associated with a group from the previous
time step. This is done via a voting scheme; the new group that overlaps (in terms of
the number of chunks) the most with an old group is associated with the old group.
This algorithm yields a fluid estimate of which objects are connected to each other:
it is not necessary to explicitly handle groups that appear to merge or split.

The bounding boxes for two associated groups (separated in time) are compared,
yielding a velocity estimate. These instantaneous velocity estimates tend to be noisy:
our view of obstacles tends to change over time due to occlusion and scene geome-
try, with corresponding changes in the apparent size of obstacles.

Obstacle velocities are filtered over time in the chunks. Suppose that two sets
of chunks are associated with each other, yielding a velocity estimate. That veloc-
ity estimate is then used to update the constituent chunks’ velocity estimates. Each

A Perception-Driven Autonomous Urban Vehicle 185

chunk’s velocity estimate is maintained with a trivial Kalman filter, with each ob-
servation having equal weight.

Storing velocities in the chunks conveys a significant advantage over maintain-
ing separate “tracks”: if the segmentation of a scene changes, resulting in more
or fewer tracks, the new groups will inherit reasonable velocities due to their con-
stituent chunks. Since the segmentation is fairly volatile due to occlusion and chang-
ing scene geometry, maintaining velocities in the chunks provides greater continuity
than would result from frequently creating new tracks.

Finally, we output obstacle detections using the current group segmentation, with
each group reported as having a velocity equal to the weighted average of its con-
stituent chunks. (The weights are simply the confidence of each individual chunk’s
velocity estimate.)

A core strength of our system is its ability to produce velocity estimates for
rapidly moving objects with very low latency. This was a design goal, since fast
moving objects represent the most acute safety hazard.

The corresponding weakness of our system is in estimating the velocity of slow-
moving obstacles. Accurately measuring small velocities requires careful tracking
of an object over relatively long periods of time. Our system averages instantaneous
velocity measurements, but these instantaneous velocity measurements are contam-
inated by noise that can easily swamp small velocities. In practice, we found that
the system could reliably track objects moving faster than 3m/s. The motion plan-
ner avoids “close calls” with all obstacles, keeping the vehicle away from them.
Improving tracking of slow-moving obstacles remains a goal for future work.

Another challenge is the “aperture” problem, in which a portion of a static ob-
stacle is sensed through a small gap. The motion of our own vehicle can make it
appear that an obstacle is moving on the other side of the aperture. While aper-
tures could be detected and explicitly filtered, the resulting phantom obstacles tend
to have velocities parallel to our own vehicle and thus do not significantly affect
motion planning.

Use of a Prior

Our system operates without a prior on the location of the road. Prior information
on the road could be profitably used to eliminate false positives (by assuming that
moving cars must be on the road, for example), but we chose not to use a prior
for two reasons. Critically, we wanted our system to be robust to moving objects
anywhere, including those that might be pulling out of a driveway, or jaywalking
pedestrians. Second, we wanted to be able to test our detector in a wide variety of
environments without having to first generate the corresponding metadata.

4.2.6 Lidar Tracking Results
The algorithm performed with high reliability, correctly detecting obstacles includ-
ing a thin metallic gate that errantly closed across our path.

In addition to filling in blind spots (to the Velodyne) immediately around the
vehicle, the Sick lidars reinforced the obstacle tracking performance. In order to
quantitatively measure the effectiveness of the planar lidars (as a set) versus the

186 J. Leonard et al.

Fig. 11. Detection range by sensor. For each of 40,000 chunks, the earliest detection of the
chunk was collected for each modality (Velodyne and Sick). The Velodyne’s performance
was substantially better than that of the Sick’s, which observed fewer objects.

Velodyne, we tabulated the maximum range at which each subsystem first observed
an obstacle (specifically, a chunk). We consider only chunks that were, at one point
in time, the closest to the vehicle along a particular bearing; the Velodyne senses
many obstacles farther away, but in general, it is the closest obstacle that is most
important. Statistics gathered over the lifetimes of 40,000 chunks (see Figure 11)
indicate that:

• The Velodyne tracked 95.6% of all the obstacles that appeared in the system; the
Sicks alone tracked 61.0% of obstacles.

• The union of the two subsystems yielded a minor, but measurable, improvement
with 96.7% of all obstacles tracked.

• Of those objects tracked by both the Velodyne and the Sick, the Velodyne de-
tected the object at a longer range: 1.2m on average.

In complex environments, like the one used in this data set, the ground is often
non-flat. As a result, planar lidars often find themselves observing sky or dirt. While
we can reject the dirt as an obstacle (due to our use of multiple lidars), we cannot
see the obstacles that might exist nearby. The Velodyne, with its large vertical field
of view, is largely immune to this problem: we attribute the Velodyne subsystem’s
superior performance to this difference. The Velodyne could also see over and some-
times through other obstacles (i.e., foliage), which would allow it to detect obstacles
earlier.

One advantage of the Sicks was that their higher rotational rate (75Hz versus the
Velodyne’s 15Hz) which makes data association easier for fast-moving obstacles.
If another vehicle is moving at 15m/s, the velodyne will observe a 1m displace-
ment between scans, while the Sicks will observe only a 0.2m displacement between
scans.

A Perception-Driven Autonomous Urban Vehicle 187

4.2.7 Radar-Based Fast-Vehicle Detection
The radar subsystem complements the lidar subsystem by detecting moving ob-
jects at ranges beyond the reliable detection range of the lidars. In addition to range
and bearing, the radars directly measure the closing rate of moving objects using
Doppler, greatly simplifying data association. Each radar has a field of view of 18
degrees. In order to achieve a wide field of view, we tiled 15 radars (see Figure 4).

The radar subsystem maintains a set of active tracks. We propagate these tracks
forward in time whenever the radar produces new data, so that we can compare the
predicted position and velocity to the data returned by the radar.

The first step in tracking is to associate radar detections to any active tracks. The
radar produces Doppler closing rates that are consistently within a few meters per
second of the truth: if the predicted closing rate and the measured closing rate differ
by more than 2m/s, we disallow a match. Otherwise, the closest track (in the XY
plane) is chosen for each measurement. If the closest track is more than 6.0m from
the radar detection, a new track is created instead.

Each track records all radar measurements that have been matched to it over the
last second. We update each track’s position and velocity model by computing a
least-squares fit of a constant velocity model to the (x,y, time) data from the radars.
We weight recent observations more strongly than older observations since the tar-
get may be accelerating. For simplicity, we fit the constant velocity model using just
the (x,y) points; while the Doppler data could probably be profitably used, this sim-
pler approach produced excellent results. Figure 12 shows a typical output from the
radar data association and tracking module. Although no lane data was used in the
radar tracking module the vehicle track directions match well. The module is able
to facilitate the overall objective of detecting when to avoid entering an intersection
due to fast approaching vehicles.

Unfortunately, the radars cannot easily distinguish between small, innocuous ob-
jects (like a bolt lying on the ground, or a sewer grate) and large objects (like cars).
In order to avoid false positives, we used the radars only to detect moving objects.

(a) (b)

Fig. 12. Radar tracking 3 vehicles. (a) Front right camera showing 3 traffic vehicles, one on
coming. (b) Points: Raw radar detections with tails representing the doppler velocity. Red
rectangles: Resultant vehicle tracks with speed in meters/second (rectangle size is simply for
visualization).

188 J. Leonard et al.

4.3 Hazard Detector

We define hazards as object that we shouldn’t drive over, even if the vehicle prob-
ably could. Hazards include pot-holes, curbs, and other small objects. The hazard
detector is not intended to detect cars and other large (potentially moving objects):
instead, the goal of the module is to estimate the condition of the road itself.

In addition to the Velodyne, Talos used five downwards-canted planar lidars posi-
tioned on the roof: these were primarily responsible for observing the road surface.
The basic principle of the hazard detector is to look for z-height discontinuities in the
laser scans. Over a small batch of consecutive laser returns, the z slope is computed
by dividing the change in z by the distance between the individual returns. This
slope is accumulated in a gridmap that records the largest slope observed in every
cell. This gridmap is slowly built up over time as the sensors pass over new ground
and extended for about 40m in every direction. Data that “fell off” the gridmap (by
being over 40m away) was forgotten.

The Velodyne sensor, with its 64 lasers, could observe a large area around the ve-
hicle. However, hazards can only be detected where lasers actually strike the ground:
the Velodyne’s lasers strike the ground in 64 concentric circles around the vehicle
with significant gaps between the circles. However, these gaps are filled in as the
vehicle moves. Before we obtained the Velodyne, our system relied on only the five
planar Sick lidars with even larger gaps between the lasers.

The laser-to-laser calibration of the Velodyne was not sufficiently reliable or con-
sistent to allow vertical discontinuities to be detected by comparing the z height
measured by different physical lasers. Consequently, we treated each Velodyne laser
independently as a line scanner.

Unlike the obstacle detector, which assumes that obstacles will be constantly
re-observed over time, the hazard detector is significantly more stateful since the
largest slope ever observed is remembered for each (x,y) grid cell. This “running
maximum” strategy was necessary because any particular line scan across a hazard
only samples the change in height along one direction. A vertical discontinuity along
any direction, however, is potentially hazardous. A good example of this anisotropic
sensitivity is a curb: when a line scanner samples parallel to the curb, no discontinu-
ity is detected. Only when the curb is scanned perpendicularly does a hazard result.
We mounted our Sick sensors so that they would likely sample the curb at a roughly
perpendicular angle (assuming we are driving parallel to the curb), but ultimately, a
diversity of sampling angles was critical to reliably sensing hazards.

4.3.1 Removal of Moving Objects
The gridmap described above, which records the worst z slope seen at each (x,y) lo-
cation, would tend to detect moving cars as large hazards smeared across the moving
car’s trajectory. This is undesirable, since we wish to determine the condition of the
road beneath the car.

Our solution was to run an additional “smooth” detector in parallel with the haz-
ard detector. The maximum and minimum z heights occurring during 100ms inte-
gration periods are stored in the gridmap. Next, 3x3 neighborhoods of the gridmap

A Perception-Driven Autonomous Urban Vehicle 189

are examined: if all nine areas have received a sufficient number of measurements
and the maximum difference in z is small, the grid-cell is labeled as “smooth”. This
classification overrides any hazard detection. If a car drives through our field of
view, it may result in temporary hazards, but as soon as the ground beneath the car
is visible, the ground will be marked as smooth instead.

The output of the hazard and smooth detector is shown in Figure 26(a). Red is
used to encode hazards of various intensities while green represents ground labelled
as smooth.

4.3.2 Hazards as High-Cost Regions
The hazard map was incorporated by the Drivability Map as high-cost regions.
Motion plans that passed over hazardous terrain were penalized, but not ruled-out
entirely. This is because the hazard detector was prone to false positives for two
reasons. First, it was tuned to be highly sensitive so that even short curbs would be
detected. Second, since the cost map was a function of the worst-ever seen z slope, a
false-positive could cause a phantom hazard that would last forever. In practice, as-
sociating a cost with curbs and other hazards was sufficient to keep the vehicle from
running over them; at the same time, the only consequence of a false positive was
that we might veer around a phantom. A false positive could not cause the vehicle
to get stuck.

4.3.3 Road-Edge Detector
Hazards often occur at the road edge, and our detector readily detects them. Berms,
curbs, and tall grass all produce hazards that are readily differentiated from the road
surface itself.

We detect the road-edge by casting rays from the vehicle’s current position and
recording the first high-hazard cell in the gridmap (see Figure 13(a)). This results in
a number of road-edge point detections; these are segmented into chains based on

(a) (b)

Fig. 13. Hazard Map: Red is hazardous, cyan is safe. (a) Rays radiating from vehicle used to
detect the road-edge. (b) Poly-lines fitted to road-edge.

190 J. Leonard et al.

their physical proximity to each other. A non-parametric curve is then fitted through
each chain (shown in Figure 13(b)). Chains that are either very short or have exces-
sive curvature are discarded; the rest are output to other parts of the system.

4.4 Lane Finding

Our approach to lane finding involves three stages. In the first, the system detects
and localizes painted road markings in each video frame, using lidar data to re-
duce the false-positive detection rate. A second stage processes the road-paint detec-
tions along with lidar-detected curbs (see Section 4.3) to estimate the centerlines of
nearby travel lanes. Finally, the detected centerlines output by the second stage are
filtered, tracked, and fused with a weak prior to produce one or more non-parametric
lane outputs.

4.4.1 Absolute Camera Calibration
Our road-paint detection algorithms assume that GPS and IMU navigation data are
available of sufficient quality to correct for short-term variations in vehicle heading,
pitch, and roll during image processing. In addition, the intrinsic (focal length, cen-
ter, and distortion) and extrinsic (vehicle-relative pose) parameters of the cameras
have been calibrated ahead of time. This “absolute calibration” allows preprocessing
of the images in several ways (Figure 14):

• The horizon line is projected into each image frame. Only pixel rows below this
line are considered for further processing.

• Our lidar-based obstacle detector supplies real-time information about the loca-
tion of obstructions in the vicinity of the vehicle. These obstacles are projected
into the image and their extent masked out during the paint-detection algorithms,
an important step in reducing false positives.

• The inertial data allows us to project the expected location of the ground plane
into the image, providing a useful prior for the paint-detection algorithms.

Fig. 14. Use of absolute camera calibration to project real-world quantities into the image.

A Perception-Driven Autonomous Urban Vehicle 191

• False paint detections caused by lens flare can be detected and rejected. Know-
ing the time of day and our vehicle pose relative to the Earth, we can compute
the ephemeris of the sun. Line estimates that point toward the sun in image co-
ordinates are removed.

4.4.2 Road-Paint Detection
We employ two algorithms for detecting patterns of road paint that constitute lane
boundaries. Both algorithms accept raw frames as input and produce sets of con-
nected line segments, expressed in the local coordinate frame, as output. The al-
gorithms are stateless; each frame from each camera is considered independently,
deferring spatial-temporal boundary fusion and tracking to higher-level downstream
stages.

The first algorithm applies one-dimensional horizontal and vertical matched fil-
ters (for lines along and transverse to the line of sight, respectively) whose support
corresponds to the expected width of a painted line marking projected onto each im-
age row. As shown in Figure 15, the filters successfully discard most scene clutter
while producing strong responses along line-like features. We identify local maxima
of the filter responses, and for each maximum compute the principal line direction
as the dominant eigenvector of the Hessian in a local window centered at that max-
imum. The algorithm finally connects nearby maxima into splines that represent
continuous line markings; connections are established by growing spline candidates
from a set of random seeds, guided by a distance transform function generated from
the entire list of maxima.

The second algorithm for road-paint detection identifies potential paint boundary
pairs that are proximal and roughly parallel in real-world space, and whose local
gradients point toward each other (Figure 16). We compute the direction and magni-
tude of the image’s spatial gradients, which undergo thresholding and non-maximal
suppression to produce a sparse feature mask. Next, a connected components algo-
rithm walks the mask to generate smooth contours of ordered points, broken at dis-
continuities in location and gradient direction. A second iterative walk then grows
centerline curves between contours with opposite-pointing gradients. We enforce
global smoothness and curvature constraints by fitting parabolas to the resulting
curves and recursively breaking them at points of high deviation or spatial gaps. We
finally remove all curves shorter than a given threshold length to produce the final
road paint-line outputs.

4.4.3 Lane Centerline Estimation
The second stage of lane finding estimates the geometry of nearby lanes using a
weighted set of recent road paint and curb detections, both of which are represented
as piecewise linear curves. Lane centerlines are represented as locally parabolic
segments, and are estimated in two steps. First, a centerline evidence image D is
constructed, where the value of each pixel D(p) of the image corresponds to the
evidence that a point p = [px, py] in the local coordinate frame lies on the center of

192 J. Leonard et al.

Fig. 15. The matched filter based detector from start to finish. The original image is con-
volved with a matched filter at each row (horizontal filter shown here). Local maxima in the
filter response are enumerated and their dominant orientations computed. The figure depicts
orientation by drawing the perpendiculars to each maximum. Finally, nearby maxima are
connected into cubic hermite splines.

a lane. Second, parabolic segments are fit to the ridges in D and evaluated as lane
centerline candidates.

To construct D, road paint and curb detections are used to increase or decrease
the values of pixels in the image, and are weighted according to their age (older
detections are given less weight). The value of D at a pixel corresponding to the
point p is computed as the weighted sum of the influences of each road paint and
curb detection di at the point p:

D(p) = ∑
i

e−a(di)λ g(di,p)

where a(di) denotes how much time has passed since di was received, λ is a decay
constant, and g(di,p) is the influence of di at p. We chose λ = 0.7.

Before describing how the influence is determined, we make three
observations. First, a lane is more likely to be centered 1

2 lane
width from a strip of road paint or a curb. Second, 88% of feder-
ally managed lanes in the U.S. are between 3.05 m and 3.66 m wide

A Perception-Driven Autonomous Urban Vehicle 193

Fig. 16. Progression from original image through smoothed gradients, border contours, and
symmetric contour pairs to form centerline candidate.

(USDOT Federal Highway Administration, Office of Information Management, 2005).
Third, a curb gives us different information about the presence of a lane than does
road paint. From these observations and the characteristics of our road paint and
curb detectors, we define two functions frp(x) and fcb(x), where x is the Euclidean
distance from di to p:

frp(x) = −e−
x2

0.42 + e−
(x−1.83)2

0.14 (1)

fcb(x) = −e−
x2

0.42 . (2)

The functions frp and fcb are intermediate functions used to compute the influ-
ence of road paint and curb detections, respectively, on D. frp is chosen to have a
minimum at x = 0, and a maximum at one half lane width (1.83 m). fcb is always
negative, indicating that curb detections are used only to decrease the evidence for a
lane centerline. This addressed our curb detector’s occasional detection of curb-like
features where no curbs were present. Let c indicate the closest point on di to p. The
actual influence of a detection is computed as:

g(di,p) =

0 if c is an endpoint of di
frp(||p− c||) if di is road paint
fcb(||p− c||) if di is a curb

This last condition is introduced because road paint and curbs are only observed in
small sections. The effect is that a detection influences only those centerline evi-
dence values immediately next to the detection, and not in front of or behind it.

In practice, D can be initialized once and incrementally updated by adding the
influences of newly received detections and applying an exponential time decay
at each update. Once D has been constructed, the set R of ridge points is identified by

194 J. Leonard et al.

Fig. 17. Our system constructs a centerline evidence image using road edge and road paint
detections. Lane centerline candidates (blue) are identified by fitting parabolic segments to
the ridges of the image. Front-center camera is shown in top left for context.

scanning D for points that are local maxima along either a row or a column, and
also above a minimum threshold. Next, a random sample consensus (RANSAC)
algorithm (Fischler and Bolles, 1981) is used to fit parabolic segments to the ridge
points. At each RANSAC iteration, three ridge points are randomly selected for
a three-point parabola fit. The directrix of the parabola is chosen to be the first
principle component of the three points.

To determine the set of inliers for a parabola, we first compute its conic coefficient
matrix C (Hartley and Zisserman, 2001), and define the set of candidate inliers L to
contain the ridge points within some algebraic distance α of C.

L = {p ∈ R : pT Cp < α}

For our experiments, we chose α = 1. The parabola is then re-fit once to L using a
linear least-squares method, and a new set of candidate inliers is computed. Next, the
candidate inliers are partitioned into connected components, where a ridge point is
connected to all neighboring ridge points within a 1m radius. The set of ridge points
in the largest component is chosen as the set of actual inliers for the parabola. The
purpose of this partitioning step is to ensure that a parabola cannot be fitted across
multiple ridges, and requires that an entire identified ridge be connected. Finally, a
score for the entire parabola is computed.

score = ∑
p∈L

1
1 + pT Cp

The contribution of an inlier to the total parabola score is inversely related to
the inlier’s algebraic distance, with each inlier contributing a minimum amount to
the score. The overall result is that parabolas with many very good inliers have
the greatest score. If the score of a parabola is below some threshold, then it is
discarded.

After a number of RANSAC iterations (we found 200 to be sufficient), the
parabola with greatest score is selected as a candidate lane centerline. Its inliers

A Perception-Driven Autonomous Urban Vehicle 195

are removed from the set of ridge points, and all remaining parabolas are re-fit and
re-scored using this reduced set of ridge points. The next best-scoring parabola is
chosen, and this process is repeated to produce at most 5 candidate lane centerlines
(Figure 17).

4.4.4 Lane Tracking
The primary purpose of the lane tracker is to maintain a stateful, smoothly time-
varying estimate of the nearby lanes of travel. To do so, it uses both the candidate
lane centerlines produced by the centerline estimator and an a-priori estimate de-
rived from the RNDF. For the purposes of our system, the RNDF was treated as a
strong prior on the number and type of lanes, and a weak prior on their position and
geometry.

As the vehicle travels, it constructs and maintains representations of all portions
of all lanes within a fixed radius of 75m. The centerline of each lane is modeled as
a piecewise linear curve, with control points spaced approximately every 2m. Each
control point is given a scalar confidence value indicating the certainty of the lane
tracker’s estimate at that point. The lane tracker decays the confidence of a control
point as the vehicle travels, and increases it either by detecting proximity to an
RNDF waypoint or by updating control points with centerline estimates produced
from the second stage.

As centerline candidates are generated, the lane tracker attempts to match each
candidate with a tracked lane. If a matching is successful, then the candidate is used
to update the lane estimate. To determine if a candidate c is a good match for a
tracked lane l, the longest segment sc of the candidate is identified such that every
point on sc is within some maximum distance τ to l. We then define the match score
m(c, l) as:

m(c, l) =
∫

sc

1 +
τ −d(sc(x), l)

τ dx

where d(p, l) is the distance from a point p to the lane l. Intuitively, if sc is suffi-
ciently long and close to this estimate, then it is considered a good match. We choose
the matching function to rely only on the closest segment of the candidate, and not
on the entire candidate, based on the premise that as the vehicle travels, the por-
tions of a lane that it observes vary smoothly over time, and previously unobserved
portions should not adversely affect the matching as long as sufficient overlap is
observed elsewhere.

Once a centerline candidate has been matched to a tracked lane, it is used to up-
date the lane estimates by mapping control points on the tracked lane to the center-
line candidate, with an exponential moving average applied for temporal smoothing.
At each update, the confidence values of control points updated from a matching are
increased, and others are decreased. If the confidence value of a control point de-
creases below some threshold, then its position is discarded and recomputed as a
linear interpolation of its closest surrounding confident control points.

196 J. Leonard et al.

5 Planning and Control Algorithms

This section explains the planning and control algorithms developed for the Talos
vehicle. The Navigator dictates the mission-level behavior of the vehicle. The Mo-
tion Planner, Drivability Map and Controller operate in a tight coupling to achieve
the required motion control objective set by the Navigator though the often complex
and unpredictable driving environment.

5.1 Navigator

The Navigator is responsible for planning the high-level behavior of the vehicle
including:

• Shortest route to the next MDF checkpoint
• Intersection precedence, crossing, and merging
• Passing
• Blockage replanning
• Generation of the goal for the Motion Planner
• Generation of the failsafe timers
• Turn signaling

The key innovation of the Navigator is that high-level planning tasks (as in the list
above) are cleanly separated from low-level motion planning by a compact message
exchange. The Navigator directs the action of the Motion Planner (described below
in Section5.3) by manipulating the position of the goal, a point in the local frame
where the Navigator intends the vehicle to travel next over a 40–50 meter horizon. It
then becomes the Motion Planner’s responsibility to avoid obstacles, vehicles, and
obey lane constraints while attempting to reach this goal.

The primary inputs to the Navigator are the lane information, MDF, and the vehi-
cle pose. Twice per second the Navigator recomputes the closest lane to the vehicle
and uses that as the starting point for the search to the next MDF checkpoint. This
search of the road network uses the A! algorithm (Hart and Raphael, 1968) to find
the lowest cost path (smallest time) to the next checkpoint. The speed limit of each
road segment is used for this cost estimate with additional time penalties for each
lane change and intersection traversal. Since this search is run continuously at 2Hz,
dynamic replanning comes “for free” as conditions change since the costs of the
search are updated.

The primary output of the Navigator is the goal point which is sent to the Motion
Planner. The goal is generally located at RNDF waypoints since these locations are
guaranteed to be on the road. As the vehicle gets close to a goal, the goal is moved
ahead to the next waypoint before the vehicle is so close that it would need to slow
down to avoid overshooting. In this way, the goal acts as a “carrot” to motivate the
Motion Planner. If the Navigator wishes the car to stop at an intersection, it keeps
the goal fixed on the stop line. The Motion Planner will then bring the vehicle to a
controlled stop. Once the intersection is clear, the goal is switched to the waypoint
at the exit of the intersection. Parking is executed in a similar fashion.

A Perception-Driven Autonomous Urban Vehicle 197

Fig. 18. The Navigator’s view of intersection precedence. PX means there is a car with prece-
dence at that entrance, and PC means there is no car, or the car at the stop line does not have
precedence. IX means there is a moving object in the intersection. Talos is clear to proceed
when all PX states have transitioned to PC and IX has transitioned to IC.

5.1.1 Intersection Precedence
The logic for intersection precedence, crossing, and merging with moving traffic
lies entirely within the Navigator. As previously described, moving the goal is the
mechanism by which the Navigator influences the Motion Planner in such situations.
This separation has the extra benefit of significantly reducing the complexity of the
Motion Planner.

When our vehicle arrives at an intersection, the other intersection entrances are
inspected for large obstacles. If a large obstacle is present, then it is considered to
be another vehicle and given precedence. Then, as the vehicle waits, if any of the
following three conditions become true, the other vehicle no longer has precedence:
1) that vehicle begins moving into the intersection, 2) that obstacle disappears for
more than four seconds, or 3) the traffic jam timer expires. Talos also waits whenever
there is a moving obstacle present in the intersection whose trajectory will not take
it outside the intersection within one second. Figure 18 shows a snapshot of an
intersection with these tests in progress.

Crossing and merging is implemented using time-to-collision (TTC) logic. Upon
arrival at an intersection, Talos comes to a stop if forward progress would cross or
merge with any lane of traffic that does not have a stop sign. For each of these lanes,
Talos finds the point where its path intersects the other lane’s path and measures
the TTC for any incoming traffic from that lane. If the TTC is less than 9 seconds,
Talos yields to the moving traffic. Talos came to a full stop whenever the vehicle
is on an RNDF “exit” that crosses another RNDF exit and both do not have stop
signs. This addresses the fact that the RNDF format does not differentiate between
exits in which Talos can proceed without stopping and exits in which a full stop
is required.

198 J. Leonard et al.

5.1.2 Passing
The Navigator can control passing behavior using an additional state that it sends
to the Motion Planner. Besides the goal, the Navigator continuously informs the
Motion Planner whether only the current lane is acceptable for travel, or both the
current and opposing lanes are acceptable. When Talos comes to a stop behind a
stopped vehicle, the Navigator first ascertains whether passing is allowed (i.e. on a
two-lane road and not in a safety area). If allowed, the Navigator checks that the
opposing lane is clear and if so, signals to the Motion Planner that travel is allowed
in the opposing lane. The goal position is not changed. If the motion planner is able
to find a path around the stopped vehicle, it will then begin moving again.

5.1.3 Blockages and Failsafe Modes
In order to handle unexpected or unpredictable events that could occur in an ur-
ban environment, we use failsafe and blockage timers. The failsafe timer ticks up-
ward from zero whenever the vehicle is not making forward progress. Upon making
progress, the timer resets to zero. Upon reaching 80 seconds, we increment the fail-
safe mode and reset the timer back to zero. Thus, normal operation is failsafe mode
0. Once Talos is in failsafe mode 1, the vehicle has to traverse a pre-determined
distance in the RNDF before the mode is decremented back to zero. This combina-
tion of timer and mode ensures that the failsafe behaviors are phased out slowly
once Talos starts making progress rather than immediately reverting as soon as
the vehicle starts moving. Other modules in the system can change their behav-
ior based on the value of the failsafe mode and timer to encourage the vehicle to
get “un-stuck”.

The following summarizes the multiple layers of failsafe logic implemented in
various modules:

• Failsafe mode 0:
10 sec: Relax the center line constraint of the road to allow passing
10 sec: Shrink the margin retained around obstacles from 30 cm to 15 cm
15 sec: Enable reverse gear motion plans
20 sec: Shrink the margin retained around obstacles from 15 cm to 0 cm
30 sec: Make curbs drivable with a high penalty instead of impassable
35 sec: Unrestrict the area around the goal
80 sec: Go to Failsafe mode 1

• Failsafe mode 1:
0 sec: Do not observe standoff distances from stationary obstacles
0 sec: Allow crossing of zone boundaries anywhere
80 sec: Go to Failsafe mode 2

• Failsafe mode 2:
0 sec: Do not observe standoff distances from moving obstacles
0 sec: Drop lane constraints completely and navigate as if the area were an

obstacle field

A Perception-Driven Autonomous Urban Vehicle 199

0 sec: Shrink the vehicle footprint used for the feasibility check; when the
vehicle moves forward, neglect the part of it behind the rear axle; when in
reverse, neglect the part of it in front of the front axle

70 sec: Skip the next MDF checkpoint
80 sec: Go to Failsafe mode 3

• Failsafe mode 3:
0 sec: Restart all the processes except the logger, ADU, and process manager.

Since the Navigator is restarted Talos will be in Failsafe mode 0 after the
restart.

In addition, detection parameters for the underlying obstacle detectors are relaxed
in higher failsafe modes, although never to the point that Talos would drive into a
clearly visible obstacle.

The blockage timer behaves similarly to the failsafe timer but only ticks upward
if Talos is on a two-way road where a U-turn is possible. If the timer reaches 50
seconds of no progress, Talos begins a U-turn by moving the goal to a point behind
the vehicle in the opposite lane.

When maneuvers such as U-turns and passing are in highly confined spaces, they
can take appreciable time without making much forward progress. In order to ensure
that the maneuver being executed is not interrupted, the failsafe and blockage timers
increment more slowly when the Motion Planner has found a solution to execute.

5.2 Drivability Map

To enable the path planning algorithm to interface with the perceived environment,
the perception data is rendered into a Drivability Map, shown in Figure 19. The
Drivability Map consists of: (a) infeasible regions which are no-go areas due to
proximity to obstacles or undesirable locations; (b) high-cost regions which should
be avoided if possible by the motion plan, and (c) restricted regions that may only
be entered if the vehicle can stop in an unrestricted area further ahead. Restricted re-
gions are used to permit minor violations of the lane boundaries if it makes progress
down the road. Restricted regions are also used behind vehicles to enforce the req-
uisite number of car lengths’ stand-off distance behind a traffic vehicle. If there is
enough room to pass a vehicle without crossing the lane boundary (for instance if
the vehicle is parked on the side of a wide road), Talos will traverse the restricted
region and pass the vehicle and continue in the unrestricted region in front. If the
traffic vehicle blocks the lane, Talos will not enter the restricted region because there
is no unrestricted place to go. The vehicle will stop behind the restricted region in
a vehicle-queuing behavior until the traffic vehicle moves or a passing maneuver
begins.

As discussed previously, the Navigator contains a cascade of events triggered by
a prolonged lack of progress. For example, after 10 seconds of no progress queuing
behind a stationary vehicle the Navigator will enter the passing mode. This mode
amounts to a relaxation of the lane center-line constraint. The Drivability Map will

200 J. Leonard et al.

Fig. 19. Drivability Map visualization. [White on Green] Short-term goal location. [Red]
Infeasable regions are off-limits to the vehicle. [Blue] Restricted regions may only be entered
if the vehicle can stop in an unrestricted region further ahead. [White or Gray] High-cost
regions indicate regions accessible to the vehicle.

then carve out the current and oncoming lanes as drivable. Given no obstacles, Ta-
los will then plan a passing trajectory around the stopped vehicle. Static obstacles
are rendered in the drivability map as infeasible regions expanded by an additional
30cm to permit a hard margin of safety. If the vehicle makes no progress for a
prolonged period of time this margin reduces down to 0 to enable the vehicle to
squeeze through a tight fit. The vehicle still should not hit an observed obstacle.
As mentioned previously, no explicit vehicle detection is done; instead, moving ob-
stacles are rendered in the Drivability Map with an infeasible region projected in
front of the vehicle in proportion to the instantaneous vehicle velocity. As shown in
Figure 20(a), if the moving obstacle is in a lane, the infeasible region is projected
down the lane direction. If the moving obstacle is in a zone, there is no obvious
intended direction so the region is projected in the velocity direction only. In an in-
tersection the obstacle velocity direction is compared with the intersection exits. If
a good exit candidate is found, a second region is projected from the obstacle to the
exit waypoint (Shown in Figure 20(b)).

Originally only the length of the path that did not collide with an obstacle or lane
was used to find optimal trajectories. This could select paths very close to obstacles.
A significant refinement of this approach was the inclusion of the notion of risk. In
the refined approach, when evaluating the feasibility of a trajectory, the Drivability
Map also returns a penalty value, which represents how close the trajectory is to
constraints such as obstacles and lane boundaries. The Motion Planner uses the sum
of this penalty and the time required to reach the goal point as the cost of each
trajectory. Using this combined metric, the best trajectories tend to stay away from
obstacles and lane boundaries, while allowing the car to get close to constraints on
a narrow road.

A Perception-Driven Autonomous Urban Vehicle 201

(a)

(b)

Fig. 20. (a) An infeasible region is projected down the lane excluding maneuvers into on-
coming vehicles. (b) Within an intersection an infeasible region is created between a moving
obstacle and the exit matching the velocity direction.

Object tracks where the intended path was not known, such as in intersections or
zones, were propagated by three seconds using a constant velocity model.

5.2.1 Lane Boundary Adjustment
When the vision system is used as the primary source of lane estimates, the differ-
ence between the RNDF-inferred lanes and the vision-based lanes can be significant.
When the vision system suddenly loses a tracked lane or acquires a new lane, the
lane estimate can jump by more than a meter, rendering the current pose of the
car in an “infeasible” region (outside of the estimated lane). To provide the Motion
Planner with a smooth transition of lane boundary constraints, the lane boundaries
are adjusted using the current vehicle configuration. Figure 21 shows a case where
the vehicle is not inside the latest estimate of the lane boundaries. By marking the
region from the current configuration to some point in front on the lane as drivable,
the adjustment resolves the initial infeasibility issue. This is also useful when the car
happens to drive across a lane boundary, because the Motion Planner will no longer
apply hard braking simply because the car has violated a lane boundary constraint.

A similar adjustment is also made when the vision system does not detect any
signs of a lane, but curbs are detected by the lidars. In such a case, the RNDF-
inferred lanes are adjusted to match the curbs, to avoid having conflicting constraints
for the curbs and RNDF-inferred lanes.

202 J. Leonard et al.

Fig. 21. “Stretchy” lane adjustment. When the vehicle is off the lane, the lane is adjusted so
that the vehicle does not brake as a result of crossing the lane boundary.

Each iteration of the Motion Planner performs many checks of potential trajec-
tories against the Drivability Map, so for computational efficiency the Drivability
Map runs in a separate thread inside the Motion Planner module.

5.3 Motion Planner

The Motion Planner receives an RNDF point from the Navigator as a goal. The
output is a path and a speed command that the low-level controller is going to use.
The plan to the controller is sent at 10 Hz. The approach is based on the Rapidly-
exploring Random Tree (RRT) (LaValle and Kuffner, 2001), where the tree of kino-
dynamically feasible trajectories is grown by sampling numerous points randomly.
The algorithm is shown in Algorithm 2. The basic idea is to generate a sample and
run the forward simulation of the vehicle-controller system. The simulated trajectory
is checked with the Drivability Map, and the sample is discarded or added to the tree
based on the feasibility. In order to efficiently generate the path in the dynamic and
uncertain environment, several extensions have been made (Frazzoli, 2001) to the
standard RRT, as discussed in the subsections below.

5.3.1 Planning over Closed-Loop Dynamics
The first extension is to sample the input to the controller and run closed-loop
simulation. RRT approaches typically sample the input to the vehicle. However, if
the vehicle is unstable, it is difficult for random sampling to construct stable trajec-
tories. Furthermore, the input to the vehicle must change at a high rate to achieve
smooth overall behavior, requiring either samples be taken at a very high rate or an
arbitrary smoothing process be used. By first closing the loop on the vehicle with a

A Perception-Driven Autonomous Urban Vehicle 203

Algorithm 2. RRT-based planning algorithm
1: repeat
2: Receive the current vehicle states and environment.
3: Propagate the states by the computation time limit.
4: repeat
5: Take a sample for the input to the controller
6: Select a node in the tree using heuristics
7: Propagate from the selected node to the sample
8: if The propagated path is feasible with the drivability map then
9: Add branch nodes on the path.

10: Add the sample and the branch nodes to the tree.
11: for Each newly added node v do
12: Propagate to the target
13: if The propagated path is feasible with the Drivability Map then
14: Add the path to the tree
15: Set the cost of the propagated path as the upper bound of cost-to-go at v
16: end if
17: end for
18: end if
19: until Time limit is reached
20: Choose the best trajectory in the tree, and check the feasibility with the latest Driv-

ability Map
21: if The best trajectory is infeasible then
22: Remove the infeasible portion from the tree and Go to line 20
23: end if
24: Send the best trajectory to the controller
25: until Vehicle reaches the target.

stabilizing controller and then sampling the input to the vehicle-controller system,
our approach easily handles vehicles with unstable dynamics.

The behavior of the car is then predicted using forward simulation. The simula-
tion involves a model of the vehicle and the exact same implementation of the ex-
ecution controller that is discussed in Subsection 5.4. Because the controller tracks
the reference, the prediction error of this closed-loop approach is much smaller than
the open-loop prediction that uses only the vehicle dynamics in a forward simula-
tion. As shown in Figure 22, the tree consists of the input to the controller (shown
in blue) and the predicted trajectory (shown in green and red).

This closed-loop RRT has several further advantages. First, the forward simula-
tion can easily incorporate any nonlinear controller or nonlinear dynamics of the
vehicle. Second, the output of the closed-loop simulation is dynamically feasible by
construction. Third, since the controller handles the low-level tracking, the RRT can
focus on macro behaviors by giving the controller a straight-line path to the target
or a path that follows the lane center. This significantly simplifies the tree expansion
and is suitable for real-time planning.

204 J. Leonard et al.

Fig. 22. Illustration of RRT Motion planning. Each leaf of the tree represents a stopping lo-
cation. The motion control points (in blue) are translated into a predicted path. The predicted
paths are checked for drivability (shown in green and red).

5.3.2 Maintaining Safety as an Invariant Set
Ensuring the safety of the vehicle in a dynamic and uncertain environment is the
key feature of our planning system. Under normal driving conditions, once a car
comes to a stop, it can stay there for indefinite period of time and remain safe
(Schouwenaars et al., 2004). Using this stopped state as a safe invariant state, our
RRT requires that all the branches in the tree end with a stopped state. The large
circles in Figure 22 show the stopping nodes in the tree, and each forward simula-
tion terminates when the car comes to a stop. The existence of the stopping nodes
guarantees that there is always a feasible way to come to a safe stop when the car is
moving. Unless there is a safe stopping node at the end of the path, Talos does not
start executing it.

5.3.3 Biased Sampling
Another extension to the RRT algorithm is that it uses the physical and logical
structure of the environment to bias the sampling. The samples are taken in 2D
and they are used to form the input to the steering controller. To take a sample
(xsample,ysample), the following equation is used

A Perception-Driven Autonomous Urban Vehicle 205

[
xsample

ysample

]
=

[
x0
y0

]
+ r

[
cosθ
sinθ

]

r = σr|nr|+ r0

θ = σθ nθ + θ0

where nr and nθ are random variables that have Gaussian distributions, σr and σθ
give the 1-σ values of the radial and circumferential direction, r0 and θ0 are the
offsets, and (x0, y0) is the center of the Gaussian cloud. Figure 23(a) shows 100
samples and the 1-σ lines, with the following parameter values: σr = 10, σθ = π/4,
r0 = 5, θ0 = π/3, and (x0, y0) = (0, 0). Different bias values are used based on the
vehicle location, such as a lane, an intersection, or a parking lot. The situational
information from the Navigator such as speed limits, passing allowed, and U-turn
allowed, was also used to generate different sampling biases.

Figure 23(b) shows the samples generated while designing a U-turn maneuver. To
perform general N-point turns in cluttered environments, the sampling includes both
the forward and reverse traveling directions. A cone of forward samples is generated
to the left front of the vehicle to initiate the turn (it appears at the top left of the road
shown). A set of reverse samples is also generated, which appears to the right of
the road shown. These samples will be used after executing the first forward leg of
the turn. Then, another set of forward samples is generated to the left of the current
vehicle location (it appears at the bottom left of the road shown), for use when
completing the turn. For example, the parameter values used for each of these three
sets determining a U-turn maneuver are, respectively, σr1 = 8, σθ1 = π/10, r01 = 3,
θ01 = 4π/9; σr2 = 10, σθ2 = π/10, r02 = 5, θ02 = −π/4; σr3 = 12, σθ3 = π/10,
r03 = 7, θ03 = π . The first Gaussian cloud is centered on the location of the vehicle
before initiating the U-turn maneuver, whether the two other clouds are centered on
the location of the previous sample.

0 5 10 15 20

10

0

5

10

15

20

Samples
σ line

(a) (b)

Fig. 23. (a) Biased Gaussian samplings. The x, y axes are in [m]. (b) Biased sampling for
three-point turns – Talos shown in position after the first forward leg of the turn.

206 J. Leonard et al.

The use of situational/environmental structure for biasing significantly increases
the probability of generating feasible trajectories, making the RRT suitable for the
real-time applications. Team MIT used a single planner for the entire race, which
shows the flexibility and the extensibility of this planning algorithm.

5.3.4 Lazy Re-evaluation
In a dynamic and uncertain environment, the situational awareness is constantly
changing, but checking the feasibility of the entire tree against the latest Drivability
Map is time consuming. The system checks the feasibility of the path when it is gen-
erated (Algorithm 2, line 8), but not re-evaluate its feasibility until it is selected as
the best path to be executed (Algorithm 2, line 21). This “lazy check” approach sig-
nificantly reduced the time spent checking the feasibility using the Drivability Map,
but still ensured that the path that was sent to the Controller was always feasible
with respect to the latest perceived environment.

5.4 Controller

The Controller takes the motion plan and generates gas, brake, steering and gear
shift commands (collectively referred to as the control signals) that track the desired
motion plan. The motion plan contains the same information as the controller in-
put used in the planner prediction, and consists of a list of (x, y) points that define
the piece-wise linear reference path for the steering controller and the associated
reference speed. The Controller has two components: a pure-pursuit steering con-
troller and the proportional-integral (PI) speed controller. A pure-pursuit algorithm
is used for steering control because it has demonstrated excellent tracking perfor-
mance for both ground and aerial vehicles over many years (Kelly and Stentz, 1997;
Park et al., 2007). A simple PI controller is implemented to track the commanded
speed. These two core modules are embedded in the execution controller, but also
within the motion planner for trajectory prediction, as discussed in Subsection 5.3.
The generated control signals are sent to ADU for actuation, and the Controller loop
runs at 25 Hz.

5.4.1 Steering Controller
The low-level steering control uses a modified version of the pure pursuit control
law (Kelly and Stentz, 1997; Park et al., 2007) to steer the vehicle along the desired
path. The steering control law is given by

δ = − tan−1

(
Lsin η

L1
2 + la cosη

)

where L is the constant vehicle wheelbase, la is the constant distance between
the pure pursuit anchor point and the rear axle, η is the angle between the vehi-
cle heading and reference path direction, and L1 is the look-ahead distance that
determines how far ahead on the reference path the controller should be aiming.

A Perception-Driven Autonomous Urban Vehicle 207

0 2 4 6 8 10
0

2

4

6

8

10

12

speed command (m/s)

L1
 d

is
ta

nc
e

(m
)

Fig. 24. L1 distance as a function of the commanded speed.

A smaller L1 produces a high-gain controller with better tracking performance.
However, to ensure stability against the system delay, L1 must be enlarged with
speed (Park et al., 2007). Figure 24 plots the relation between the L1 and the com-
manded speed. The L1 has a minimum value to ensure that the controller is stable
at low speed. The L1 is also capped from above, to ensure that the look-ahead point
stays on a path within a reliable sensing range.

To improve trajectory tracking performance, the controller scales L1 as a function
of the commanded speed. Up to the time of site visit in June 2007, L1 was deter-
mined as a function of the measured vehicle speed. The result was that any error
in the speed prediction would translate into a different L1 being used by the Mo-
tion Planner prediction and the Controller execution, which effectively changes the
gain of the steering controller. In the final approach, the RRT planner determines the
commanded speed profile, with the result that the speed and steering controllers are
decoupled.

5.4.2 Speed Controller
The speed controller is a low-bandwidth controller with the following gains

u = Kp(v− vref)+ Ki

∫
(v− vref)dt

Kp = 0.2

Ki = 0.04.

The output of the speed controller u is a normalized value between −1 and +1.
Using a piecewise linear mapping shown in Figure 25, u is converted to the voltage
command to ADU. Note that the initial testing revealed that the EMC vehicle inter-
face has a deadband between 1850 mV and 3200 mV. To achieve a smooth coasting
behavior, when the normalized controller output is small, (i.e. |u|≤ 0.05), no gas or
brake is applied. To skip the deadband and quickly respond to the controller com-
mand, the small positive output (u = 0.05) corresponds to the upper limit of the

208 J. Leonard et al.

0 0.5 1

500

1000

1500

2000

2500

3000

3500

4000

4500

normalized controller output

vo
lta

ge
 c

om
m

an
d

(m
V

)

Fig. 25. Conversion from the speed controller output to the ADU command voltage.

deadband 3200 mV, and the small negative output (u = −0.05) corresponds to the
lower limit of the deadband 1850 mV.

To help reduce the prediction error, the commanded speed is tied to the predicted
vehicle location, rather than time. The time-based reference leads to a coupling be-
tween the steering and speed controllers, even when L1 is scheduled as a function of
the commanded speed. For example, if the actual vehicle speeds up slower than the
prediction with a ramp-up speed command, the time-based speed command would
make L1 larger than the predicted L1 when reaching the same position. This differ-
ence in L1 can lead to significant steering error. The space-based reference makes
the steering performance relatively insensitive to these types of speed prediction
errors.

6 Challenge Results

To complete the DARPA Urban Challenge, Talos successfully negotiated first the
National Qualifying Event (NQE) and then race itself. This section reviews the ve-
hicle’s performance in these events.

6.1 National Qualifying Event (NQE) Performance

The NQE trials consisted of three test areas. Area A tested merging into traffic
and turning across traffic. Area B tested navigation in suburban crescents, parking
and passing of stopped vehicles. Area C tested intersection precedence and route
blockage replanning. The NQE was also the first chance to test Talos in a DARPA-
designed course and RNDF. On day one we were testing not only our ability to
complete the mission, but also the compatibility of coordinate systems and RNDF
conventions. Team MIT completed one mission a day for the first three days of the
qualifier, with a five-mission endurance test on the fourth day, as shown in Table 1.

Successful negotiation of the NQE trials, and later, the race, required macro-level
behavior tuning to manage trade-offs in uncertain scenarios:

A Perception-Driven Autonomous Urban Vehicle 209

Table 1. Results for all of Talos’ NQE tests

Day Date NQE Schedule Outcome
1 Sat. 27th Oct Area B 1st trial Completed.
2 Sun. 28th Oct Area C 1st trial Completed, but went around the roadblock.
3 Mon. 29th Oct Area A 1st trial Completed – Safe, but slow (7 laps in 24 minutes)
4 Tue. 30th Oct Area B 2nd trial Still progressing, but ran out of time.

Area C 2nd trial Went off-road after 2nd K-turn at blockage.
Area A 2nd trial Completed – Safe and faster (10 laps in 12 minutes)
Area B 3rd trial Completed.
Area C 3rd trial Completed after recovery from K-turn at first blockage.

5 Wed. 31st Oct —

• No progress due to a road blockage versus a perception failure (such as a mis-
detected curb cut).

• No progress due to a vehicle to queue behind & pass versus a perception failure
(like a lane positioning error).

• Safe versus overly cautious behavior.

After leaving the start chute, Talos was reluctant to leave the Start Zone. The
boundary from the raised Start Zone into Challenge Lane was in fact a six-inch drop
smoothed by a green ramp. This drop-off was detected by our vehicle as a ditch.
Figure 26(a) shows how the drop-off appeared to our vehicle. Reluctant to drive
down such a drop-off, the vehicle looked for an alternate route. Unable to make
progress, the failsafe logic eventually relaxed the constraint that had been avoiding
the ditch. The vehicle then drove down Challenge Lane.

Figure 26(b) shows how our system relies on local perception to localize the RNDF
map data. The lane ahead of the vehicle is dilated, representing the potential ambi-
guity in where the lane may actually be. The dilation contracts to the lane position
at certain control points either because of a close GPS waypoint or lane tracking.

During Talos’ first parking attempt, we struck the first difference in the way Team
MIT and DARPA interpreted the RNDF. Figure 26(c) shows that the goal point
our vehicle is trying to drive to is under the parked vehicle in front. For parking
spots and other checkpoints, we attempted to get the vehicle center to cross the
checkpoint. To achieve this, we placed the goal location ahead of the checkpoint to
make the vehicle pass over the checkpoint. The positioning of the vehicles and the
parking spots indicates that DARPA simply required the vehicle to drive up to the
checkpoint in this test. The sampling strategy of the RRT planner assumed that the
parking spot was empty. The blocked parking spot caused many of the samples to be
discarded because the last portion of the trajectory was infeasible. This is why Talos
spent more than a minute in the parking zone. For the final race, a new sampling
strategy was developed that caused Talos to come as close to the checkpoint in the
parking spot as possible, which can be performed much more quickly. This figure
also shows some transient phantom obstacle detections caused by dust in the gravel
parking zone to the left of Talos.

210 J. Leonard et al.

(a) (b)

(c) (d)

Fig. 26. Area B 1st trial highlights. (a) Road-hazard map showing red line along end of zone.
The drop-off onto Challenge Lane was detected as a ditch. (b) Lane position uncertainty
between control points reflected by lane dilation. The road past where Talos can perceive it is
dilated reflecting the potential ambiguity in lane position. (c) Parking goal position under car
in front. (d) a virtual blockage used to enforce passing behavior causing undesired results.

To ensure that Talos would queue behind a slow-moving vehicle yet still pass
a stationary vehicle or obstacle, the system was designed to artificially choke off
the road beside an obstacle in the lane. Since Talos could then not make progress, it
would wait 10 seconds to determine if the obstacle was a vehicle moving slowly or a
stationary object. If the object remained still, Talos would begin a passing maneuver.
In the Gauntlet, this choke-off behavior misfired. Figure 26(d) shows our vehicle
waiting to go into passing mode beside a parked car. The road curvature causes the
obstacle to appear more directly in our lane than was actually the case. Stuck for a
time between the impassable regions generated from the vehicle on the right and a
Drivability Map rendering artifact on the left, Talos entered into the failsafe mode
with relaxed lane boundary constraints. Talos then sailed through the rest of the
Gauntlet and completed the mission. Note that the parked cars and obstacles still
appear as red infeasible regions off-limits to the vehicle.

Area C tested intersection precedence and blockage replanning. The vehicle did
very well at intersection precedence handling in many different scenarios. Fig-
ure 27(a) shows Talos correctly giving precedence to three traffic vehicles before go-
ing ahead of the second oncoming traffic vehicle. Figure 27(b) shows Talos queueing
behind a traffic vehicle before giving precedence at the intersection.

A Perception-Driven Autonomous Urban Vehicle 211

(a) (b)

(c) (d)

Fig. 27. Area C 1st trial highlights. (a) Intersection precedence with four traffic vehicles. (b)
Queuing before an intersection. (c) Attempting to go around a blockage. (d) “Failsafe mode
1” permits the vehicle to go around the blockage.

Blockage replanning was more challenging. Talos correctly detected and stopped
at the line of traffic barrels (see Figure 27(c)), and then its programming caused it
to try a passing attempt to drive around the blockage. After a predetermined period
where no progress was made, the system relaxed some of the perception constraints
(to account for the possibility that the road position had been poorly estimated, for
example) or declare a blockage and turn around. At the time of this test, the logic
was set up to relax the lane constraints prior to declaring a blockage, assuming that
a blockage would be truly impassable. Section 5.1.3 contains the logic. Figure 27(d)
shows the perceived world once in “Failsafe mode”. Once the lane constraints were
dropped, the route around the blockage was high cost, but passable, so Talos drove
around the blockage and finished the mission.

The Area A trial was a merging test with human-driven traffic vehicles. Leading
up to the trial, much emphasis was placed on safety, so on the evening before the
trial Team MIT reexamined and tested the logic used to determine when it was safe
to merge. Increased caution and an unexpected consequence of a bug fix prompted
the increase of Talos’ safety margin for merging from an 8-second window to a 13-
second window. As a result, during the Area A trial, Talos performed safely, but
very cautiously, as it was waiting for a 13-second window in the traffic, and such a
window rarely appeared. In the 24-minute trial, Talos completed only 7 laps.

212 J. Leonard et al.

(a) (b)

Fig. 28. Area A 1st trial highlights. (a) Vehicle approaching on the right is tracked despite
being occluded by a closer vehicle. (b) High traffic density makes for a long wait.

Figure 28(a) shows the vehicle track on the right approaching at 3.5m/s despite
being occluded by a vehicle in the closer lane tracked by the radar and lidar as
traveling at 3.9m/s and 4.3m/s, respectively.

Although the failsafe mode permitted Talos to complete the first Area B trial, the
team decided to fix the bugs that led to Talos ending up in this mode and only use
it as a last resort. On the second trial at Area B, many of the bugs seen during the
first trial were fixed, including: the dip leading out of the Start Zone, the rendering
artifact bug, and the parking spot location ahead of the checkpoint. However, a few
new issues arose.

On its route through the Gauntlet, Talos became stuck due to a combination of
a poor lane estimate, the virtual object used to force a passing behavior, and a bug
that would not permit Talos to go into passing mode if it was not fully within the
estimated lane, as shown in Figure 29(e). Eventually Talos made no progress for
long enough that a blockage was assumed. Talos then planned to turn around and
approach the checkpoint from the opposite direction. Figures 29(a) and (b) show the
originally planned route and the alternate route through the Gauntlet from the oppo-
site direction, respectively. Talos completed the Gauntlet in the opposite direction
and then needed to turn around again to hit the original checkpoint. Figure 29(c)
shows the intended route since the blockage now seems to have been removed. En-
route, Talos came across a legitimate road blockage shown in Figure 29(f). Talos
completed a K-turn and executed the revised plan shown in Figure 29(d). Talos con-
tinued to make progress, but given the extra distance traveled, it ran out of time
before completing the course.

During the second trial of Area C, the macro-behavior tuning had improved such
that Talos correctly inserted a blockage and made a K-turn instead of simply driving
around the blockage. However, during the second K-turn on the far side of the block-
age, a poor lane estimate and a restricted region generated by obstacles perceived to
be in the lane conspired to stall progress (shown in Figure 30(a)). Eventually, Talos
entered failsafe mode and proceeded with relaxed lane constraints and a reduced
restricted region. Unfortunately, as Talos was driving out of a successful K-turn
the no-progress timer triggered and Talos reconsidered its blockage choice. Talos
elected to block the current path and try the original route. In the recovery mode

A Perception-Driven Autonomous Urban Vehicle 213

(a) (b) (c) (d)

(e) (f)

Fig. 29. Area B 2nd trial highlights. (a), (b), (c), & (d) show a sequence of navigator plans.
After a blockage is declared in the Gauntlet, Talos attempts to reach the checkpoint from the
opposite direction. (e) Talos gets stuck and cannot go into passing mode due to a poor lane
estimate resulting in the appearance that it was not entirely in its lane. (f) This blockage was
real. Talos detects the blockage and completes a K-turn.

Talos was enabled to drive across curbs, behind the DARPA observation tent and
around the blockage to complete the mission (shown in Figure 30(b)). The DARPA
officials intervened.

For the second trial of Area A, the safety margin for merging (which, at 13 sec-
onds, had caused a significant amount of waiting in the first trial) was reduced to 9
seconds. The planning sequence was also modified so that the RRT planner could
prepare paths for Talos to follow while the Navigator waited for the crossing traffic
to clear the intersection. This improved the response time of the vehicle, and the
overall results were much better, with 10 laps in just 12 minutes. Figure 31 shows a
photo of Talos and a screenshot of the viewer output for this mission.

Figure 32 illustrates Talos’ performance in its Area B 3rd trial. In the Gauntlet,
the artificial choke on the road was removed, and passing was successful. Talos got
stuck on curbs a few times, probably due to inaccurate lane estimates, but otherwise
executed the mission well.

A consequence of our decision to treat environmental perception as a higher au-
thority than map data was that, at times, the lane estimate would snap to a new
confident estimate. Some basic transitioning was implemented in the drivablility
map to attempt to smooth the transition. In the best case the Motion Planner would
discover a new trajectory to the goal within the next planning iteration. If no forward

214 J. Leonard et al.

(a) (b)

Fig. 30. Area C 2nd trial highlights. (a) Progress is stalled during the second K-turn by a poor
lane estimate and a restricted region. (b) Failsafe mode is entered and would have permitted
a successful K-turn, except that the goal location now reverts to the far side of the blockage.

(a) (b)

Fig. 31. Area A 2nd trial highlights. (a) Talos is looking for smaller gaps than in the 1st trial.
(b) The RRT planner is working while waiting for oncoming traffic to clear.

plan could be found, the vehicle would begin an emergency brake. Occasionally the
vehicle would be placed too close to detected curbs. Although the vehicle footprint
is cleared of infeasible curbs, the areas around the vehicle were not edited in this
way. If curbs impeded progress, the vehicle would become “ship wrecked”. After
the no-progress timer got sufficiently high, the curbs were rendered as high cost in-
stead of infeasible and the vehicle would proceed. Figures 32(a) and (b) show how
the lane estimate can shift based on new data. The problem is a consequence of
limited development time. The intention was to use the detected curbs in the lane
estimation process for the race. As described in Section 4.4, the capability in the
software was present, but unfortunately the integration was a little too immature to
use in the race so the simpler “curbs as obstacles” approach was used.

A Perception-Driven Autonomous Urban Vehicle 215

(a) (b)

(c) (d)

Fig. 32. Area B 3rd trial highlights. (a) Without visual lane tracking, a curb-free space algo-
rithm localizes the lane. (b) Visual lane tracking often recovers, providing an improved road
estimate. (c) Without a virtual obstacle, passing will still occur as long as the object occupies
enough of the lane. Here the parked car still induces a passing behavior. (d) Once in passing
mode, parked cars are easily maneuvered around.

Figure 33 illustrates Talos’ performance in its Area C 3rd trial. After correctly
detecting the blockage, during the first K-turn, the vehicle drove off the road and the
pit crew was called to reposition the vehicle; after this intervention, Talos completed
the mission successfully.

6.2 UCE Performance

Overall, the team was very pleased with the performance of the vehicle during the
race. Figure 34 shows some general highlights of Talos’ performance during the
UCE. Figure 34(b) shows Talos driving down Phantom East. The vehicle speed
was capped at 25mph as this was the highest speed for which we had validated
our vehicle model. The radar in the picture reads 24mph. Figure 34(d) shows Talos
queuing patiently behind a metal pipe gate that had blown across an intersection
safety region. The gate was later forcefully removed by the DARPA officials. After
initially passing the Cornell chase vehicle, Figure 34(c) shows Talos slowing to

216 J. Leonard et al.

(a) (b)

Fig. 33. Area C 3rd trial highlights. After correctly detecting the blockage, Talos begins a
K-turn. The navigator’s plan changes. Talos enters failsafe mode, drives off-road, and is re-
covered by the pit crew. (b) After the intervention, Talos resumes, and its second K-turn goes
well.

merge safely behind the Cornell chase vehicle as the two lane road merges back
to one at the end of George Boulevard. Figure 34(e) shows an incident found while
reviewing the logs. Talos correctly yields to a traffic vehicle traveling at over 35mph.
The early detection by Talos’ radar suite on the crescent road potentially saved the
vehicle from a race-ending collision. Finally, Figure 34(f) shows Talos crossing the
finish line after completing the final mission.

The race consisted of three missions. Figure 35 shows periods of no progress
during the missions. An analysis of the peaks in these plots permits us to examine
the principal failure modes during the race. During the first mission, Failsafe Mode
1 was entered twice, once at 750 sec due to being stuck on the wrong side of an
artificial zone perimeter fence. Figure 36 shows how the lane next to parking zone
is narrow in the RNDF (12ft) – the actual lane is over 30ft and extends into the zone.
The lane perception snaps to real lane-edge, trapping the vehicle against the zone
boundary virtual fence. The second failsafe mode change came at 7200 sec due to a
bad lane estimate on gravel road, which is discussed in Section 6.2.1. Several other
times during this first mission Talos was “ship wrecked” and made no progress for
30 sec until the curb constraints were relaxed. In Mission 2 the zone perimeter fence
bug occurred at 4000 sec. The third mission required three traversals of the gravel
road, which caused a large number of 30 sec intervals of no progress until curb
constraints were relaxed. Once at 7200 sec a bad lane estimate on the gravel road
caused Talos to enter Failsafe Mode 1.

Outback Road was the Achilles heel of Talos’ UCE performance. We now exam-
ine the cause.

6.2.1 Outback Road
As noted above, Talos’ third mission during the UCE required three traversals of the
steep gravel road known as Outback Road. Figure 37 illustrates why three traversals

A Perception-Driven Autonomous Urban Vehicle 217

(a) (b)

(c)

(d)

(e) (f)

Fig. 34. UCE highlights. (a) Talos overtaken by traffic vehicle. (b) Talos reaches its target
speed of 25mph (24 shown on the sign) traveling up Phantom East. (c) Talos slows to merge
safely behind the Cornell chase vehicle. (d) Talos waits patiently behind a gate that was blown
across an intersection safety zone. (e) A fast traffic vehicle is detected early by radars, and
correct intersection precedence keeps Talos in the race. (f) Mission accomplished.

218 J. Leonard et al.

0 2000 4000 6000 8000 10000 12000
Time (sec)

0

10

20

30

40

50

60

70

80

90
Fa

ils
af

e
tim

er

(a) Mission 1

0 1000 2000 3000 4000 5000 6000
Time (sec)

0

10

20

30

40

50

60

70

80

90

Fa
ils

af
e

tim
er

Timer
Pass, 15cm Margin
Reverse
0cm Margin
Curbs drivable
Un-Restrict goal
No Zone boundaries, No Standoffs

(b) Mission 2

0 2000 4000 6000 8000 10000 12000
Time (sec)

0

10

20

30

40

50

60

70

80

90

Fa
ils

af
e

tim
er

Timer
Pass, 15cm Margin
Reverse
0cm Margin
Curbs drivable
Un-Restrict goal
No Zone boundaries, No Standoffs

(c) Mission 3

Fig. 35. No progress timer during the race. The timer is stalled during DARPA Pauses. The X
axis is the wall clock time. (a) During the first mission, failsafe mode (80 sec of no progress)
is entered twice. 750 sec: Zone perimeter fence bug. 7200 sec: Bad lane estimate on gravel
road. Other times Talos was “ship wrecked” and made no progress for 30 seconds until curb
constraints were relaxed. (b) Mission 2: 4000 sec: Zone perimeter fence bug. (c) Mission
3: 7200 sec: Bad lane estimate on gravel road. Many times during the three traversals of
the gravel road section no progress was made for 30 seconds until the curb constraints were
relaxed.

A Perception-Driven Autonomous Urban Vehicle 219

Fig. 36. Lane perception snaps the narrow (12 ft) RNDF lane to the (30 ft) actual lane bound-
ary to the left (gray circles: lane centerline, white lines: lane boundary detections). The road
would be drivable except that the zone virtual boundary (red line) extends into the physical
lane blocking the road.

Fig. 37. To complete the third mission, three traversals of the Outback Road were required.

were required to hit the checkpoints. Of the 35 checkpoints in the mission, check-
points 4, 32, and 34 all required Talos to complete the one-way Outback, Phantom
East circuit to hit the checkpoint and complete the mission. As far as we know other
teams were not required to complete this circuit more than once.

Figure 38 provides snapshots of Talos’ performance while driving down the dirt
road; clearly, the system encountered difficulties on this part of the course. The
drop-off in the road profile was detected as a phantom curb or ditch. When a steep
section of road was directly ahead of Talos, the road-edge detector would occasion-
ally detect the hill as a road edge. (As described below in Section 4.3, the road-edge
detector was intended to detect berms as well as curbs.) The road-edge system in-
corporated a work-around designed to combat this problem: road edges that were
strongly perpendicular to the direction of the road (as indicated by the RNDF) were

220 J. Leonard et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 38. Steep gravel road. (a) & (b) Talos had no problem with gravel roads of gentle slope.
(c) Roll-off of the gravel road appears hazardous in the curb hazard map. (d) A phantom
curb is detected at the road crest. (e) & (f) Phantom curb detections contort the road corridor,
choking the drivable region.

culled. We expected this feature to solve this problem, but it did not. A flat road that
only curved in the direction of travel would be detected as a road edge perpendicular
to the road. However, the dirt road was crowned (had a side-to-side curvature) that
caused the maximum curvature to appear not to be directly across the travel lane,
and instead caused it to appear as two diagonal lines converging further down the
road. The slope of these lines was sufficiently parallel to the direction of travel that
they were not culled. Consequently, Talos would get stuck on the dirt road until a
timeout elapsed (at which point the road edges were no longer treated as obstacles).

A Perception-Driven Autonomous Urban Vehicle 221

(a)

(b)

(c)

(d)

Fig. 39. 1st Team CarOLO’s Caroline – Talos near-miss. (a) Talos stops upon entering inter-
section. (b) Talos detects the moving object across its path and begins to plan a path around
it. (c) Talos begins an emergency stop. (d) Talos comes to a stop. Caroline no longer appears
to be moving, and instead is viewed as a static object.

222 J. Leonard et al.

(a)

(b)

(c)

(d)

Fig. 40. Second Caroline-Talos incident. (a) Talos drives around the Caroline chase vehicle.
(b) Talos drives around Caroline, which is moving sufficiently slowly to appear as a static
object. (c) Talos continues to replan around Caroline, which was perceived as an static object
in a different location. (d) Talos continues to drive around Caroline, and then initiates an
emergency stop, but cannot stop in the space left and collides with Caroline.

A Perception-Driven Autonomous Urban Vehicle 223

Again, as described earlier, the intended approach of using the curb data in
the lane estimate, if mature, would have gone a long way towards addressing this
problem.

(a)

(b)

(c)

Fig. 41. Lead-up to Skynet – Talos incident. (a) Talos initially queues behind the Skynet chase
vehicle. (b) Lane position is low, so Talos finds a route around the chase vehicle. (c) Talos
yields at the intersection. There are no moving vehicles so it proceeds through.

6.2.2 Collisions
Our vehicle had two incidents with Team CarOLO’s vehicle “Caroline” during the
UCE. In the first encounter with Caroline, Talos paused as it entered the intersection,
following the process described in Section 5.1.1, and after resuming its forward mo-
tion, Caroline attempted to make a left turn directly across Talos’ path. The system
initiated a “planner e-stop” just before DARPA issued a Pause command to both
vehicles. These events are illustrated in Figure 39.

224 J. Leonard et al.

(a)

(b)

(c)

Fig. 42. Skynet - Talos incident. (a) Talos plans a route around Skynet, which appears as
a static object. (b) While Talos is passing, Skynet begins to accelerate. (c) While applying
emergency braking, Talos turns into the accelerating Skynet.

In a second incident with Team CarOLO’s vehicle, Talos was attempting to drive
toward the zone exit, between what appeared to be a fence on the left and some static
objects to the right. Caroline drove toward Talos, which applied hard braking, but
did not come to a stop in time to avoid the collision. We do not know why Caroline
did not choose a path through the free space to Talos’ right, or why it continued to
advance when Talos was directly ahead of it. We had made a software architectural
decision not to attempt to explicitly detect vehicles for the Challenge. Instead, Talos
simply treated slow or stationary obstacles as static and faster moving obstacles
as vehicles. Unfortunately Caroline’s speed, acceleration, stopping and starting fell
into a difficult region for our software. Talos treated Caroline as a static obstacle and
was constantly replanning a path around it (to Talos’ left and Caroline’s right). Just

A Perception-Driven Autonomous Urban Vehicle 225

before the collision, the system executed “planner emergency stop” when Caroline
got sufficiently close. Unfortunately, due to Caroline’s speed and trajectory, this
could not prevent physical contact. These events are illustrated in Figure 40.

Talos’ collision with Cornell’s vehicle, Skynet, was another notable incident dur-
ing the UCE, and is illustrated in Figures 41 and 42. As described earlier in this
report, Talos used a perception-dominated system. It was designed to use the way-
points in the RNDF with limited confidence. Upon approaching the intersection,
Talos interpreted Skynet’s DARPA chase vehicle as being close enough to the road
shoulder to be a static feature (such as a tree or barrier on the side of the road).
Therefore, the road entry point was oriented to the left of the chase car. Talos drove
up, gave way at the intersection, and then continued to the left. Because Skynet
and the chase car were stopped, Talos again interpreted them to be stationary ob-
stacles (such as K-rails). Talos drove through the intersection and was attempting
to get back into the exit lane when Skynet started to move. Again its speed was be-
low Talos’ tolerance for treating it as a moving vehicle, and again Talos would have
avoided Skynet if it had remained stationary. As in the collision with Caroline, Talos
was applying emergency braking when it collided with Skynet. The root cause was
a failure to anticipate unexpected behavior from a stopped or slow-moving robot in
a zone or intersection.

7 Discussion

Overall, we were pleased with the performance of our vehicle through the NQE
and UCE competitions. By creating a general-purpose autonomous driving system,
rather than a system tuned to the specific test cases posed by DARPA, our team
made substantial progress towards solving some of the underlying problems in au-
tonomous urban driving. For example, in the NQE and UCE, there were a lot of
traffic and intersection scenarios we had never previously tested, but the software
was able to handle these situations with little or no tweaking.

Our investment in creating a powerful new software architecture for this project
paid off in innumerable ways. The software developers devoted a significant amount
of time to implementing a generic, robust software infrastructure for logging, play-
back, single-vehicle simulation, and visualization. Such an investment of energy
would be hard to justify to achieve a single product such as the development of a
lane tracker or an obstacle detector. However, the development and roll-out of these
innovations to support the whole team produced a more stable code base, and en-
abled shared support of modules between developers as well as quick and effective
debugging.

7.1 Perception-Driven Approach

For the final race, we added approximately 100 waypoints such that our interpo-
lation of the RNDF waypoints more closely matched the aerial imagery provided
by DARPA. Our system was designed to handle the original race description of

226 J. Leonard et al.

perceiving and navigating a road network with a sparse description, and Talos demon-
strated its ability to do this by completing the NQE without a densified RNDF. When
it became apparent that this capability was not going to be tested in the UCE, we
added waypoints to improve our competitive chances. Nonetheless, during the UCE,
Talos still gave precedence to perception-based lane estimates over GPS and RNDF-
derived lanes, in accordance with our overall design strategy.

7.2 Slow-Moving Vehicles

Another key lesson learned was the difficulty of dealing with slow-moving objects.
We attempted to avoid the error-prone process of explicitly classifying obstacles as
vehicles. Instead, our software handled the general classes of static obstacles and
moving obstacles. While this strategy worked well during the NQE, in the race, the
collisions or near-misses involving Talos often came about due to the difficulty in
handling changing traffic vehicle behavior, or slow-moving traffic vehicles. Better
handling of slow-moving vehicles, for example through fusion of vision and lidar
cues to explicitly recognize vehicles versus other types of obstacles, are avenues for
future research.

7.3 Improved Simulation

Further investment in simulation tools for complex multi-robot interactions is war-
ranted. For this project, we developed a useful simulation for a single robotic vehicle
in a complex environment (including traffic vehicles following pre-defined trajec-
tories). We discussed the possibility of developing a more complex simulation that
would enable us to test robot-against-robot (i.e. running our system “against itself”),
but decided against this endeavor due to time constraints. In hindsight, this capabil-
ity would have been quite useful.

While the vehicle generally operated in the vicinity of human-driven traffic with-
out incident, problems were encountered when interacting with other autonomous
vehicles at slow speed. The nature of these interactions likely arose due to some
implicit assumptions of our algorithms that were put in place to address the DARPA
rules. These situations might have been detected from simulation of multiple au-
tonomous vehicles running missions against each other on the same course.

7.4 Verification of Failsafe Approaches

A key capability for long-term autonomous operation was the creation of compre-
hensive failsafe modes. The judicious use of failsafe timers enabled the system to
drop constraints and to free itself in difficult situations, such as when perceptual es-
timates of the lane boundaries did not match reality. In any complex system of this
type, the assumptions of the designers will always be violated by unpredictable situ-
ations. The development and verification of more principled and robust approaches
to recovering from mistakes is an important issue for robotics research.

A Perception-Driven Autonomous Urban Vehicle 227

8 Release of Logs, Visualization and Software

In the interests of building collaboration and a stronger research base in the field,
Team MIT has made its work available to the research community. The complete
Talos UCE race logs, the viewer software and video highlights from the race (made
from the logs) are publicly available at:

http://grandchallenge.mit.edu/public/

In addition, several core components developed for the Urban Challenge have
been released as open source software projects. The Lightweight Communications
and Marshalling (LCM) software library and the libcam image processing toolchain
have been released as open source projects:

http://lcm.googlecode.com/
http://libcam.googlecode.com/

These software components were described in Section 3.3.

9 Conclusion

This paper describes the developed software architecture for a perception-driven
autonomous urban vehicle designed to compete in the 2007 DARPA Urban Chal-
lenge. The system used a comprehensive perception system feeding into a powerful
kino-dynamic motion planning algorithm to complete all autonomous maneuvers.
This unified approach has been “race proven”, completing the Urban Challenge mis-
sion and driving autonomously for approximately 55 miles in under 6 hours. A key
novel aspect of our system, in comparison to many other teams, is that autonomous
decisions were made based on locally sensed perceptual data in preference to
pre-specified map data wherever possible. Our system was designed to handle the
original race description of perceiving and navigating a road network with a sparse
description. Another innovative aspect of our approach is the use of a powerful
and general-purpose RRT-based planning and control algorithm, achieving the re-
quirements of driving in lanes, three-point turns, parking, and maneuvering through
obstacle fields with a single, unified approach. Our system was realized through the
creation of a powerful new suite of software tools for autonomous vehicle research,
tools which have been made available to the research community. Team MIT’s in-
novations provide a strong platform for future research in autonomous driving in
GPS-denied and highly dynamic environments with poor a priori information.

Acknowledgments

Sponsored by Defense Advanced Research Projects Agency, Program: Urban Chal-
lenge, ARPA Order No. W369/00, Program Code: DIRO. Issued by DARPA/CMO
under Contract No. HR0011-06-C-0149.

Our team also gratefully acknowledges the sponsorship of: MIT School of En-
gineering, MIT Computer Science and Artificial Intelligence Laboratory (CSAIL),

228 J. Leonard et al.

MIT Department of Aeronautics and Astronautics, MIT Department of Electrical
Engineering and Computer Science, MIT Department of Mechanical Engineering,
The C. S. Draper Laboratory, Franklin W. Olin College of Engineering, The Ford-
MIT Alliance, Land Rover, Quanta Computer Inc., BAE Systems, MIT Lincoln
Laboratory, MIT Information Services and Technology, South Shore Tri-Town De-
velopment Corporation and Australia National University. Additional support has
been provided in the form of in-kind donations and substantial discounts on equip-
ment purchases from a variety of companies, including Nokia, Mobileye, Delphi,
Applanix, Drew Technologies, and Advanced Circuits.

References

Atreya et al., 2006. Atreya, A.R., Cattle, B.C., Collins, B.M., Essenburg, B., Franken, G.H.,
Saxe, A.M., Schiffres, S.N., Kornhauser, A.L.: Prospect Eleven: Princeton university’s en-
try in the 2005 DARPA Grand Challenge. J. Robot. Syst. 23(9), 745–753 (2006)

Bertozzi, 1998. Bertozzi, M., Broggi, A.: Gold: a parallel real-time stereo vision system for
generic obstacle and lane detection. IEEE Transactions on Image Processing 7(1), 62–81
(1998)

Blom and Bar-Shalom, 1988. Blom, H., Bar-Shalom, Y.: The interacting multiple model al-
gorithm for systems with Markovian switching coefficients. IEEE Transactions on Auto-
matic Control 33(8), 780–783 (1988)

Braid et al, 2006. Braid, D., Broggi, A., Schmiedel, G.: The TerraMax autonomous vehicle.
J. Robot. Syst. 23(9), 693–708 (2006)

Chen 2006. Chen, Q., Ozguner, U.: Intelligent off-road navigation algorithms and strategies
of team desert buckeyes in the DARPA Grand Challenge 2005. J. Robot. Syst. 23(9), 729–
743 (2006)

Cremean etal., 2006. Cremean, L.B., Foote, T.B., Gillula, J.H., Hines, G.H., Kogan, D.,
Kriechbaum, K.L., Lamb, J.C., Leibs, J., Lindzey, L., Rasmussen, C.E., Stewart, A.D., Bur-
dick, J.W., Murray, R.M.: Alice: An information-rich autonomous vehicle for high-speed
desert navigation. J. Robot. Syst. 23(9), 777–810 (2006)

DARPA, 2007. DARPA, Darpa urban challenge rules (2007),
http://www.darpa.mil/GRANDCHALLENGE/rules.asp

Fischler and Bolles, 1981. Fischler, M.A., Bolles, R.C.: Random sample consensus: A
paradigm for model fitting with applications to image analysis and automated cartography.
Communications of the ACM 24(6), 381–395 (1981)

Frazzoli, 2001. Frazzoli: Robust Hybrid Control for Autonomous Vehicle Motion Planning.
PhD thesis, MIT (2001)

Grabowski et al., 2006. Grabowski, R., Weatherly, R., Bolling, R., Seidel, D., Shadid, M.,
Jones, A.: MITRE meteor: An off-road autonomous vehicle for DARPA’s grand challenge.
J. Robot. Syst. 23(9), 811–835 (2006)

Hart and Raphael, 1968. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107
(1968)

Hartley and Zisserman, 2001. Hartley, R.I., Zisserman, A.: Multiple View Geometry in
Computer Vision. Cambridge University Press, Cambridge (2001)

Iagnemma:JFR:2006. Iagnemma, K., Buehler, M.: Special issue on the DARPA Grand Chal-
lenge: Editorial. Journal of Field Robotics 23(9), 655–656 (2006)

http://www.darpa.mil/GRANDCHALLENGE/rules.asp

A Perception-Driven Autonomous Urban Vehicle 229

Kelly and Stentz, 1997. Kelly, A., Stentz, A.: An approach to rough terrain autonomous mo-
bility. In: International Conference on Mobile Planetary Robots (1997)

LaValle and Kuffner, 2001. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic plan-
ning. International Journal of Robotics Research 20(5), 378–400 (2001)

Leedy etal., 2006. Leedy, B.M., Putney, J.S., Bauman, C., Cacciola, S., Webster, J.M., Rein-
holtz, C.F.: Virginia Tech’s twin contenders: A comparative study of reactive and delibera-
tive navigation. J. Robot. Syst. 23(9), 709–727 (2006)

Mason etal., 2006. Mason, R., Radford, J., Kumar, D., Walters, R., Fulkerson, B., Jones,
E., Caldwell, D., Meltzer, J., Alon, Y., Shashua, A., Hattori, H., Takeda, N., Frazzoli, E.,
Soatto, S.: The Golem Group / UCLA autonomous ground vehicle in the DARPA Grand
Challenge. Journal of Field Robotics 23(8), 527–553 (2006)

Mertz et al., 2005. Mertz, C., Duggins, D., Gowdy, J., Kozar, J., MacLachlan, R., Steinfeld,
A., Suppe, A., Thorpe, C., Wang, C.: Collision Warning and Sensor Data Processing in
Urban Areas. In: Proc. 5th international conference on ITS telecommunications, pp. 73–78
(2005)

Newman, 2003. Newman, P.M.: MOOS - A Mission Oriented Operating Suite. Technical
Report OE2003- 07, MIT Department of Ocean Engineering (2003)

Park et al., 2007. Park, S., Deyst, J., How, J.P.: Performance and Lyapunov stability of a non-
linear path following guidance method. Journal of Guidance, Control, and Dynamics (6),
1718–1728 (2007)

Rivest and Leiserson, 1990. Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.
McGraw-Hill, Inc., New York (1990)

Schouwenaars et al., 2004. Schouwenaars, T., How, J., Feron, E.: Receding Horizon Path
Planning with Implicit Safety Guarantees. In: Proceedings of the IEEE American Control
Conference. IEEE, Los Alamitos (2004)

Stanford Racing Team, 2007. Stanford Racing Team: Stanford’s robotic vehicle Ju-
nior: Interim report (2007), http://www.darpa.mil/GRANDCHALLENGE/TechPapers/
Stanford.pdf

Stein et al., 2000. Stein, G., Mano, O., Shashua, A.: A robust method for computing vehicle
ego-motion. In: Proc. IEEE Intelligent Vehicles Symposium, pp. 362–368 (2000)

Stein et al., 2003. Stein, G., Mano, O., Shashua, A., Ltd, M., Jerusalem, I.: Vision-based
ACC with a single camera: bounds on range and range rate accuracy. In: Proc. IEEE Intel-
ligent Vehicles Symposium, pp. 120–125 (2003)

Tartan Racing Team, 2007. Tartan Racing, Tartan racing: A multi-modal approach to
the DARPA urban challenge (2007), http://www.darpa.mil/GRANDCHALLENGE/
TechPapers/TartanRacing.pdf

Thorpe et al., 2005. Thorpe, C., Carlson, J., Duggins, D., Gowdy, J., MacLachlan, R., Mertz,
C., Suppe, A., Wang, B., Pittsburgh, P.: Safe Robot Driving in Cluttered Environments. In:
Robotics Research: The Eleventh International Symposium (2005)

Thrun et al., 2006. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel,
J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M.,
Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C.,
Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger,
S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The robot that won the DARPA Grand
Challenge. J. Robot. Syst. 23(9) (2006)

Trepagnier et al., 2006. Trepagnier, P., Nagel, J., Kinney, P., Koutsourgeras, C., Dooner, M.:
KAT-5: Robust systems for autonomous vehicle navigation in challenging and unknown
terrain. Journal of Field Robotics: Special Issue on the DARPA Grand Challenge 23, 467–
508 (2006)

http://www.darpa.mil/GRANDCHALLENGE/TechPapers/Stanford.pdf
http://www.darpa.mil/GRANDCHALLENGE/TechPapers/Stanford.pdf
http://www.darpa.mil/GRANDCHALLENGE/TechPapers/TartanRacing.pdf
http://www.darpa.mil/GRANDCHALLENGE/TechPapers/TartanRacing.pdf

230 J. Leonard et al.

Urmson et al., 2006. Urmson, C., Anhalt, J., Bartz, D., Clark, M., Galatali, T., Gutierrez,
A., Harbaugh, S., Johnston, J., Kato, H., Koon, P., Messner, W., Miller, N., Mosher, A.,
Peterson, K., Ragusa, C., Ray, D., Smith, B., Snider, J., Spiker, S., Struble, J., Ziglar, J.,
Whittaker, W.: A robust approach to high-speed navigation for unrehearsed desert terrain.
Journal of Field Robotics: Special Issue on the DARPA Grand Challenge 23, 467–508
(2006)

USDOT Federal Highway Administration, Office of Information Management, 2005.
USDOT Federal Highway Administration, Office of Information Management, Highway
Statistics 2005. U.S. Government Printing Office, Washington, D. C (2005)

Wang, 2004. Wang, C.-C.: Simultaneous Localization, Mapping and Moving Object Track-
ing. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2004)

	A Perception-Driven Autonomous Urban Vehicle
	Introduction
	Architecture
	Infrastructure Design
	Design Considerations
	Race Vehicle Configuration
	Software Infrastructure

	Perception Algorithms
	The Local Frame
	Obstacle Detector
	Hazard Detector
	Lane Finding

	Planning and Control Algorithms
	Navigator
	Drivability Map
	Motion Planner
	Controller

	Challenge Results
	National Qualifying Event (NQE) Performance
	UCE Performance

	Discussion
	Perception-Driven Approach
	Slow-Moving Vehicles
	Improved Simulation
	Verification of Failsafe Approaches

	Release of Logs, Visualization and Software
	Conclusion
	References

