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Abstract

Reconstructing articulated objects prevalent in daily envi-
ronments is crucial for applications in augmented/virtual
reality and robotics. However, existing methods face scal-
ability limitations (requiring 3D supervision or costly an-
notations), robustness issues (being susceptible to local
optima), and rendering shortcomings (lacking speed or
photorealism). We introduce SPLART, a self-supervised,
category-agnostic framework that leverages 3D Gaussian
Splatting (3DGS) to reconstruct articulated objects and in-
fer kinematics from two sets of posed RGB images captured
at different articulation states, enabling real-time photo-
realistic rendering for novel viewpoints and articulations.
SPLART augments 3DGS with a differentiable mobility pa-
rameter per Gaussian, achieving refined part segmentation.
A multi-stage optimization strategy is employed to progres-
sively handle reconstruction, part segmentation, and artic-
ulation estimation, significantly enhancing robustness and
accuracy. SPLART exploits geometric self-supervision, ef-
fectively addressing challenging scenarios without requir-
ing 3D annotations or category-specific priors. Evalua-
tions on established and newly proposed benchmarks, along
with applications to real-world scenarios using a hand-
held RGB camera, demonstrate SPLART’s state-of-the-art
performance and real-world practicality. Code is publicly
available at https://github.com/ripl/splart.

1. Introduction

Articulated objects, such as drawers, doors, and scissors,
are ubiquitous in our daily lives, yet their dynamic na-
ture poses significant challenges for 3D reconstruction—
a critical task for applications in augmented/virtual real-
ity [37, 52], robotics [1, 5, 16, 24, 51, 58], and com-
puter vision [20, 46]. Existing methods for reconstruct-
ing articulated objects are hindered by several key limita-

Figure 1. Given (top) RGB images of an object at two articulation
states, (middle) SPLART uses 3DGS to simultaneously reconstruct
its static and dynamic parts and estimate the kinematic articulation
model. SPLART is then able to (bottom) render high-fidelity 3D
reconstructions of the object along with part-level segmentations
for novel articulation states, allowing for novel view synthesis.

tions: they often require labor-intensive supervision (e.g.,
part-level segmentation or articulation annotations) [23, 29,
41, 55, 57], they depend on 3D supervision that restricts
practical use [23, 29, 34, 41, 61], they produce category-
specific models that limit scalability [29, 41, 55, 60], or
they are not capable of real-time, photorealistic render-
ing [6, 13, 23, 29, 30, 41, 55, 57, 60, 61]. To address these
challenges, we introduce SPLART, a novel self-supervised
and category-agnostic framework that leverages 3D Gaus-
sian Splatting (3DGS) [26] to reconstruct articulated ob-
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jects from minimal input—two sets of posed RGB images
at distinct articulation states. SPLART reconstructs object
parts and infers kinematics, enabling real-time, photorealis-
tic rendering for novel views and articulation states.

Central to SPLART is the augmentation of 3DGS [26] to
include a differentiable mobility parameter for each Gaus-
sian, which enables a more refined segmentation of static
and mobile parts through gradient-based optimization. This
results in enhanced reconstruction quality, while preserv-
ing the real-time, photorealistic rendering capabilities of
3DGS—offering a speedup of more than 100× over meth-
ods [6, 30] based on neural radiance fields [39].

To enhance robustness, SPLART employs a multi-stage
optimization strategy that decouples the part-level recon-
struction and articulation estimation processes. Unlike end-
to-end approaches prone to local optima [30], SPLART first
independently reconstructs each articulation state, then esti-
mates each Gaussian’s mobility parameter for part segmen-
tation, and finally refines both the articulation and mobility
estimates jointly. This structured approach ensures stable
and accurate convergence, avoiding the stringent initializa-
tion requirements of existing methods, thereby providing a
practical solution for challenging articulated structures.

Building on this foundation, SPLART leverages geomet-
ric self-supervision to eliminate the need for manual anno-
tations or 3D supervision. By enforcing geometric con-
sistency between reconstructions through complementary
loss formulations, SPLART robustly estimates articulation
parameters across diverse scenarios. This self-supervised
strategy enhances scalability, enabling SPLART to recon-
struct a wide range of articulated objects without relying on
prior structural or categorical knowledge.

Extensive evaluations on both established and newly in-
troduced benchmarks demonstrate SPLART’s superior ar-
ticulation accuracy and reconstruction quality, surpassing
state-of-the-art methods without requiring 3D supervision.
Real-world experiments further validate its practicality,
showcasing successful reconstructions of diverse articulated
objects using only a handheld RGB camera.

In summary, this work contributes:

1. An extension of 3DGS with a differentiable mobility
value per Gaussian that enables precise part segmenta-
tion using gradient-based optimization.

2. A multi-stage optimization strategy that decouples re-
construction and articulation estimation, enhancing ro-
bustness and accuracy.

3. Complementary formulations of geometric self-
supervision for articulation estimation, eliminating the
need for 3D supervision or laborious annotations.

4. A challenging dataset and new metrics for comprehen-
sive evaluation of articulated object reconstruction.

2. Related Work

2.1. Data-Driven Articulation Learning

Estimating the pose and joint properties of articulated
objects is crucial for robot manipulation and interac-
tion [10, 11, 19, 31]. Recent learning-based methods [9,
13, 15, 22, 29, 33, 57, 65] infer articulation properties
from point clouds via end-to-end training. For instance,
Shape2Motion [57] analyzes motion parts from a single
point cloud in a supervised setting, while ANCSH [29]
performs category-level pose estimation but requires class-
specific models. RPM-Net [63] enhances generalization
across categories for part segmentation and kinematic pre-
diction, and DITTO [23] predicts motion and geometry
from 3D point cloud pairs without labels. However, these
methods depend on costly 3D supervision and annotations.
In contrast, our approach reconstructs accurate 3D geome-
try and detailed appearance, capturing articulation without
3D supervision or priors.

2.2. Representations for Object Reconstruction

Early 3D object reconstruction methods predicted point
clouds, voxels, or meshes from partial observations [3, 8,
17]. Recent advances in implicit scene representations [18,
26, 38, 39, 45, 66] enable detailed geometry and appearance
reconstruction via differentiable rendering [12, 44, 53, 56].
While neural fields suffer from slow rendering, 3D Gaus-
sian Splatting (3DGS) [26] overcomes this by using ex-
plicit 3D Gaussians. We leverage 3DGS for self-supervised
articulated object reconstruction from posed RGB images,
achieving fast, realistic synthesis of novel views and articu-
lations in real time.

2.3. Articulated Object Reconstruction

Recent methods leverage differentiable 3D representa-
tions [26, 39, 45] to jointly reconstruct articulated ob-
jects and infer articulation parameters. Training-based ap-
proaches use synthetic 3D data to predict joint parame-
ters and segment parts [13, 14, 23, 25, 41, 43, 60]. Self-
supervised methods optimize shape, appearance, and artic-
ulation per scene without extensive training [6, 27, 30, 32,
34, 50, 61], with some addressing multi-part objects but
requiring known part counts and single-level articulation
structures [6, 34, 61]. Other works enhance articulation
estimation using large language or vision-language mod-
els [28, 36]. In contrast, our self-supervised method recon-
structs two-part articulated objects from RGB images across
articulation states using 3DGS [26]. As the first to apply
3DGS to this task without 3D supervision or pre-trained
priors, it robustly handles challenging cases and achieves
real-time performance.
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(a) Stage 1: Per-state reconstruction.
(Section 3.2.1)

(b) Stage 2: Cross-static formulation
for mobility estimation.

(Section 3.2.2)

(c) Stage 3: Cross-mobile formulation for
articulation estimation and mobility refinement.

(Section 3.2.3)

Figure 2. Methodology overview of SPLART. It consists of three decoupled stages for the purpose of stable optimization. Stage 1
constructs a 3DGS for each state from posed RGB images using the photometric loss. Stage 2 proposes cross-static formulation for
mobility estimation. Intuitively, it combines static parts of both states and the mobile part of the desired state for the target Gaussians.
Stage 3 proposes cross-mobile formulation for articulation estimation. Intuitively, it combines static parts of both states, the mobile part of
the desired state and the transformed mobile part of the other state together for the target Gaussians.

3. Methodology
3.1. Overview
Consider an arbitrary object composed of two rigid parts: a
static parent part, and a child part that can move relative to
its parent through either a revolute or prismatic articulation.
Our objective is twofold: (1) to reconstruct the articulated
object at the part level; and (2) to estimate its articulated
motion. Assuming a known articulation type (i.e., either
revolute or prismatic), the input to our method consists of
two sets of posed RGB images (i.e., images with known
camera intrinsics and extrinsics), each capturing the articu-
lated object at one end state of the motion.

Formally, let l denote the articulation state label, where
l = 0 and l = 1 correspond to the two end states of the
observed articulation. For reconstruction, SPLART uses ob-
servations Ol = {(Iil , P i

l ,K
i
l )}

Nl
i=1, l ∈ {0, 1}, where Iil

is the i-th observed RGB image of the articulated object at
state l, P i

l and Ki
l denote its camera extrinsics and intrinsics

respectively, and Nl represents the number of data samples
for state l. Note that P i

l is specified in a common world
space for both states, while the articulated motion involves
only one moving part w.r.t. the world space. SPLART mod-
els a revolute articulation with its rotation axis a (∥a∥ = 1),
pivot p, and rotation angle θ, such that a point x (in the
world space) on the mobile part at state l = 0 will move to

1T0x = Ra,θ(x− p) + p (1)

at state l = 1, where Ra,θ is the rotation induced by the
axis-angle notation. A prismatic articulation is instead mod-
eled by its translation axis a (∥a∥ = 1) and distance d. The
goal is to reconstruct the articulated object at the part level
using a chosen representation while estimating the articu-
lated motion 1T0, ensuring that the renderings at each artic-
ulation state align consistently with the observations.

SPLART extends the 3DGS representation for articulated
objects, decoupling the goals of part-level reconstruction
and articulation estimation across three stages: (1) sepa-
rate reconstructions for each articulation state (Sec. 3.2.1),
(2) mobility estimation using the cross-static formulation
(Sec. 3.2.2), and (3) articulation estimation and mobility re-
finement using the cross-mobile formulation (Sec. 3.2.3).
To facilitate the application of SPLART to real-world ob-
jects, we leverage modern structure-from-motion and im-
age segmentation techniques, developing a framework that
enables general users to reconstruct articulated objects in
their surroundings using only images captured by a hand-
held camera device (Sec. 3.3).

3.2. Decoupled Multi-Stage Optimization

Jointly performing part-level reconstruction and articulation
estimation on an articulated object is prone to local min-
ima [6, 30], making it preferable to strategically decouple
the problem into multiple stages.

3.2.1. Separate per-state reconstruction
In Stage 1, two 3DGS models are separately optimized
following the standard procedure, one for each end state
of the articulation. Specifically, apart from the attributes
from original 3DGS, each Gaussian is additionally initial-
ized with a persistent binary state label l, equally drawn
from {0, 1}. We denote the set of Gaussians representing
state l as Gref

l , where ref emphasizes that Gref is the refer-
ence reconstruction unaffected by the other state. Given a
data sample observed at state l, we have the optimization:

min
Gref
l

∆I(Î
ref,i
l , Iil ), (2a)

Î ref,i
l = R(Gref

l , P i
l ,K

i
l ), l ∈ {0, 1}, (2b)
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where R is the 3DGS rendering function, and ∆I represents
the photometric loss. For simplicity, the view index i and
camera parameters P i

l ,K
i
l will be omitted from now on.

3.2.2. Cross-static formulation for mobility estimation
The focus of Stage 2 is mobility estimation for each Gaus-
sian. To keep Gref dedicated to the single-state reconstruc-
tion, we first duplicate Gref

l as G tgt
l for both states (i.e.,

l ∈ {0, 1}), which is intended as the target representation
that will fulfill the goals of part-level reconstruction and ar-
ticulation estimation. By design, G tgt shares neither data
storage nor gradient flow with Gref after its creation.

For each Gaussian in G tgt, we further extend its set of
attributes with a mobility value m ∈ [0, 1], initialized with
0.5. By design, m enables the break-down of a Gaussian
to its static and mobile components, where each component
inherits all the original Gaussian attributes except for the
opacity σ. The static component has its opacity modified
to σ · (1 − m), and the mobile component to σ · m. For
simplicity, letting M be the set of mobilities for G, we use
the element-wise product G · (1 − M) to denote the static
component of G, and G ·M for the mobile component.

To estimate the mobilities M, we employ the intuition
that the static components from both states should consti-
tute the static part of the articulated object. Formally, we
introduce the cross-static (cs) formulation, where the static
part of the articulated object is jointly represented as

Gs = G tgt
l · (1−Ml)⊕ G tgt

1−l · (1−M1−l), (3)

where ⊕ denotes concatenation. For state l, the target rep-
resentation thus becomes

G tgt,cs
l = Gs ⊕ G tgt

l · Ml. (4)

With this formulation, Stage 2 is further divided into two
sub-stages as below.

Stage 2(a): Coarse mobility estimation via cross-static
geometric consistency. To measure the geometric dis-
tance between two Gaussian sets, we design a weighted
version of the Chamfer distance. Specifically, let X =
{(xi, wxi

)}Mi=1 and Y = {(yj , wyj
)}Nj=1 be two sets of

point-weight pairs, the weighted Chamfer distance is then:

Chamfer(X,Y ) =
∑

(xi,wxi)∈X

w̃xi
min

(yj ,wyj )∈Y
∥xi−yj∥2

+
∑

(yj ,wyj )∈Y

w̃yj
min

(xi,wxi)∈X
∥xi − yj∥2, (5)

where w̃xi
= wxi/

∑
(xi,wxi

)∈X wxi
and w̃yj

are normalized
weights. For each Gaussian, we use its mobility-modified
opacity σ′ as the weight, essentially treating it as σ′ points

overlapped at its mean position. The mobilities are then op-
timized by encouraging the geometric consistency formu-
lated as follows:

min
M

CDcs
0 +CDcs

1 + λgeom
m ∥M∥, (6a)

CDcs
l = Chamfer(G tgt,cs

l ,Gref
l ), (6b)

where Chamfer(·) denotes the weighted Chamfer distance,
and λgeom

m ∥M∥ is the regularization term that encourages
smaller mobilities. Note how M affects the weighted
Chamfer distance by modifying the opacities, and that M =
1 is a trivial solution without the regularization. With-
out photometric supervision, the mobilities obtained from
Eqn. 6a are generally noisy. However, being relatively fast
(taking only tens of seconds), they still serve as a good ini-
tialization for the next sub-stage.
Stage 2(b): Joint mobility and Gaussian optimization
via cross-static rendering. To more accurately estimate
the mobilities while jointly refining the full Gaussian at-
tributes, cross-static rendering is performed as follows:

min
Gtgt,M1−l

∆I(Î
cs
l , Il) + λphoto

m ∥M1−l∥, (7a)

Îcs
l = R(G tgt,cs

l ), (7b)

where λphoto
m ∥M1−l∥ is the mobility regularization term

similar to that in Eqn. 6a.

3.2.3. Cross-mobile formulation for articulation estima-
tion and mobility refinement

The focus of Stage 3 is to estimate the articulation parame-
ters shared by the mobile components of all Gaussians. To
this end, we employ the intuition that the mobile compo-
nents from the two end states are related through the articu-
lated motion. Formally, we introduce the cross-mobile (cm)
formulation, where the mobile part of the articulated object
at state l is jointly represented as

Gm
l = G tgt

l · Ml ⊕ lT1−l(G tgt
1−l · M1−l), (8)

where lT1−l(G) denotes the transformation of Gaussians G
according to the articulated motion from state 1− l to l. For
state l, the target representation thus becomes

G tgt,cm
l = Gs ⊕ Gm

l , (9)

where Gs is defined in Eqn. 3. With this formulation,
Stage 3 is further divided into three sub-stages as below.
Stage 3(a): Coarse articulation estimation via geomet-
ric consistency. Similar to Eqn. 6a, weighted Chamfer
distance is used for computing the cross-mobile geometric
consistency, which can be optimized over both mobilities
and articulation parameters as follows:

min
M,T

CDcm
0 +CDcm

1 , (10a)

CDcm
l = Chamfer(G tgt,cm

l ,Gref
l ). (10b)
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(a) Failure with cross-mobile geo-
metric consistency.

(b) Success with mobile-only geo-
metric consistency.

Figure 3. 103549-Toaster has a flat slider as its mobile part, sim-
ilar in geometric curvature to the static component. This similar-
ity makes the nearest-neighbor data association error-prone when
computing the Chamfer distance for cross-mobile geometric con-
sistency. On the other hand, mobile-only geometric consistency
focuses only on the mobile parts, successfully handling the case.

However, we notice that this formulation is still suscepti-
ble to local minima if the mobile part is too geometrically
insignificant. We qualitatively show one such failure in
Fig. 3a. To remedy this, we further propose mobile-only ge-
ometric consistency, which concerns only the mobile com-
ponents of both states as follows:

CDm = Chamfer(G tgt
l · Ml,

lT1−l(G tgt
1−l · M1−l)). (11)

While successfully addressing these scenarios, mobile-
only geometric consistency still falls short in other circum-
stances, especially when the mobile components in the two
states exhibit large discrepancies. We qualitatively show
one such failure in Fig. 4a. To take advantage of both for-
mulations and to facilitate robustness in the inherently non-
convex optimization of articulation parameters, we propose
the following practical scheme:
1. With Km randomized tries: articulation estimation via

Tm = argmin
T

CDm. (12)

2. With Kcm randomized tries, plus another initialized with
Tm: articulation estimation via

T cm = argmin
T

CDcm
0 +CDcm

1 . (13)

3. Final run initialized with T cm: joint articulation estima-
tion and mobility refinement via Eqn. 10a.

Stage 3(b): Joint articulation, mobility, and Gaussian
optimization via cross-mobile rendering. Like in Stage
2(b), we perform a full joint optimization over articulation
parameters, mobilities, and Gaussians utilizing photometric
supervision via cross-mobile rendering as follows:

min
Gtgt,M1−l,lT1−l

∆I(Î
cm
l , Il), (14a)

Îcm
l = R(G tgt,cm

l ), l ∈ {0, 1}. (14b)

(a) Failure with mobile-only geo-
metric consistency.

(b) Success with cross-mobile geo-
metric consistency.

Figure 4. 101713-Pen has both ends of a pen as the mobile part,
with only one end visible from any given observation. Thus, the
reconstructed mobile components from the two states essentially
represent distinct parts, violating the intuition for mobile-only ge-
ometric consistency. On the other hand, cross-mobile geometric
consistency considers the joint representation from both states as
a whole, successfully estimating the articulation.

Stage 3(c): Mobility correction via cross-mobile geomet-
ric consistency. Stage 3(b) solely relies on photometric
supervision, which is limited to the training views. On rare
occasions, a Gaussian may be mistakenly estimated as mo-
bile if the articulated motion moves it out of sight from most
views, effectively losing the supervision. On the other hand,
geometric consistency is not affected by sight limitations,
which we leverage for mobility correction as follows:

min
M

CDcm
0 +CDcm

1 . (15)

3.3. Real-World Application
For an articulated object to be reconstructed in the real
world, we first collect two sets of RGB images, one
for each articulation state, by imaging the object from
a surrounding hemisphere. We then preprocess the data
to determine the posed images that serve as the input
to SPLART. This involves using SAM 2 [47] to per-
form foreground-background segmentation, which also re-
moves dynamic contents of the scene. We then perform
structure-from-motion (SfM) to determine camera poses us-
ing COLMAP [49] with SuperPoint [7] descriptors and Su-
perGlue [48] matching on the segmented backgrounds from
both sets of images to construct a joint coordinate frame for
the object in both states. Once we obtain the joint coordi-
nate frame and the foreground target object is localized, we
run SPLART to reconstruct the articulated objects.

4. Experiments
4.1. Datasets
PARIS PartNet-Mobility Subset. PartNet-Mobility is a
large-scale dataset that provides simulatable 3D object
models with part-level mobility [2, 40, 62], from which
PARIS [30] selects 10 instances for experiments, 8 being
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Type Method
Success

Rate
x erra

(×10−2 DEG)
y errp

(×10−3)

y errr
(×10−2 DEG)

y errt
(×10−3)

y CDs

(×10−3)

y CDm

(×10−3)

y CDw

(×10−3)

y
Revolute

PARIS 40.0% 121.90± 68.45 5.27± 4.55 127.80± 55.12 N/A 3.48± 0.39 68.44± 13.03 13.11± 1.16
DTA† 98.8% 12.32± 4.16 1.86± 1.69 19.41± 16.28 N/A 2.20± 0.49 1.27± 1.87 1.73± 0.03
SPLART 100.0% 3.70± 0.38 0.40± 0.07 4.85± 0.33 N/A 4.08± 0.32 1.06± 0.78 3.59± 0.21

Prismatic
PARIS 50.0% 27.97± 13.09 N/A N/A 4.28 ± 3.02 9.21± 1.94 151.78± 35.00 7.99± 0.49
DTA† 100.0% 16.26± 3.54 N/A N/A 1.15 ± 0.14 2.69± 0.04 15.74± 0.28 2.22± 0.03
SPLART 95.0% 2.36± 0.44 N/A N/A 0.33 ± 0.04 6.02± 0.20 16.77± 1.14 3.69± 0.14

Overall
PARIS 42.0% 103.12± 57.38 5.27± 4.55 127.80± 55.12 4.28 ± 3.02 4.63± 0.70 85.11± 17.42 12.09± 1.03
DTA† 99.0% 13.11± 4.04 1.86± 1.69 19.41± 16.28 1.15 ± 0.14 2.30± 0.40 4.16± 1.55 1.83± 0.03
SPLART 99.0% 3.44± 0.39 0.40± 0.07 4.85± 0.33 0.33 ± 0.04 4.47± 0.30 4.20± 0.85 3.61± 0.19

Table 1. PARIS-PMS Articulation and Mesh Reconstruction Metrics. †DTA requires ground-truth depth.

Type Method PSNR ↑ Depth MAE ↓ mIoU ↑

Revolute
PARIS 32.21 0.093 0.955
DTA† N/A 0.031 0.941
SPLART 43.53 0.039 0.974

Prismatic
PARIS 33.75 0.108 0.902
DTA† N/A 0.066 0.844
SPLART 44.38 0.025 0.890

Overall
PARIS 32.52 0.096 0.942
DTA† N/A 0.038 0.922
SPLART 43.70 0.036 0.957

Table 2. PARIS-PMS Novel View Synthesis Metrics. Results cor-
respond to average over successful runs (see Tab. 1 for success
rates). †DTA requires ground-truth depth.

revolute and 2 being prismatic. We refer to this dataset as
PARIS-PMS. For each articulation state, PARIS provides
100 calibrated object-centric views for training and 50 for
testing, sampled from the upper hemisphere. However, the
released dataset lacks ground-truth depth and part segmen-
tation maps. To address this, we follow their data gener-
ation procedure and augment PARIS-PMS with the neces-
sary ground-truth data for depth and segmentation evalua-
tions. Still, no test views for intermediate articulation states
are provided, limiting quantitative evaluation of novel artic-
ulation synthesis.

SPLART PartNet-Mobility Subset. We curate an ad-
ditional articulated object dataset from PartNet-Mobility,
dubbed SPLART-PMS, to enable a more comprehensive
evaluation, including the quantitative assessment of novel
articulation synthesis. Our dataset comprises 22 object in-
stances from categories not included in PARIS-PMS, with
12 revolute and 10 prismatic objects. For the test split,
we also generate ground-truth depth and part segmenta-
tion maps to facilitate relevant evaluations. Crucially, while
PARIS-PMS restricts articulation states to binary values,
SPLART-PMS uniformly samples states from [−0.1, 1.1],
demanding accurate estimation of articulation, part segmen-
tation, and object reconstruction for correct view synthesis.

State 0 Static Part Mobile Part State 1

Table 3. Real-World Articulated Object Reconstructions

Our experiments reveal that SPLART-PMS poses a greater
challenge than PARIS-PMS—the latter being almost per-
fectly solved by our method.

Real-World Dataset. To show the efficacy of SPLART on
real-world usage, we collect a dataset consisting of 7 real-
world objects with 9 articulations in total, including com-
mon objects like monitor, cabinet, glasses, etc. All images
are captured by a hand-held phone camera. Camera param-
eters are calibrated following strategies detailed in Sec. 3.3.
We qualitatively evaluate SPLART on this dataset.

4.2. Evaluation Metrics
Articulation Estimation. We evaluate the accuracy of ar-
ticulation estimation depending on its type.
• A revolute articulation describes a rotation around some

line in 3D space, parameterized by the pivot point p on
the line, the line’s directional axis a, and the angle of ro-
tation θ. We report the angular error erra (in ×10−2 DEG)
between the predicted and ground-truth axes, the geodesic
distance errr (in ×10−2 DEG) between the predicted and
ground-truth rotations induced by the axis-angle (a-θ)
pair, and the pivot point error errp. Since the pivot can
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Type Method
Success

Rate
x erra

(×10−2 DEG)
y errp

(×10−3)

y errr
(×10−2 DEG)

y errt
(×10−3)

y
R

ev
ol

ut
e

PARIS 18.3% 167.34±42.47 9.36±3.73 270.37±91.19 N/A
DTA† 33.3% 32.76±2.38 1.28±0.39 40.80±4.66 N/A
SPLART-2a 78.5% 2.91±0.55 2.53±2.18 52.06±32.00 N/A
SPLART-2b 67.0% 4.62±1.69 3.92±3.07 131.99±64.45 N/A
SPLART-3a 0.8% 296.61±0.00 2.83±0.00 427.10±0.00 N/A
SPLART-3b 76.7% 84.13±19.13 5.11±3.03 206.98±56.30 N/A
SPLART 77.5% 20.76±0.81 3.93±2.41 78.31±31.06 N/A

Pr
is

m
at

ic

PARIS 39.0% 49.49±18.92 N/A N/A 14.96±5.51

DTA† 90.0% 102.77±12.48 N/A N/A 9.25±0.73

SPLART-2a 90.0% 25.88±23.25 N/A N/A 1.50±1.63

SPLART-2b 85.7% 15.63±20.40 N/A N/A 0.73±0.58

SPLART-3a 13.0% 15.17±0.59 N/A N/A 2.26±0.04

SPLART-3b 86.0% 61.00±19.76 N/A N/A 9.43±2.37

SPLART 95.0% 25.72±17.63 N/A N/A 1.04±0.32

O
ve

ra
ll

PARIS 27.7% 103.88±29.79 9.36±3.73 270.37±91.19 14.96±5.51

DTA† 59.1% 77.76±8.87 1.28±0.39 40.80±4.66 9.25±0.73

SPLART-2a 83.7% 13.85±11.36 2.53±2.18 52.06±32.00 1.50±1.63

SPLART-2b 74.7% 9.34±9.71 3.92±3.07 131.99±64.45 0.73±0.58

SPLART-3a 6.4% 85.53±0.44 2.83±0.00 427.10±0.00 2.26±0.04

SPLART-3b 80.9% 73.62±19.42 5.11±3.03 206.98±56.30 9.43±2.37

SPLART 85.5% 23.02±8.46 3.93±2.41 78.31±31.06 1.04±0.32

Table 4. SPLART-PMS Articulation Metrics. †DTA requires
ground-truth depth.

Type Method PSNR ↑ Depth MAE ↓ mIoU ↑

Revolute
PARIS 32.75 0.125 0.897
DTA† N/A 0.053 0.886
SplArt 36.38 0.032 0.897

Prismatic
PARIS 32.30 0.124 0.902
DTA† N/A 0.060 0.857
SplArt 37.77 0.033 0.938

Overall
PARIS 32.51 0.125 0.900
DTA† N/A 0.058 0.867
SplArt 37.01 0.032 0.916

Table 5. SPLART-PMS Novel View and Articulation Synthesis
Metrics. Results correspond to average over successful runs (see
Tab. 4 for success rates). †DTA requires ground-truth depth.

move arbitrarily along the axis, errp is computed as the
closest distance between the predicted and ground-truth
lines induced by the axis-pivot (a-p) pair.

• A prismatic articulation describes a translation along a
specific direction, parameterized by the axis a of the
translation direction and the translation distance d. We
report the axis error erra, as in the revolute case, and
the translation error errd, which is the distance between
the predicted and ground-truth translations induced by the
axis-distance pair.

Part-Level Reconstruction. The evaluation of part-level
reconstruction accuracy is threefold: photometric render-
ing quality, geometric accuracy, and part segmentation ac-
curacy. For all these aspects, we use novel view synthe-
sis as the surrogate task. We perform volume rendering
for each view in the test split, generating outputs that in-
clude the RGB image, depth map, and part segmentation
map. Photometric rendering quality is evaluated by report-

Figure 5. State interpolation from the estimated articulation.

ing image metrics PSNR. Geometric accuracy is assessed
by reporting the mean absolute error of the depth map (i.e.,
Depth MAE). Part segmentation accuracy is evaluated us-
ing the intersection-over-union (IoU) ratio for three cate-
gories: static part (IoUs), mobile part (IoUm), and back-
ground (IoUbg). The mean IoU (mIoU) is then reported
as the average IoU across these categories. In addition,
we also evaluate geometric accuracy through mesh recon-
struction. To extract a mesh from 3DGS, we: (1) render
depth images from uniformly sampled spherical viewpoints,
(2) fuse rendered depths into a TSDF representation [4, 42],
and (3) extract the mesh using the Marching Cubes algo-
rithm [35]. For each reconstruction, we separately extract
the meshes corresponding to the static, mobile, and whole
parts. For evaluation, we follow the procedure used in pre-
vious works [30, 61]: 10 000 points are uniformly sampled
from both the reconstructed and the ground-truth meshes,
and the Chamfer distance is computed for each category—
static (CDs), mobile (CDm), and whole (CDw).
Impact of Randomness. Randomness can play a signif-
icant role in the joint optimization of articulation and part
reconstruction [6, 30]. In order to effectively demonstrate
the robustness of a method, we conduct ten trials for each
scene, each with a different fixed random seed. We report
results averaged over the ten runs. Additionally, we no-
tice that for a failed run converging to a local minimum,
the evaluation metrics, such as errr, are typically orders of
magnitude worse than those of a successful run. To better
reflect a method’s performance, we report the number of
successful runs out of the total number (i.e., ten), where a
run is deemed successful if and only if each of the follow-
ing criteria are met:(1) erra < 5 DEG; (2) errp < 0.05 for
revolute articulation; (3) errr < 10 DEG for revolute artic-
ulation; and (4) errt < 0.05 for prismatic articulation. We
then proceed to report the evaluation metrics detailed previ-
ously, averaging only over the successful runs.

4.3. Baselines
PARIS [30] addresses the same challenge we tackle: re-
constructing the part-level shape, appearance, and motion
of an articulated object from multi-view RGB images cap-
tured at two articulation states. It employs a NeRF-based
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Input States Color Part Segmentation

PARIS SPLART Ground-truth PARIS SPLART Ground-truth

Table 6. Qualitative comparison on part-level reconstruction and articulation estimation.

representation, modeling the object with static and mobile
fields for each part, alongside a transformation to capture
state transitions. These components are jointly optimized
end-to-end, primarily through an image-rendering loss.

DTA [61] adopts a similar setup: reconstructing digital
twins of articulated objects from multi-view RGB-D obser-
vations at two articulation states. It operates in two stages:
Stage 1 optimizes neural object fields for each state using
RGB-D images and extracts meshes; Stage 2 optimizes a
part segmentation field and per-part motions using consis-
tency, matching, and collision losses to determine point cor-
respondences between states. Note: Unlike SPLART, DTA
requires ground-truth depth as input and produces plain ob-
ject meshes unsuitable for photorealistic rendering.

4.4. Experiment Results

Articulation Estimation. We quantitatively evaluate
SPLART against baselines for articulation estimation accu-
racy, reporting scene-averaged results per articulation type
on the PARIS-PMS dataset (Tab. 1) and the SPLART-PMS
dataset (Tab. 4). SPLART consistently outperforms the
baselines across both datasets. Additionally, we qualita-
tively compare SPLART with PARIS on selected scenes
from these datasets in Tab. 6. In the “color” column, each
image overlays the ground-truth articulation (green arrow)
and the estimated articulation (red arrow), except in the
ground-truth column. When the estimate aligns perfectly
with the ground truth, only the red arrow appears; if signif-
icantly misaligned, only the green arrow is visible.

Part-Level Reconstruction. We assess SPLART ’s part-
level reconstruction accuracy against baselines, using novel
view synthesis as a surrogate task. Scene-averaged results
per articulation type are reported on the PARIS-PMS dataset
(Tab. 2) and the SPLART-PMS dataset (Tab. 5). We also
evaluate geometric accuracy through mesh reconstruction,
presenting scene-averaged results per articulation type on

Figure 6. Failure cases due to inherent ambiguities in articulation.

the PARIS-PMS dataset (Tab. 1). Without depth super-
vision, which is required for the DTA baseline, SPLART
matches DTA’s performance, both substantially exceed-
ing PARIS. Qualitative comparisons with PARIS, including
RGB renderings and part segmentation maps, are provided
for selected scenes from both datasets in Tab. 6. Further
qualitative results on articulation synthesis appear in Fig. 5.

Real-World Reconstructions. We qualitatively evaluate
SPLART on a collected real-world dataset, with results
shown in Tab. 3. Each image overlays the estimated articu-
lation, visualized with a red arrow.

Ablation Studies. We perform extensive ablation studies
to demonstrate the contribution of each stage. Specifically,
we perform the following four ablations: (1) No geomet-
ric supervision for mobility estimation, i.e. skipping Stage
2(a), tagged SPLART-2a; (2) No photometric supervision
for mobility estimation, i.e., skipping Stage 2(b), tagged
SPLART-2b; (3) No geometric supervision for articulation
estimation, i.e. skipping Stage 3(a), tagged SPLART-3a;
(4) No photometric supervision for articulation estimation,
i.e., skipping Stage 3(b), tagged SPLART-3b. Like the main
experiments, we conduct 10 runs for each scene, but only
on the more challenging dataset of SPLART-PMS. We re-
port the articulation estimation results in Tab. 4.

8



5. Conclusion
We present SPLART, the first self-supervised method that
utilizes 3D Gaussian Splatting for articulated object re-
construction from two-state RGB observations, without 3D
supervision or category-specific priors. SPLART deliv-
ers robust optimization and effectively handles challenging
scenarios—outperforming prior approaches while eliminat-
ing the need for 3D supervision, articulation annotations,
or semantic labels. Extensive evaluations on synthetic and
real-world datasets show SPLART’s articulation estimation
accuracy and view synthesis quality that surpass existing
methods. Real-world experiments further validate its practi-
cality, showcasing successful reconstructions of diverse ar-
ticulated objects using only a handheld RGB camera. Our
framework empowers non-expert users to effortlessly cre-
ate high-fidelity, articulated digital twins, supporting ap-
plications in augmented/virtual reality and robotics. How-
ever, while SPLART effectively addresses two-part artic-
ulations, it lacks direct support for multi-part articulated
objects, though iteratively applying it to incremental state
pairs may help. Some existing methods [6, 34, 61] han-
dle such objects, but require known part counts and single-
level articulation structures. Future research will focus on
a comprehensive adaptation to multi-level articulated ob-
jects. Additionally, inherent ambiguities may arise when
multiple articulations explain state differences, as shown in
Fig. 6 with examples like a clock’s hand rotating on an un-
expected axis or a globe’s surface spinning independently.
Overall, SPLART represents a scalable, robust, and practi-
cal solution that pushes the boundaries of articulated object
reconstruction, laying a strong foundation for future work.
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SPLART: Articulation Estimation and Part-Level Reconstruction
with 3D Gaussian Splatting

Supplementary Material

6. 3D Gaussian Splatting
3D Gaussian Splatting [26] (3DGS) is a method for re-
constructing 3D scenes from posed images by represent-
ing the scene using Gaussian distributions in a continu-
ous 3D space. Given a Gaussian blob parameterized by
(µ,R, S, σ), where µ ∈ R3 denotes the position of the cen-
ter (mean) of the Gaussian, R ∈ R3×3 is a rotation matrix
that denotes its orientation, S ∈ R3×3 is the scale matrix
(the scale matrix and rotation matrix determine the covari-
ance matrix of the Gaussian), and σ ∈ R+ denotes its opac-
ity. By design, the influence of a Gaussian on a point x is
given by

g(x|µ,R, S, σ)

= σ exp

(
−1

2
(x− µ)T

(
RSSTRT

)−1
(x− µ)

)
. (16)

In practice, 3D Gaussians are first projected to 2D given the
camera view, while all Gaussians intersecting with a pixel’s
ray are sorted by depth for alpha-compositing. Please refer
to Kerbl et al. [26] and Ye et al. [64] for more technical
details. Compared to Neural Radiance Fields [39] (NeRFs),
which represent a scene with radiance and density fields in
the form of neural networks, 3DGS offers a much faster
rendering speed (more than 100× speed-up) thanks to the
efficient rasterization of Gaussians.

7. Articulating the Gaussians
In SPLART, we articulate a Gaussian blob by (1) rotat-
ing by an angle θ around a line specified by (p,a), where
p denotes the pivot point and a denotes the axis direc-
tion; and (2) translating along the same line by distance
d. We then need to update the parameters of the Gaussian
(µ′, R′, S′, σ′) to reflect this articulation. Further, letting
d be the camera-to-Gaussian direction computed after the
articulated motion, we want to find out the actual direction
d′ with which to query the radiance field (i.e., a spherical
function represented by Spherical Harmonics).

Let x′ be the new point that results from applying the
articulated motion to x, which follows as

x′ = Ra,θ(x− p) + p+ da, (17)

where Ra,θ is the matrix form of the axis-angle rotation
(a, θ). By definition,

g(x′ | µ′, R′, S′, σ′) = g(x | µ,R, S, σ)∀x. (18)

Figure 7. Since the radiance field is not modified by the articula-
tion, we update the view direction when querying the Gaussian’s
radiance field in order to compensate for the articulation.

By plugging Equations 16 and 17 into Equation 18, the up-
dated parameters follow as

µ′ = Ra,θ(µ− p) + p+ da, (19a)
R′ = Ra,θR, (19b)
S′ = S, (19c)
σ′ = σ. (19d)

Note that only the Gaussians are articulated, but not the ra-
diance fields (since the coefficients of Spherical Harmonics
are not changed). To determine the actual direction d′ with
which to query the radiance field, imagine there is a world
space w′ that follows the same articulated motion, meaning
that w′ is stationary relative to the Gaussian blob. By def-
inition, an articulated point x′ given by Equation 17 in the
original world space w is still denoted as point x in w′. So

wTw′(x) = Ra,θ(x− p) + p+ da, (20)

where wTw′(·) denotes the transformation from w′ to w.
Now, given view direction d in w, the actual query direction
is represented via the Gaussian’s innate space, which can be
computed as

d′ = w′
Tw(d) (21a)

= Ra,θ
−1d. (21b)

See Figure 7 for an illustration.

8. Implementation
SPLART leverages nerfstudio [54] and gsplat [64], widely
used open-source libraries for neural rendering and Gaus-
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sian splatting, respectively. We apply consistent hyper-
parameters across all experiments, spanning synthetic and
real-world datasets. Optimization stages vary in termination
criteria: those driven by geometric consistency—Stages
2(a), 3(a), and 3(c)—halt upon convergence, assessed by
the loss function’s rate of change, whereas those guided
by photometric loss—Stages 1, 2(b), and 3(b)—stop after
fixed iterations of 10 000, 5000, and 10 000, respectively.
By contrast, splatfacto (nerfstudio’s default 3DGS imple-
mentation) uses 30 000 iterations. In Stage 3(a), we set
Km = Kcm = 3 by default, with each optimization trial
lasting 10 seconds to 1 minute on an RTX 2080 Ti. Conse-
quently, SPLART ’s total training time, approximately 20–
30 minutes, is roughly twice that of splatfacto. For compar-
ison, PARIS [30] requires 15–20 minutes, while DTA [61],
including its LoFTR pixel-matching step, takes 35–45 min-
utes. At inference, rendering for novel view and articulation
synthesis achieves 60–100 frames per second, varying with
scene complexity due to the increased Gaussian count for
intricate objects.

9. Robustness of Geometric Consistency
In Stage 3(a), we propose a practical strategy that involves
multiple attempts using both mobile-only and cross-mobile
geometric consistency for robust articulation estimation.
For this approach to be effective, two prerequisites must
be met: (1) a correct articulation should induce a lower
loss than most, if not all, incorrect articulation estimates;
and (2) the optimization should have a high likelihood of
converging to the global optimum (indicated by the cor-
rectness of the articulation) for each randomized attempt,
ensuring that a small number of trials is sufficient and ro-
bust. To verify that both prerequisites are satisfied, we de-
sign a dedicated experiment that involves 200 independent

optimization trials: 100 using mobile-only geometric con-
sistency and 100 using cross-mobile geometric consistency,
both performed based on the model checkpoint saved at the
end of Stage 2(b). A trial is deemed successful if it meets a
similar but slightly relaxed criterion (since the estimated ar-
ticulation is still coarse at this stage). Additionally, we rank
the loss of each trial in comparison to the other trials per-
formed under the same formulation. In light of the prerequi-
sites above, we are interested in seeing whether successful
trials tend to exhibit lower loss compared to those that are
unsuccessful. Figure 8 visualizes these results as a scatter
plot for a set of objects from the SPLART-PMS dataset.

10. Additional Qualitative Results

We present more qualitative results, including comparison
with PARIS [30] on part-level reconstruction and articula-
tion estimation in Figure 10, and view synthesis for interpo-
lated articulation states in Figure 9.
11. Per-Scene Quantitative Results

We report quantitative comparison of SPLART and PARIS
for each scene in both PARIS-PMS and SPLART-PMS.
Specifically, see Tab. 7, Tab. 9, and Tab. 10 for articula-
tion estimation results on PARIS-PMS, revolute cases of
SPLART-PMS, and prismatic cases of SPLART-PMS, re-
spectively. For novel view and articulation synthesis, we
further include SSIM [59] and LPIPS [67] metrics (in ad-
dition to PSNR [21]) for the evaluation of rendering qual-
ity, and per-category intersection-over-union ratios (in addi-
tion to mIoU): IoUs for the static part, IoUm for the mobile
part, and IoUbg for the background. See Tab. 8, Tab. 11,
and Tab. 12 for results on PARIS-PMS, revolute cases of
SPLART-PMS, and prismatic cases of SPLART-PMS, re-
spectively.
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Figure 8. An analysis of the robustness of geometric consistency for articulation estimation. The horizontal axis represents different
scenes, each with two columns for the two optimization formulations, where blue is used for optimization trials with mobile-only geometric
consistency, and red for those with cross-mobile geometric consistency. The vertical axis represents the loss rank (lower is better). For each
optimization trial, • denotes success, and × denotes failure. For each scene, the average success rates for both optimization formulations
are shown under the scene name. Note that these success rates are the averages over the independent optimization trials and should not
be confused with that of Stage 3(a) as a whole. We observe that successful trials • are often associated with lower losses than are failed
trials ×, and that both optimization formulations are necessary to ensure overall robustness (e.g., pen requires cross-mobile geometric
consistency, while toaster requires mobile-only geometric consistency).
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State 0 State 1

Figure 9. Additional visualizations of state interpolation for three objects along with their estimated articulation models. The left- and
right-most images correspond to the ground-truth of the two end articulation states, annotated with the ground-truth articulation using green
arrows. The intermediate images are rendered results obtained by interpolating the articulation state, annotated with both the ground-truth
articulation (green arrows) and the estimated articulation (red arrows). Due to the high accuracy of the articulation estimation, the ground-
truth green arrows are hidden by the estimated red arrows in the interpolated images.

Input States Color Part Segmentation

PARIS SPLART Ground-truth PARIS SPLART Ground-truth

Figure 10. Additional qualitative comparisons of part-level reconstruction and articulation estimation.
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Type Scene Method
Success

Rate
x erra

(×10−2 DEG)
y errp

(×10−3)

y errr
(×10−2 DEG)

y errt
(×10−3)

y CDs

(×10−3)

y CDm

(×10−3)

y CDw

(×10−3)

y

R
ev

ol
ut

e

USB
PARIS 0/10 F F F N/A F F F
DTA† 10/10 9.30± 1.29 0.39± 0.31 14.81± 3.49 N/A 2.62± 0.06 1.48± 0.03 1.36± 0.02
SplArt 10/10 4.74± 0.32 0.26± 0.05 3.99± 0.26 N/A 0.89± 0.08 0.83± 0.11 0.91± 0.03

foldchair
PARIS 3/10 103.68± 15.95 4.69± 4.77 195.70± 67.55 N/A 0.45± 0.09 45.34± 4.62 14.85± 1.00
DTA† 10/10 3.34± 1.43 0.50± 0.31 9.72± 3.61 N/A 0.18± 0.00 0.14± 0.00 0.26± 0.00
SplArt 10/10 5.47± 0.22 0.12± 0.03 8.93± 0.34 N/A 1.53± 0.68 0.33± 0.01 0.31± 0.00

fridge
PARIS 9/10 105.51± 50.87 6.04± 4.17 121.25± 45.78 N/A 2.97± 0.19 39.11± 2.07 11.62± 0.54
DTA† 10/10 6.67± 2.79 0.51± 0.32 12.07± 2.08 N/A 0.63± 0.01 0.29± 0.01 0.70± 0.00
SplArt 10/10 4.14± 0.56 0.06± 0.05 5.81± 0.34 N/A 2.23± 0.05 1.21± 0.03 1.95± 0.04

laptop
PARIS 10/10 117.26± 94.05 6.89± 5.45 99.11± 51.26 N/A 0.61± 0.33 32.43± 2.19 15.08± 1.41
DTA† 10/10 6.65± 1.73 1.33± 0.52 11.81± 3.62 N/A 0.31± 0.00 0.14± 0.00 0.34± 0.00
SplArt 10/10 3.20± 0.55 0.59± 0.05 4.89± 0.28 N/A 0.24± 0.00 0.34± 0.01 0.35± 0.01

oven
PARIS 10/10 161.16± 112.94 3.44± 3.81 95.15± 55.90 N/A 9.89± 0.93 156.89± 43.24 10.90± 1.70
DTA† 10/10 19.35± 4.10 1.57± 0.60 11.03± 2.19 N/A 4.61± 0.07 0.44± 0.01 4.26± 0.06
SplArt 10/10 1.45± 0.32 0.90± 0.06 2.95± 0.27 N/A 7.10± 0.44 1.89± 3.52 6.02± 0.32

scissor
PARIS 0/10 F F F N/A F F F
DTA† 10/10 7.28± 5.05 4.84± 7.66 56.56± 95.23 N/A 1.67± 3.41 5.06± 13.99 0.42± 0.00
SplArt 10/10 2.24± 0.17 0.24± 0.06 2.18± 0.26 N/A 0.37± 0.01 0.20± 0.01 0.25± 0.00

stapler
PARIS 0/10 F F F N/A F F F
DTA† 9/10 7.06± 5.68 1.81± 1.16 11.76± 11.74 N/A 2.93± 0.24 2.16± 0.89 2.03± 0.03
SplArt 10/10 4.64± 0.43 0.75± 0.08 4.09± 0.28 N/A 1.17± 0.02 2.12± 0.14 1.05± 0.02

washer
PARIS 0/10 F F F N/A F F F
DTA† 10/10 38.95± 11.24 3.91± 2.63 27.51± 8.30 N/A 4.68± 0.11 0.40± 0.01 4.46± 0.12
SplArt 10/10 3.76± 0.48 0.24± 0.15 5.95± 0.67 N/A 19.14± 1.27 1.59± 2.40 17.92± 1.22

mean
PARIS 40.0% 121.90± 68.45 5.27± 4.55 127.80± 55.12 N/A 3.48± 0.39 68.44± 13.03 13.11± 1.16
DTA† 98.8% 12.32± 4.16 1.86± 1.69 19.41± 16.28 N/A 2.20± 0.49 1.27± 1.87 1.73± 0.03
SplArt 100.0% 3.70± 0.38 0.40± 0.07 4.85± 0.33 N/A 4.08± 0.32 1.06± 0.78 3.59± 0.21

Pr
is

m
at

ic

blade
PARIS 0/10 F N/A N/A F F F F
DTA† 10/10 25.72± 4.58 N/A N/A 0.94± 0.14 0.49± 0.01 31.11± 0.55 0.37± 0.01
SplArt 9/10 2.04± 0.61 N/A N/A 0.22± 0.04 0.44± 0.01 26.60± 0.85 0.44± 0.01

storage
PARIS 10/10 27.97± 13.09 N/A N/A 4.28± 3.02 9.21± 1.94 151.78± 35.00 7.99± 0.49
DTA† 10/10 6.79± 2.50 N/A N/A 1.37± 0.13 4.88± 0.07 0.36± 0.00 4.07± 0.06
SplArt 10/10 2.69± 0.26 N/A N/A 0.45± 0.04 11.60± 0.38 6.94± 1.43 6.94± 0.27

mean
PARIS 50.0% 27.97± 13.09 N/A N/A 4.28± 3.02 9.21± 1.94 151.78± 35.00 7.99± 0.49
DTA† 100.0% 16.26± 3.54 N/A N/A 1.15± 0.14 2.69± 0.04 15.74± 0.28 2.22± 0.03
SplArt 95.0% 2.36± 0.44 N/A N/A 0.33± 0.04 6.02± 0.20 16.77± 1.14 3.69± 0.14

Overall
PARIS 42.0% 103.12± 57.38 5.27± 4.55 127.80± 55.12 4.28± 3.02 4.63± 0.70 85.11± 17.42 12.09± 1.03
DTA† 99.0% 13.11± 4.04 1.86± 1.69 19.41± 16.28 1.15± 0.14 2.30± 0.40 4.16± 1.55 1.83± 0.03
SplArt 99.0% 3.44± 0.39 0.40± 0.07 4.85± 0.33 0.33± 0.04 4.47± 0.30 4.20± 0.85 3.61± 0.19

Table 7. PARIS-PMS Articulation and Mesh Reconstruction Metrics. †DTA requires ground-truth depth.
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Type Scene Method PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓ IoUs ↑ IoUm ↑ IoUbg ↑ mIoU ↑

R
ev

ol
ut

e

USB
PARIS F F F F F F F F
DTA† N/A N/A N/A 0.022 0.864 0.892 0.996 0.917
SplArt 45.70 0.996 0.0029 0.026 0.982 0.979 1.000 0.987

foldchair
PARIS 33.48 0.936 0.0844 0.096 0.961 0.939 0.994 0.965
DTA† N/A N/A N/A 0.041 0.915 0.950 0.988 0.951
SplArt 43.98 0.992 0.0119 0.037 0.981 0.980 0.999 0.987

fridge
PARIS 32.22 0.967 0.0766 0.087 0.973 0.866 0.997 0.945
DTA† N/A N/A N/A 0.034 0.957 0.823 0.992 0.924
SplArt 41.40 0.996 0.0101 0.045 0.986 0.917 0.999 0.967

laptop
PARIS 31.64 0.964 0.0758 0.057 0.907 0.959 0.997 0.954
DTA† N/A N/A N/A 0.014 0.938 0.964 0.997 0.966
SplArt 40.90 0.995 0.0096 0.026 0.931 0.975 0.999 0.968

oven
PARIS 31.48 0.950 0.1048 0.132 0.977 0.891 0.996 0.955
DTA† N/A N/A N/A 0.038 0.981 0.946 0.993 0.973
SplArt 41.59 0.993 0.0148 0.082 0.990 0.935 0.999 0.974

scissor
PARIS F F F F F F F F
DTA† N/A N/A N/A 0.051 0.863 0.876 0.991 0.910
SplArt 46.15 0.996 0.0030 0.044 0.951 0.954 0.999 0.968

stapler
PARIS F F F F F F F F
DTA† N/A N/A N/A 0.035 0.902 0.894 0.994 0.930
SplArt 44.81 0.994 0.0021 0.034 0.959 0.940 1.000 0.966

washer
PARIS F F F F F F F F
DTA† N/A N/A N/A 0.016 0.991 0.888 0.998 0.959
SplArt 43.75 0.996 0.0079 0.131 0.995 0.930 0.999 0.975

mean
PARIS 32.21 0.954 0.0854 0.093 0.954 0.914 0.996 0.955
DTA† N/A N/A N/A 0.031 0.926 0.904 0.994 0.941
SplArt 43.53 0.995 0.0078 0.053 0.972 0.951 0.999 0.974

Pr
is

m
at

ic

blade
PARIS F F F F F F F F
DTA† N/A N/A N/A 0.116 0.728 0.416 0.998 0.714
SplArt 46.15 0.998 0.0016 0.052 0.900 0.657 1.000 0.852

storage
PARIS 33.75 0.944 0.1228 0.108 0.954 0.722 0.996 0.891
DTA† N/A N/A N/A 0.017 0.984 0.944 0.997 0.975
SplArt 42.62 0.985 0.0481 0.037 0.951 0.850 0.999 0.933

mean
PARIS 33.75 0.944 0.1228 0.108 0.954 0.722 0.996 0.891
DTA† N/A N/A N/A 0.066 0.856 0.680 0.997 0.844
SplArt 44.38 0.991 0.0248 0.044 0.925 0.754 0.999 0.893

Overall
PARIS 32.52 0.952 0.0929 0.096 0.954 0.875 0.996 0.942
DTA† N/A N/A N/A 0.038 0.912 0.859 0.994 0.922
SplArt 43.70 0.994 0.0112 0.052 0.963 0.912 0.999 0.958

Table 8. PARIS-PMS Novel View Synthesis Metrics. †DTA requires ground-truth depth.
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Scene Method
Success
Rate

x erra
(×10−2 DEG)

y errp
(×10−3)

y errr
(×10−2 DEG)

y
2230
Chair

PARIS 1/10 44.97± 0.00 4.41± 0.00 130.66± 0.00
DTA† 9/10 2.77± 0.79 0.18± 0.14 5.62± 2.35
SplArt 10/10 0.33± 0.13 0.06± 0.03 0.84± 0.36

5477
Display

PARIS 8/10 86.76± 27.41 3.42± 3.21 133.12± 43.26
DTA† 10/10 1.38± 0.39 0.27± 0.06 2.29± 0.55
SplArt 10/10 1.91± 0.43 0.49± 0.25 4.10± 0.75

7054
Clock

PARIS 0/10 F F F
DTA† 0/10 F F F
SplArt 1/10 211.22± 0.00 1.06± 0.00 390.40± 0.00

11951
TrashCan

PARIS 0/10 F F F
DTA† 0/10 F F F
SplArt 10/10 1.65± 0.71 21.55± 16.33 473.55± 352.80

100247
Box

PARIS 0/10 F F F
DTA† 0/10 F F F
SplArt 8/10 0.79± 0.31 0.14± 0.10 1.99± 0.67

100460
Bucket

PARIS 0/10 F F F
DTA† 10/10 15.09± 6.89 0.61± 0.34 24.57± 10.06
SplArt 10/10 0.50± 0.23 0.03± 0.04 0.79± 0.36

100756
Globe

PARIS 0/10 F F F
DTA† 0/10 F F F
SplArt 1/10 0.72± 0.00 0.09± 0.00 3.31± 0.00

100794
Globe

PARIS 1/10 126.06± 0.00 14.17± 0.00 533.60± 0.00
DTA† 10/10 4.59± 3.84 2.67± 1.39 108.22± 10.35
SplArt 10/10 1.22± 0.35 0.12± 0.10 2.09± 0.50

100882
Switch

PARIS 2/10 393.07± 86.79 15.78± 4.03 342.44± 171.13
DTA† 1/10 139.96± 0.00 2.67± 0.00 63.28± 0.00
SplArt 10/10 19.37± 1.29 0.62± 0.23 11.20± 0.61

101542
Dispenser

PARIS 7/10 71.74± 49.72 5.44± 6.19 251.86± 267.19
DTA† 0/10 F F F
SplArt 8/10 0.75± 0.43 0.19± 0.06 11.48± 0.70

102400
Knife

PARIS 0/10 F F F
DTA† 0/10 F F F
SplArt 5/10 9.01± 5.46 22.59± 11.58 37.95± 15.46

103031
CoffeeMachine

PARIS 3/10 281.43± 90.89 12.95± 8.94 230.56± 65.56
DTA† 0/10 F F F
SplArt 10/10 1.69± 0.40 0.22± 0.14 1.98± 0.58

mean
PARIS 18.3% 167.34± 42.47 9.36± 3.73 270.37± 91.19
DTA† 33.3% 32.76± 2.38 1.28± 0.39 40.80± 4.66
SplArt 77.5% 20.76± 0.81 3.93± 2.41 78.31± 31.06

Table 9. SPLART-PMS Articulation Metrics on Revolute Scenes. †DTA requires ground-truth depth.
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Scene Method
Success
Rate

x erra
(×10−2 DEG)

y errt
(×10−3)

y
3558
Bottle

PARIS 5/10 45.83 ± 22.38 23.32 ±12.29
DTA† 10/10 200.52 ± 10.32 4.60 ± 0.27
SplArt 10/10 3.82 ± 0.52 0.10 ± 0.02

12085
Dishwasher

PARIS 6/10 15.60 ± 7.00 4.67 ± 1.10
DTA† 10/10 3.78 ± 1.96 2.46 ± 0.18
SplArt 10/10 1.00 ± 0.14 0.24 ± 0.02

27189
Table

PARIS 3/10 23.69 ± 10.43 21.18 ± 3.03
DTA† 10/10 15.90 ± 2.43 2.69 ± 0.45
SplArt 10/10 0.14 ± 0.05 0.14 ± 0.01

100248
Suitcase

PARIS 0/10 F F
DTA† 10/10 192.55 ± 30.46 10.57 ± 1.60
SplArt 10/10 1.22 ± 0.58 0.10 ± 0.04

101713
Pen

PARIS 0/10 F F
DTA† 10/10 179.16 ± 51.33 3.76 ± 1.04
SplArt 10/10 244.39 ±172.86 7.96 ± 2.71

102016
USB

PARIS 2/10 17.52 ± 10.01 9.53 ± 1.87
DTA† 10/10 44.11 ± 5.59 7.34 ± 0.69
SplArt 10/10 0.71 ± 0.33 0.49 ± 0.09

102812
Switch

PARIS 8/10 34.54 ± 18.03 9.04 ± 6.90
DTA† 10/10 190.87 ± 8.20 38.68 ± 1.85
SplArt 10/10 1.55 ± 0.80 0.11 ± 0.05

103042
Window

PARIS 5/10 189.87 ± 54.52 30.48 ± 9.55
DTA† 10/10 92.93 ± 1.64 11.92 ± 0.23
SplArt 10/10 1.55 ± 0.24 0.76 ± 0.18

103549
Toaster

PARIS 0/10 F F
DTA† 0/10 F F
SplArt 5/10 2.63 ± 0.74 0.30 ± 0.07

103941
Phone

PARIS 10/10 19.39 ± 10.07 6.51 ± 3.81
DTA† 10/10 5.06 ± 0.42 1.28 ± 0.28
SplArt 10/10 0.18 ± 0.09 0.20 ± 0.03

mean
PARIS 39.0% 49.49 ± 18.92 14.96 ± 5.51
DTA† 90.0% 102.77 ± 12.48 9.25 ± 0.73
SplArt 95.0% 25.72 ± 17.63 1.04 ± 0.32

Table 10. SPLART-PMS Articulation Metrics on Prismatic Scenes. †DTA requires ground-truth depth.
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Scene Method PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓ IoUs ↑ IoUm ↑ IoUbg ↑ mIoU ↑

2230
Chair

PARIS 28.89 0.924 0.1004 0.231 0.510 0.737 0.982 0.743
DTA† N/A N/A N/A 0.098 0.764 0.857 0.980 0.867
SplArt 32.08 0.972 0.0392 0.027 0.498 0.791 0.993 0.761

5477
Display

PARIS 34.34 0.943 0.0979 0.100 0.933 0.973 0.997 0.968
DTA† N/A N/A N/A 0.020 0.783 0.968 0.996 0.916
SplArt 38.33 0.970 0.0379 0.020 0.804 0.971 0.999 0.924

7054
Clock

PARIS F F F F F F F F
DTA† F F F F F F F F
SplArt 35.54 0.985 0.0187 0.027 0.994 0.811 0.999 0.935

11951
TrashCan

PARIS F F F F F F F F
DTA† F F F F F F F F
SplArt 30.01 0.952 0.0560 0.083 0.920 0.735 0.980 0.878

100247
Box

PARIS F F F F F F F F
DTA† F F F F F F F F
SplArt 36.96 0.968 0.0409 0.030 0.989 0.987 0.999 0.992

100460
Bucket

PARIS F F F F F F F F
DTA† N/A N/A N/A 0.081 0.948 0.455 0.984 0.795
SplArt 37.83 0.970 0.0397 0.016 0.989 0.832 0.999 0.940

100756
Globe

PARIS F F F F F F F F
DTA† F F F F F F F F
SplArt 36.30 0.990 0.0346 0.035 0.577 0.346 0.997 0.640

100794
Globe

PARIS 29.45 0.915 0.0965 0.115 0.974 0.937 0.996 0.969
DTA† N/A N/A N/A 0.046 0.961 0.943 0.994 0.966
SplArt 35.47 0.980 0.0216 0.012 0.989 0.985 0.999 0.991

100882
Switch

PARIS 40.23 0.991 0.0418 0.082 0.989 0.822 0.999 0.937
DTA† N/A N/A N/A 0.020 0.976 0.676 0.998 0.883
SplArt 44.04 0.997 0.0174 0.033 0.990 0.835 0.999 0.941

101542
Dispenser

PARIS 31.32 0.966 0.0450 0.105 0.883 0.623 0.998 0.835
DTA† F F F F F F F F
SplArt 36.53 0.992 0.0153 0.020 0.869 0.585 0.999 0.818

102400
Knife

PARIS F F F F F F F F
DTA† F F F F F F F F
SplArt 36.21 0.990 0.0215 0.041 0.986 0.874 0.997 0.952

103031
CoffeeMachine

PARIS 32.29 0.979 0.0659 0.116 0.977 0.825 0.997 0.933
DTA† F F F F F F F F
SplArt 37.20 0.993 0.0284 0.034 0.994 0.975 0.999 0.990

mean
PARIS 32.75 0.953 0.0746 0.125 0.878 0.820 0.995 0.897
DTA† N/A N/A N/A 0.053 0.886 0.780 0.990 0.886
SplArt 36.38 0.980 0.0309 0.032 0.883 0.811 0.997 0.897

Table 11. SPLART-PMS Novel View and Articulation Synthesis Metrics on Revolute Scenes. †DTA requires ground-truth depth.
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Scene Method PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓ IoUs ↑ IoUm ↑ IoUbg ↑ mIoU ↑

3558
Bottle

PARIS 35.75 0.981 0.0276 0.120 0.976 0.676 0.999 0.883
DTA† N/A N/A N/A 0.026 0.929 0.580 0.999 0.836
SplArt 42.05 0.996 0.0076 0.034 0.994 0.968 1.000 0.987

12085
Dishwasher

PARIS 30.81 0.954 0.0927 0.111 0.964 0.929 0.994 0.962
DTA† N/A N/A N/A 0.113 0.873 0.773 0.982 0.876
SplArt 35.70 0.988 0.0388 0.019 0.985 0.965 0.998 0.983

27189
Table

PARIS 29.55 0.887 0.1618 0.131 0.958 0.866 0.995 0.940
DTA† N/A N/A N/A 0.044 0.964 0.889 0.992 0.948
SplArt 34.76 0.963 0.0560 0.035 0.979 0.949 0.998 0.975

100248
Suitcase

PARIS F F F F F F F F
DTA† N/A N/A N/A 0.025 0.986 0.574 0.998 0.853
SplArt 39.76 0.995 0.0104 0.038 0.995 0.934 0.999 0.976

101713
Pen

PARIS F F F F F F F F
DTA† N/A N/A N/A 0.037 0.956 0.319 0.999 0.758
SplArt 40.85 0.998 0.0135 0.028 0.981 0.789 1.000 0.923

102016
USB

PARIS 31.45 0.970 0.1005 0.191 0.731 0.583 0.994 0.769
DTA† N/A N/A N/A 0.157 0.710 0.553 0.979 0.747
SplArt 35.08 0.987 0.0475 0.054 0.659 0.533 0.998 0.730

102812
Switch

PARIS 35.23 0.984 0.0433 0.102 0.987 0.908 0.998 0.964
DTA† N/A N/A N/A 0.024 0.970 0.616 0.996 0.861
SplArt 38.69 0.995 0.0235 0.031 0.995 0.971 0.999 0.988

103042
Window

PARIS 29.11 0.967 0.0808 0.127 0.859 0.631 0.996 0.829
DTA† N/A N/A N/A 0.088 0.900 0.744 0.991 0.878
SplArt 32.35 0.984 0.0499 0.039 0.868 0.695 0.999 0.854

103549
Toaster

PARIS F F F F F F F F
DTA† F F F F F F F F
SplArt 39.04 0.994 0.0195 0.036 0.997 0.949 0.999 0.982

103941
Phone

PARIS 34.21 0.972 0.0592 0.089 0.938 0.956 0.998 0.964
DTA† N/A N/A N/A 0.027 0.913 0.952 0.997 0.954
SplArt 39.42 0.993 0.0219 0.020 0.971 0.980 0.999 0.984

mean
PARIS 32.30 0.959 0.0808 0.124 0.916 0.793 0.996 0.902
DTA† N/A N/A N/A 0.060 0.911 0.667 0.993 0.857
SplArt 37.77 0.989 0.0288 0.033 0.942 0.873 0.999 0.938

Table 12. SPLART-PMS Novel View and Articulation Synthesis Metrics on Prismatic Scenes. †DTA requires ground-truth depth.
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