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Abstract
We present an ongoing work in which a surrogate model

is being developed to reproduce the response dynamics of
the third-integer resonant extraction process in the Delivery
Ring (DR) at Fermilab. This effort is in pursuit of smoothly
extracting circulating beam to the Mu2e Experiment’s pro-
duction target, wherein the goal is to extract a uniform slice
of the circulating 1𝑒12 protons in the DR over 25,000 turns
(43 ms). The DR contains 3 harmonic sextupoles which
excite a third-integer resonance as well as three fast, tune-
ramping quadrupole magnets which drive the horizontal tune
towards the 29/3 resonance. In our initial work the surrogate
model trains on a semi-analytical simulation provided in the
same format as live data. Using Reinforcement Learning
(and other potential ML methods), the trained surrogate acts
as the “environment” in which a simple ML control agent
could learn to dynamically adjust the quadrupole ramp at
430 break points within the 43 microsecond spill window.
The control agent will be hosted on a dedicated Arria 10
FPGA, introducing its own requirements on control agent
architecture. In this work we report the accuracy and fidelity
of surrogate models in comparison to the response dynamics
of the physics simulator.

THE MU2E EXPERIMENT AND BEAM
REQUIREMENT

Mu2e is an upcoming experiment [1] at Fermi National
Accelerator Laboratory (Fermilab) that intends to look for
beyond-standard-model (BSM) physics through charged lep-
ton flavor violation. Mu2e will heavily suppress large sys-
tematic effects such as RPC background [2] by using a
pulsed muon beam (from a pulsed proton beam) and delay-
ing the detector live window, enabling a clean measurement
of muon‐converted electrons.

The pulsed proton beam (see Table 1) (directed to the
muon production target) will be produced using a third-
integer resonant extraction process at Fermilab’s Delivery
Ring (DR). The goal is to inject 1𝑒12 protons into the DR
and uniformly extract equal slices of the circulating proton
beam, sending these micropulses to the production target.
A Spill Regulation System (SRS) [3] is commissioning in
order to facilitate the uniformity of the spill by achieving a
Spill Duty Factor (SDF) of 60% or greater.

∗ This work was produced by Fermi Forward Discovery Group, LLC under
Contract No. 89243024CSC000002 with the U.S. Department of Energy,
Office of Science, Office of High Energy Physics.† aakaashn@fnal.gov

Table 1: Some Main Parameters Pertinent to Resonant Ex-
traction

Parameter Value
Beam kinetic energy 8 GeV
Spill Duration 43 ms
Number of spills per super cycle 8
Number of bunches per spill 1
Initial proton intensity 1012 protons
# of protons extracted per turn < 4 × 107 protons
Time between proton micropulses 1.695 μs
Normalized Emittance (95% ) 𝜖𝑥 16 π mm-mrad
Spill Duty Factor (SDF) > 60 %
Reset time between spills 5 ms

PHYSICS ENVIRONMENT
To simulate the 3rd integer resonant extraction, the most

accurate choice of simulation would be to perform particle
tracking. However, even simulating an intensity of 1e12
protons with 1e7 macroparticles over 25,000 turns would be
very computationally expensive. A semi-analytical model
was built to simulate of the 3rd integer resonant extraction,
consisting of following components.

Noise in spill rate The modeling of the spill, for the
purposes of Fast Regulation, assumes a perfect extraction in
the absence of any instantaneous noises in the system, with
the assumption that a logarithmic quad ramp curve would re-
sult in ideal extraction rate. The physics simulator generates
random log-normal points at 1 kHz rate and interpolates the
generated points to provide smooth noise data for over 430
time steps (since the maximum SRS design bandwidth is
10 kHz), with each time step constituting 100 μs (or equiv-
alently ≈60 turns). The expectation value of the spill rate
is normalized to 1, and the log-normal generated noise is
added to 1 to give us a noise profile for every spill.

PID Control Loop Once the noise in the spill rate is
generated, and the error in the spill rate known, it is sequen-
tially fed to the PID control loop, with the three gain values
of the PID controller passed as an argument. The PID func-
tion inputs the gain values, the spill rate data, and computes
the control signal for each of the time steps, given by Eq. (1):

𝑢(𝑡) = 𝐺𝑝𝑒(𝑡) + 𝐺𝐼 ∫𝑡0 𝑒(𝜏) d𝜏 + 𝐺𝑑 d
d𝑡 𝑒(𝑡), (1)
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where 𝐺𝑝, 𝐺𝑖, 𝐺𝑑 are the proportional, integral, and deriva-
tive gains. In this modeling of the PID controller we do not
incorporate a low-pass filter within the derivative action of
the controller since the generated noise is guaranteed to not
have any divergence in 𝑑𝑒(𝑡)/𝑑𝑡.

B-Field Shielding Effect High-frequency corrections
from the PID to the quadrupole power supplies produce
rapidly varying 𝐵-fields that are screened by the stainless-
steel beam pipe and therefore do not reach the beam; we
model this shielding with a Butterworth low-pass filter
(1 kHz cutoff).

Transit-Time Delay Once the horizontal tune of the
beam is changed by the fast tune-shifting quadrupoles, the
particles take a finite amount of time (nonzero orbit count)
to be extracted due to the non-linear beam dynamics, called
a ‘transit time’ delay, which is incorporated into the model.

Quadrupole Response and Beam Extraction The con-
trol signal is then passed through a function that superposes
it to the predefined logarithmic ideal quad current ramp
value. The ideal-spill resulting quad current was taken to be
a logarithmic function of the spill timestep, with a maximum
current value of 100 A. Once we have the total extracted
beam intensity for every time step, we can calculate the rate
of spill intensity, which is obtained from a resistive wall
monitor in the extraction line. The spill monitor function
computes the difference in the total spill intensity from the 𝑗-
th time step to the (𝑗 +1)-th time step, ideally zero. The spill
monitor thus outputs the regulated extraction rate, which is
the final output of the physics simulator.

REPRODUCING PHYSICS SIMULATOR
DYNAMICS IN SURROGATE MODELS

Training Procedures
To reproduce surrogate dynamics, we train models on

histories of spill intensities represented as state-action
pairs (𝑠𝑡, 𝑎𝑡), where 𝑎𝑡 ∈ ℝ2 encodes the corrected
quadrupole current and PID control action. Given a se-
quence {(𝑠𝑡−𝑁, 𝑎𝑡−𝑁), … , (𝑠𝑡, 𝑎𝑡)}, the model is tasked with
predicting the next spill intensity 𝑠𝑡+1. We initially use
teacher forcing [4], conditioning on simulator generated
histories during training. Our model predicts a horizon of
10 steps {𝑠𝑡+1, … , 𝑠𝑡+10}, using the first step as the predicted
spill 𝑠𝑡+1. This allows longer-horizon learning while remain-
ing compatible with our 10-step interpolation.

To mitigate exposure bias, we then use teacher-based
weaning, a variant of scheduled sampling [5], reduc-
ing simulator generated inputs by 5 every 10 epochs
(20→15→10→5→0), and correspondingly increasing sur-
rogate generated inputs by 5. This gradual shift from su-
pervised to autoregressive inference improves robustness to
compounding errors.

Model
Because the spill rate varies stochastically, we adopt a

variational surrogate model [6] to better capture its dynamics.
For both training strategies, training is performed on sliding
windows of length 𝑁 = 20 from 1000 unique spill episodes,
each corresponding to a different random seed. The target
is the corrected spill intensity 𝑠𝑡+1.

The model is trained using a combination of reconstruc-
tion loss and KL divergence over the posterior distribution
of the latent variables:

ℒ = 1𝑇 𝑇∑𝑡=1 [ ∥ ̂𝑠𝑡+1 − 𝑠𝑡+1∥22⏟⏟⏟⏟⏟⏟⏟
Reco Loss+ 𝛽 ⋅ 𝐷KL (𝑞(𝑧𝑡+1 ∣ 𝑠𝑡+1, 𝑎𝑡, ℎ𝑡) ‖ 𝑝(𝑧𝑡+1 ∣ ℎ𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

KL Divergence
]

To ensure compatibility with our PID studies, training
data is generated using log-normal noise with parameters𝜇 = −0.347 and 𝜎 = 0.833, and fixed PID gains: 𝐺𝑝 =−0.0101, 𝐺𝑖 = −0.1897, 𝐺𝑑 = −0.67678.

The model uses a gated recurrent unit (GRU) to update
hidden states ℎ𝑡. At inference, we use a fixed history of 𝑁 =20 steps to predict the next 10 time steps, using only the first
prediction. For the autoregressive model trained via teacher
weaning, during inference we begin with a 20-step warmup
of simulator produced inputs, after which predictions are
made recursively by the surrogate interacting with the PID
controller within the environment .

Results
Model Trained with Teacher Forcing To assess sta-

bility, we evaluate 1-step prediction performance with an𝑁 = 20 simulator generated history for 100 unseen spills,
each with a unique seed. Figure 1 shows the predictions
for a given spill. We report mean absolute error (MAE)
both point-wise and summed per spill, using 5 latent-space
samples per point.

Figure 1: Sample predicted spill using a sliding window
history of simulator truth trajectory 𝑁 = 20 averaged over 5
samples from latent distribution.

We report relatively small MAE per spill given the scale
of our data (Figures 2 and 3). To establish the uncertainty
potential of this model, we also plot the model’s standardized
prediction errors (Figure 4) where 𝜇𝑝𝑟𝑒𝑑 is the predicted spill
at a timestep 𝑦true is the simulator truth history and 𝜎pred is
the predicted standard deviation at a timestep.

We see that the standardized 𝜎 of pointwise predicted
errors is much greater than 1 implying some degree of under
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Figure 2: MAE per
point.

Figure 3: MAE per Tra-
jectory

Figure 4: In a perfect vari-
ational model, our mean
should be 0, and 𝜎 = 1.

Figure 5: Final step ab-
solute error per trajec-
tory is much larger than
the MAE per trajectory.

confident predictions. We additionally see that much of the
error is located in the final step prediction per trajectory
(Figure 5).

Autoregressive Model Trained with Teacher Wean-
ing To evaluate our model, we sample 20 trajectories
over 10 spills, each spill corresponding to a random seed.
Upon initial observation, we find that though we have effec-
tively modeled dynamics visually, some trajectories exhibit
high divergence due to some compounding error. We filter
the set of surrogate generated trajectories by keeping only
those for which the third central moment difference satisfies𝜇simulator3 − 𝜇surrogate3 ≥ −160, thereby removing samples
with large negative skewness discrepancies relative to the
simulated spill. We show such trajectories in color for a
given seed in Figure 6.

Figure 6: Surrogate spills generated after skew filter.

From the initial surrogate predictions, 31 of 200 trajecto-
ries remain after filtering. For these, we compute the Earth
Mover’s Distance (EMD) [7] between simulated and surro-
gate spills across all seeds, and compare the surrogate SDF
to the corrected spill SDF from the simulator (Figures 7 and
8). While SDF values correlate at lower spill intensities, the
surrogate generally produces lower SDFs than the simulator,
likely due to end-of-trajectory divergence.

To stabilize spill predictions, we use confidence-weighted
exponential smoothing. At each time step 𝑡, the model sam-
ples 5 predicted spill values { ̂𝑠(𝑖)𝑡 }, from which we com-
pute a mean 𝜇̂𝑡 and standard deviation 𝜎̂𝑡. We smooth

Figure 7: SDF of Surrogate
Generated Spill trajectories
over all seeds.

Figure 8: Wasserstein dis-
tance of surrogate trajecto-
ries over all seeds

the mean using an exponential moving average (EMA):
EMA𝑡 = 𝜆𝜇̂𝑡 + (1 − 𝜆)EMA𝑡−1. Confidence is defined
as 𝑐𝑡 = exp(−𝛼𝜎̂𝑡), decreasing with uncertainty. The fi-
nal spill estimate is a confidence-weighted blend: ̃𝑠𝑡 =𝑐𝑡 ⋅ EMA𝑡 + (1 − 𝑐𝑡) ⋅ 𝑠𝑡−1, where the final result is clipped
to be non-negative. This value ̃𝑠𝑡 is then used to compute
the control action 𝑎𝑡 for the given step during autoregressive
inference. When using this procedure and making the same
cut at 𝜇original3 −𝜇surrogate3 ≥ −160, we preserve 98 of the 200
trajectories. We similarly report the SDF correlation and
Wasserstein distances for spills that pass this filter (Figures
9 and 10).

Figure 9: SDF of Surrogate
Generated Spill trajectories
vs. simulated spills with
EMA filter and confidence
weighting.

Figure 10: Wasserstein dis-
tance of surrogate trajecto-
ries to simulated spills with
EMA filter and confidence
weighting

We see initially that we are able to obtain less than extreme
divergence of the surrogate generated spills from the simula-
tor generated spills. The filtering and confidence weighting
slightly improves this result with a lower mean Wasserstein
distance. More statistics are needed to confirm this behavior.

CONCLUSION
We present an initial variational surrogate model for Mu2e

slow spill dynamics. It shows early success in generating
trajectories matching simulated spills, though SDF preser-
vation needs improvement. Future work includes reducing
reliance on filters, adding parameters to the loss function,
and applying weighted re-sampling in the latent space to en-
hance performance, with the goal of integrating the surrogate
into a differentiable RL control environment.
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