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Abstract— We present an algorithm for finding a single cluster

of well-connected nodes in a graph. The general problem is NP-
hard, but our algorithm produces an approximate solution in
O(n2) by considering the spectral properties of the graph’s
adjacency matrix. We show how this algorithm can be used to
find sets of self-consistent hypotheses while rejecting incorrect
hypotheses, a problem that frequently arises in robotics. We
present results from a range-only SLAM system, a polynomial
time data association algorithm, and a method for parametric
line fitting that outperforms RANSAC.

I. I NTRODUCTION

Many problems can be cast in the form of finding a
set of consistent hypotheses from a larger set of candidate
hypotheses. For example, outlier rejection can be posed as
finding the set of maximally consistent inlier measurements
from the set of all measurements. Other problems, including
parameter estimation (e.g. fitting points to a line), and data
association can also be cast into this form.

In general, searching for the best subset of hypotheses
requires exponential time in the number of candidate hy-
potheses. This paper presents an algorithm, Single-Cluster
Graph Partitioning (SCGP), which casts the problem as a
graph partitioning problem and uses spectral analysis to
estimate the optimal set inO(n2) time.

The basic observation which motivates SCGP is that cor-
rect hypotheses tend to be pairwise consistent with each other,
whereas incorrect hypotheses are only randomly consistent.
SCGP uses a pairwise similarity metric and finds a cluster
of hypotheses which is approximately the set with greatest
intra-set similarity.

Graph partitioning is a well-studied problem, at least in the
context of identifyingtwo or moreclusters of highly similar
nodes. Single-cluster graph partitioning is different; it seeks
to find only asinglecluster. In the problems explored in this
paper, the outliers/incorrect hypotheses are not, in general,
pairwise similar to each other.

To introduce the idea of single-cluster partitioning, con-
sider the points in Fig. 1. Given a cloud of points, we
wish to recover the cluster of “inliers”. We compute an
adjacency matrix using a simple exponentially-weighted Eu-
clidean distance metric and perform clustering using Shi and
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Fig. 1. K-way versus 1-way clustering. When attempting to identify a
single cluster, k-way algorithms like Normalized Cuts perform poorly in
comparison to the 1-way algorithm described in this paper.

Malik’s Normalized Cuts [1] (a common k-way partitioning
algorithm) and with our 1-way algorithm. Clearly, attempting
to produce “balanced” clusters produces poor results.

This paper will describe our algorithm, first considering the
square/symmetric case, then generalizing the solution to non-
symmetric problems. We then show how our single-cut graph
partitioning algorithm can be used to solve several problems
in robotics.

The main contributions of this paper are:

• Development and derivation of Single-Cluster Spectral
Graph Partitioning (SCGP)

• Application of the filter to outlier rejection, enabling
a high fidelity Simultaneous Localization and Mapping
(SLAM) result using range-only measurements, despite
extreme noise.

• Application of the filter to line fitting, demonstrating
better performance than RANSAC.

• Application of the filter to data association and robot
localization, with promising results for future work.



II. RELATED WORK

Our approach is related to the existing body of work in
spectral graph partitioning. Given an undirected, weighted
graph, existing algorithms identify two or more clusters such
that nodes in each cluster are similar (large edge weights),
and nodes in different clusters are dissimilar (small edge
weights.) There are a variety of ways of expressing this
idea numerically, leading to different partitioning algorithms
with different metric functions. Ding’s MinMaxCuts paper
[2] contains a good survey of clustering methods, while the
mathematical foundations of spectral clustering can be found
in Fiedler and Donath’s early papers [3]–[6].

Perona and Freeman explored machine-vision problem of
extracting foreground features from non-salient background
features [7]. Both algorithms, independently developed, use
the same eigenvector of the adjacency matrix, but use differ-
ent means to find clusters. The algorithm presented here is
more general, in that it has been extended to handle the non-
symmetric, non-square affinity matrices that arise in several
problem domains.

Our approach to dealing with non-symmetric and non-
square affinity matrices is similar to the approach described
by Zha and He [8], in which they explore conventional parti-
tioning algorithms in the context of document classification.

Single-cluster graph partitioning can be used in many
domains in which Random Sample Consensus (RANSAC)
[9] is often used. RANSAC forms candidate hypotheses in a
randomized way, counting how many samples from the data
set agree with each hypothesis within a preset threshold. The
hypothesis with the greatest number of consenting samples
is then typically used as the solution.

Another application of SCGP is data association, for
which a number of popular algorithms exist. Neira’s Joint
Compatibility Branch and Bound (JCBB) [10] performs a
tree search over all possible data associations, leading to an
exponential run time. JCBB differs from other tree searches
by adding a “compatibility” test at each node in order to
reduce the search space.

Outlier rejection is often performed by gating measure-
ments with a prior, or by using a median window. Gating with
a prior simply means that measurements that are too unlikely
given the current estimate of the process are discarded.
Median windows consider a set of measurements in which
the value is not expected to change considerably, discarding
those measurements that are far from the median.

III. A LGORITHM OVERVIEW

A. Formulation

We can view a set ofN hypotheses and their pairwise-
consistencies as a graph. Each hypothesis becomes a node,
and the weight of an edge connecting two nodes is the
pairwise consistency of those two hypotheses,C(i, j). The
adjacency matrix is then:

Aij = C(i, j) (1)

Our goal is to find a set of hypotheses which, in some
sense, are more consistent with each other than other sets of
hypotheses. In terms of the graph, we want to find a set of
nodes that are connected by edges with large weights.

We represent a set of nodes with anN × 1 binary-valued
indicator vector. For an indicator vectoru, ui is 1 if the
ith node is a member, and zero otherwise. There is a large
potential search space of indicator vectors; each node can
either be in the set or not, yielding2N possible partitionings.

In order to find a set of “maximally consistent hypotheses”,
we must define a means of comparing the consistency of one
set of hypotheses with another. The metric should have two
basic properties:

• It should grow with the number of edges in the in-
lier cluster. These edges indicate increasing consistency
among the inlier nodes.

• It should be penalized by the number of inliers, so
that new nodes are only added when it is sufficiently
desirable to do so. Otherwise, a trivial solution of setting
the inlier set to be the entire candidate set can result.

In this paper, we use a very simple metric that has a strong
intuitive appeal. Namely, we attempt to maximize theaverage
consensus– the sum of the edge weights that connect a typical
inlier node to the rest of the inlier cluster:

r(u) =
uT Au

uT u
(2)

The quantityuT Au is the sum of all the edge weights in
the subgraph containing the nodes inu, and the quantityuT u
is the number of nodes in that subgraph.

This metric function rewards clusters with large amounts
of self-consistency, while discouraging the addition of nodes
which do not contribute to intra-cluster consistency. It also
ignores the nodes and edges which belong to outliers. This is
important since we do not generally know how the outliers
will be distributed; we do not want a randomly-occurring
cluster of outliers influence the inlier set.

To further our intuition, consider a partitioning problem
with boolean edge weights. Suppose we have a partial
partitioningu, and want to determine whether nodei should
be added to the cluster. Suppose that before addingi, each
inlier node is connected, on average, to three other nodes.
Further suppose that nodei is well-connected to the inliers,
and that adding it to the set increases the average consensus
to four. Clearly, adding nodei makes the inlier set a better
cluster. Conversely, if adding nodei decreasesthe average
consistency, then the inlier set is better without it. Unlike
this example, our algorithm does not make these decisions
sequentially. However, the intuition behind the algorithm
remains.
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B. Solution

Relaxation to continuous-valued indicator vector:There
is no known polynomial-time solution to maximizer(u)
when u is a discrete-valued indicator vector. However, an
approximate optimum can be found by relaxing the constraint
on u by allowing any positive real value.

The extrema can be computed by setting the gradient of
r(u) to zero. Remembering thatA is symmetric:

∇r(u) =
AuuT u− uT Auu

(uT u)2
=

Au− r(u)u
uT u

= 0 (3)

Au = r(u)u. (4)

This is easily recognized as an eigenvector problem with
an eigenvalue ofr(u). The maximum attainable value ofr(u)
is the dominant eigenvalue of matrixA, which occurs when
u is the dominant eigenvector. We note that Eqn. 2 is also
known as the Rayleigh Quotient of matrixA.

Discretization of the continuous indicator vector:The
continuous-valued indicator vector can be interpreted as the
importance of each hypothesis to the optimal set, where
the set allows partial membership. For some applications,
this ranking of importances might be sufficient. In general,
however, it is desirable to convert the continuous indicator
vector into a discrete one, resulting in a setv with boolean
membership.

Our strategy is to pick a thresholdt, computingv as:

vi(t) =

{
1 iff ui ≥ t

0 otherwise
(5)

If the size of the desired set is known in advance, then
the threshold can be computed such thatv contains desired
number of hypotheses. This can be the case when there is
prior information on the number of incorrect hypotheses.

In the general case, we do not know how many elements
the set should have. A reasonable approach is to find the
thresholdt which maximizesr(v(t)).

We can efficiently computer(v) for all values of t.
First, note that there are only|v| possible thresholds. If we
sequentially consider these thresholds in increasing numerical
order, we add only one node to setv at each step. Suppose the
indicator vector is currentlyv, and we add a single element
j. Let w be the indicator vector that contains only element
j. Our goal is to computeN(v + w).

N(v) = vT Av (6)

N(v + w) = (v + w)T A(v + w)
= vT Av + vT Aw + wT Av + wT Aw

= N(v) + vT A?,j + Aj,?v + Aj,j (7)

Each time we increase the threshold, we must compute
Eqn. 7, but the cost is onlyO(N). Since we must perform
N iterations, the total cost isO(N2). We choose the value
of t that maximizesr(v(t)). The initial cost of sorting the
elements ofu, O(nlog n), is subsumed by theO(n2) cost.

In the event thatA is not positive semi-definite, the
eigenvectoru might correspond to a negative eigenvalue, in
which case we haveminimized the metric function, rather
than maximizing it. This means that the indicator vector
v corresponds to theoutliers. The sign of the eigenvalue
corresponding tou can easily be tested, and if negative, the
indicator vector can be complemented in order to yield the
set of inliers.

While the continuous indicator vectoru is provably the
optimal of all continuous indicator vectors, we cannot be
certain thatv will be the optimal discrete-valued indicator.
The global optimum may not correspond toany thresholding
of u. However, like other spectral approximations to NP-
difficult problems, the performance of of the algorithm is
usually very good.

IV. A NALYSIS AND OPTIMIZATIONS

A. Rapid calculation of the first eigenvector

Fortunately, it is not necessary to perform a slow eigen-
value decomposition on matrixA in order to extract the
maximum eigenvector; we can rapidly compute just the first
eigenvector inO(N2). The behavior ofAnx is dominated by
the behavior of the largest eigen pair ofA. The Power Method
exploits this to compute the largest eigenvector by repeatedly
left-multiplying a random vector byA. The product will
converge to the eigenvector ifλn

1 À λn
2 , which is typically

the case. In most cases, we have found that only two or
three iterations provides enough precision to find a good
solution; we do not need many significant digits in order
to perform the thresholding accurately. However, the Power
Method can converge slowly if the eigenvalues are very
close in magnitude. The Inverse Power Method, coupled with
shifting, can accelerate convergence in this case [11].

B. Fast, approximate thresholding

The thresholding operation can be approximated in
O(nlog n) time. Conceptually, we want the discrete indicator
vectorv to be as similar to the optimal continuous indicator
vectoru as possible:

vbest = arg max
v

(
u′v
v′v

)
(8)

This can be computed very quickly by thresholdingu
by successively larger thresholds (obtained by sorting the
elements ofu). The run-time is dominated by the sort
operation.

It can be shown that finding the threshold in this way is
equivalent to optimizinguT Bu/uT u, whereB is the rank-1
approximation ofA, B = uuT .
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C. Interpretation of the second eigenvalue

The relative magnitude of the secondary eigenvalues con-
veys information about the ambiguity in the problem. If two
different eigenvectors have similar magnitudes, it means that
there are two equally-good explanations of the data. The
clustering result may be poor.

Some systems are designed to cope with ambiguity. Par-
ticle systems, for example, can track multiple solutions. In
time, the particles with incorrect hypotheses should become
inconsistent and die out. Other systems can simply defer
making a decision until conditions are more favorable.

D. Pairwise consistency test considerations

At the heart of the SCGP is the pairwise consistency test
which is used to construct the adjacency matrix. The behavior
of the pairwise test can have a profound effect on the success
or failure of the algorithm.

The robustness of SCGP is particularly sensitive to any
“DC offset” in the adjacency matrix. We illustrate this
importance with a simplified scenario.

Suppose there areNt true hypotheses andNf false hy-
potheses. Assume that the pairwise consistency test reliably
assigns edge weights ofCt to pairs of true hypotheses,Cf to
pairs of false hypotheses, and zero to edges between a true
and false hypothesis. We generally expectCt to be large, and
Cf to be small (since false hypotheses will generally not be
consistent with each other.) Our goal is to ensure that the
cluster of true hypotheses has a greater average consistency
than the set of false hypotheses.

In this case, there are two disconnected graphs: one of true
hypotheses and one of false hypotheses. Since both graphs
are fully connected, we can compute the metric for both:

r(ut) =
CtNt(Nt − 1)

Nt
(9)

r(uf ) =
CfNf (Nf − 1)

Nf
(10)

The SCGP will produce the correct value so long as
r(ut) > r(uf ). This will be true so long as:

Ct

Cf
>

Nf − 1
Nt − 1

(11)

In other words, the ratio of the number of outliers to inliers
must be less than theratio of the consistency metrics,not the
differenceCt −Cf . Thus, a good consistency metric should
try to make Cf as close to zero as possible, in order to
maximizeCt/Cf .

A different consideration for the pairwise consistency test
is the weight of a hypothesis with itself. If we change the
self-consistency of hypotheses, it is equivalent to adding a
multiple of the identity matrix to the adjacency matrix.

(A + αI)u = r(u)u
Au = (r(u) + α)u (12)

Regardless of the value ofα, the eigenvectors remain
constant. However,α shifts the eigenvalues, which can help
or hinder the convergence of Power Method-style algorithms
for estimating the eigenvectors.

E. Generalization to rectangular matrices

SCGP can be generalized to non-square and non-
symmetric matrices, a situation that arises in many problems.
For example, given a set ofM line hypotheses andN points,
we can construct anM ×N affinity matrix A whereAij is
some measure of the consistency between linei and pointj.
Our goal is to extracttwo indicator vectors: anM ×1 vector
for the lines, and anN × 1 vector for the points.

While A cannot be directly interpreted as the adjacency
matrix of a graph, we can still construct a graph that captures
the relationship between lines and points. Lines and points
have edges between them with weights according to the
elements ofA. But there are no edges between lines, and
no edges between points. We can write the adjacency matrix
for the resulting bipartite graph as:

P =

[
0 A

AT 0

]
(13)

SCGP can be performed exactly as before on this modified
matrix. The standard SCGP solution will yield a single(M +
N)×1 indicator vectorw, which can easily shown to be the
concatenation of the desiredM × 1 vectoru and theN × 1
indicator vectorv. SCGP on matrixP yields:

wT Pw

wT w
=

[uT vT ]

[
0 A

AT 0

][
u

v

]

[uT vT ]

[
u

v

] =
2uT Av

uT u + vT v

(14)
If we write A according to its Singular Value Decomposi-

tion (SVD), this expression becomes:

2uT Av

uT u + vT v
=

2uT USV vT

uT u + vT v
(15)

From this we can see that the expression is maximized by
settingu andv to be the dominant left and right eigenvectors
of A. This is notable; we can solve general SCGP problems
without constructing matrixP .

The dominant eigenpair ofA can be computed by using
a variation of the Power Method. The following procedure
can be easily derived: beginning with a randomu0, compute
vn+1 = AT un and, in turn,un+1 = Avn. The convergence
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rate is again determined by the ratio of the two largest
eigenvalues. The resulting vectors could correspond to either
a positive or negative eigenvalue.

V. A PPLICATIONS AND RESULTS

We present three different applications of SCGP. These
applications demonstrate not only how a variety of robotics
problems can be mapped onto the SCGP algorithm, but also
the quality of the results.

A. Outlier Rejection for Range-Only SLAM

We demonstrated in [12] a SLAM system operating with
range-only data on an Autonomous Underwater Vehicle
(AUV). With only range (andnot bearing) information to
landmark features, SLAM becomes quite difficult. Newman
explored the use of large-scale numerical optimizations over
the entire robot trajectory and feature state [13]; unfortu-
nately, their approach suffers from numerical stability prob-
lems. Kantor and Singh also discuss range-only SLAM in
[14], however, their algorithm requires reasonable priors on
feature locations.

Fig. 2. Odyssey Autonomous Underwater Vehicle. Using SCGP to reject
outliers from the vehicle’s range measurements to navigation beacons, we
were able to implement a reliable SLAM system.

As pointed out in both [12] and [13], outlier rejection
is critical in range-only SLAM. Given reliable data, the
problem becomes relatively tractable. But in the underwater
setting, explored by both of these papers, the noise in range
measurements can be profound. In this section, we will
elaborate on how SCGP was used, as well as present new
navigation results on a much longer and more difficult dataset
than we did in [12].

Range measurements to stationary beacons were collected
as the AUV maneuvered, but the range measurements were
corrupted by noise due to interference from the AUV’s
Synthetic Aperture Sonar (SAS). While range measurements
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Fig. 3. Outlier Rejection Results. The ranges to four stationary beacons are
plotted during the course of a mission. Due to extensive interference from the
vehicle’s synthetic aperture sonar, range measurements were unreliable. Use
of SCGP removed virtually all spurious data, without rejecting an excessive
number of inliers. Notably, the SCGP worked well even when data was very
sparse. No prior on the positions or ranges to the beacons was required.

were collected every few seconds for two beacons, measure-
ments for the other two beacons occurred much more rarely
due to interference.

Outlier rejection is typically performed by rejecting points
which differ too much from the prior. However, the goal of
this system was to localize the beacons, thus no prior was
available. The SCGP provided a means of identifying a set
of consistent samples, without the need for a prior.

For a set of N measurements, we form N hypotheses:
hypothesisi asserts that measurementi was an inlier. Re-
stricting ourselves to the 2D case, a single range measurement
constrains the location of the beacon to a circle around the
vehicle’s current position. Two range measurements form two
circles, and these circles might or might not intersect. Two
measurements are consistent if the circles do intersect, indi-
cating a possible solution for the beacon’s location (see Fig.
5). The vehicle’s true position is not actually available, so we
use the vehicle’s dead-reckoned position in the consistency
function.

In other words, the consistency function measures whether
it is possiblefor the two measurements to be simultaneously
true, without needing to actually determine what solution
(or solutions) that would imply. This boolean consistency
function is also quite weak; it is quite easy for outliers to
intersect with other measurements. However, the inliers are
better connected than the outliers, and so SCGP is able to
produce good results.

The filter can be operated in a causal manner, classifying
measurements as inliers/outliers in real time, by using a
sliding window including the most recent measurements.

The pairwise consistency test was able to incorporate
information about the vehicle’s motion to help reject outliers.
Not only did measurements have to be consistent with each
other (which, for an intersection test, requires little more than
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Fig. 4. SCGP-based Range-Only SLAM. The AUV’s dead-reckoned position is quite poor (left). In middle, a conventional Extended Kalman Filter (EKF),
with prior knowledge of beacon locations, serves as our baseline “ground truth”. The SCGP-based SLAM algorithm, using neither GPS nor prior information
on beacon locations, closely resembles the conventional EKF.

Fig. 5. Consistent and Inconsistent Range-Only Measurements. Left: Two
range measurements are consistent if they overlap (i.e., have a simultaneous
solution). If the measurements do not overlap (right), they are inconsistent.

that range measurements vary slowly), the change in range
had to be consistent with the motion of the vehicle. The filter
could reject “bunches” of outliers which a median filter might
accept. Multi-path measurements, in which the measured
range varies at some multiple of the vehicle’s speed, are also
reduced.

Once the inlier range measurements were isolated, im-
plementing a SLAM filter was relatively straightforward. A
Hough Transform-style algorithm was used to initialize new
features, after which a simple EKF incorporated additional
operations. The full details of this algorithm are described in
our earlier paper [12]. Note that only four range transpoders
were deployed for this experiment.

B. Line Fitting

Using the generalized rectangular case, SCGP can be used
to robustly fit points to a line. In this problem, we assume
we have a large number of points, some fraction of which
lie near a single line. Our goal is to discover the line.

A pairwise consistency function between points, in this
case, is not revealing: any two points forms a perfectly
valid line. Instead, our solution is to generate a number of
line hypotheses by randomly selecting points. We can then
compute the consistency of each line hypothesis with each

point, forming a rectangular affinity matrix. IfM is the
number of line hypotheses we consider, andN is the number
of points, our affinity matrix will beM×N . We note that, for
a given ratio of inliers to outliers, thatM will need to grow
asO(N2). The total runtime for SCGP will beO(MN).

RANSAC is similar in several ways; it randomly generates
line hypotheses and tests points against them. RANSAC
simply returns the line which was consistent with the greatest
number of points. Like SCGP, RANSAC has a complexity
of O(MN).

Rather than returning one of the randomly generated line
hypotheses, SCGP returns a set of points which are classified
as inliers. A least-squares line can then be fit to these points.
The result is significantly more robust and accurate than
RANSAC. Intuitively, every consistency test performed in
SCGP serves to rank the points, whereas in RANSAC, this
consistency information is discarded after considering each
line hypothesis.

Fig. 6 shows a set of 200 2D points, 100 of which are noisy
samples of an actual line. The remainder are uniformly dis-
tributed random points. Given the task of extracting the line,
we have found that SCGP performs better than RANSAC
for a given number of line hypotheses (and thus identical
asymptotic complexity.) This is attributable to the SCGP’s
greater ability to estimate the set of points belonging to the
line.

C. Data Association

Data association, determining which observations corre-
spond to the same physical features, is an essential com-
ponent of most navigation systems and a key problem in Si-
multaneous Localization and Mapping (SLAM). Recognizing
landmarks is a fundamental way of correcting accumulated
navigation error.
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RANSAC Slope 0.19 0.15
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SCGP Slope 0.08 0.07
Intercept 0.04 0.04

Fig. 6. Line Fitter Results. SCGP can be used to estimate lines in a method
similar to, but more stable than, RANSAC. Given a fixed number of line
hypotheses, SCGP consistently outperforms RANSAC with lower average
error and less variance. A typical run is plotted. Each run contained 200
points, half of which were inliers corrupted byσ = 0.1 noise; the remainder
were uniformly distributed noise. Both SCGP and RANSAC were limited
to 40 hypotheses.

Algorithms like Joint Compatibility, which perform expo-
nentially complex searches over all possible data associations,
can use an arbitrarily complex metric for evaluating a hypoth-
esis set. But while full searches require exponential time (in
the worst case), the SCGP can be computed in polynomial
time. Further, the performance of the SCGP is quite good
on data association problems, either providing a solution or
serving as a smoke test to reduce the number of hypotheses
which would be fed into a traditional search.

As a concrete example, consider a data association problem
on corner features. Corners are a convenient landmark for
navigation systems, since a data correspondence on corners
uniquely and completely specifies a rigid-body transforma-
tion.

Fig. 7. Example Data Association/Robot Localization Problem. A global
map (left) is composed of a number of corner features. A subset of
those features are reobserved (right). SCGP can be used to solve the
correspondence problem and localize the robot.

A typical data association problem is shown in Fig. 7. A

robot is attempting to determine its position in a previously
known map (with corners designated with letters), by match-
ing corners currently visible to it (designated by numbers.)
We can see that the correct data association solution is
d1/e2/f3/g4. Note that any one of these data associations is
sufficient to specify the rigid body transformation that aligns
the robot’s scan with the map. These four data associations
all result in identical rigid-body transforms.

In order to map this problem onto the SCGP, we create a
hypothesis for every possible data association. Note that the
figure contains both 90 degree and 270 degree corners, and
we do not form hypotheses for corners of different types.

Twenty hypotheses are possible; corners 1 and 4 can each
be matched to c, d, and g. Corners 2 and 3 can each be
matched to a, b, e, f, h, i, and j. For this example, we define
a boolean pairwise consistency function which is true if the
rigid-body transformations implied by the two hypotheses are
identical. In the20×20 adjacency matrix, twelve hypotheses
pairs are consistent; all other cells are zero. Six result from
the true correspondences: d1e2, d1f3, d1g4, e2f3, e2g4, and
f3g4. Three result from the laser scan partially matching the
left most vertical area (abc): a2b3, a2c4, and b3c4. Similarly,
three result from the partial match on the far right: g1h2, g1i3,
and h2i3.

c1 d1 g1 a2 b2 e2 f2 h2 i2 j2 a3 b3 e3 f3 h3 i3 j3 c4 d4 g4
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Fig. 8. Eigenvector elements for the data association problem in Fig. 7.
The top figure corresponds to the problem shown in Fig. 7; the correct
hypotheses d1, e2, f3, and g4 are given strong scores, with all other
hypotheses scoring zero. In the second diagram, corner 4 has been removed,
creating an ambiguity: the robot could either be in the middle or on the
right. Not only is the situation ambiguous, but both situations are equally-
well supported. The largest eigenvalue is repeated, and the corresponding
eigenvectors represent both solutions.

The SCGP solution to this data association problem is
shown in Fig. 8. The four correct hypotheses are strongly
amplified by the SCGP.

It is also interesting to consider the case when the data
association is, in fact, ambiguous. To see this, the same
experiment–with corner 4 deleted– was run again. The eigen-
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values in this case are also shown in Fig. 8. Without corner 4,
there are two possible locations for the robot. The eigenvec-
tors give these two solutions, and their eigenvalues are equal,
indicating that the solutions are equally well supported.

The runtime of the SCGP on data association, withM
features being mapped ontoN features, isO(M2N2), since
there areMN feature-correspondence hypotheses to con-
sider. The resulting affinity matrix isMN ×MN .

It is possible to introduce null hypotheses into SCGP,
though each null hypothesis adds a column and row to
the matrix. To prevent a cluster of null hypotheses from
forming a highly self-consistent set, null hypotheses should
be considered to be inconsistent with other null hypotheses.

VI. CONCLUSION

Single Cluster Graph Partitioning provides a useful method
for extracting a set of consistent hypotheses from noise.
In these problems, conventional k-way clustering algorithms
generally perform poorly.

SCGP is the result of maximizing a simple heuristic: the
average consistency of the inlier set. We showed how this
maximization is performed, both in the square and symmetric
case, and also extended this result to the general rectangular
case. We also showed how to minimize computational com-
plexity, and how to design a pairwise consistency metric for
maximum performance.

When applied to several contemporary robotics problems,
SCGP performs very well.

• In the context of range-only SLAM, SCGP is able to
correctly identify inlier range measurements, enabling
good mapping performance with a simple EKF.

• SCGP compares favorably to RANSAC, producing
lower error and lower variance estimates with the same
asymptotic computational complexity.

• SCGP is capable of estimating solutions to data associ-
ating data association problems in polynomial time.

This paper presented real-world outlier rejection results
using SCGP. While the synthetic results of SCGP on line
fitting and data association are promising, one area of future
work is to test SCGP on additional real-world datasets.
We also intend to implement speed-optimized versions of
SCGP and other contemporary algorithms in order to enable
quantitative comparisons of their runtime characteristics.
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