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A Shared Autonomy System for Precise and
Efficient Remote Underwater Manipulation
Amy Phung, Gideon Billings, Andrea F. Daniele, Matthew R. Walter, Richard Camilli

Abstract—Conventional underwater intervention operations
using robotic vehicles require expert teleoperators and limit
interaction with remote scientists. We present the SHared Auton-
omy for Remote Collaboration (SHARC) framework that enables
novice operators to cooperatively conduct underwater sampling
and manipulation tasks. With SHARC, operators can plan and
complete manipulation tasks using natural language or hand
gestures through a virtual reality (SHARC-VR) interface. The
interface provides remote operators with a contextual 3D scene
understanding that is updated according to bandwidth availabil-
ity. Evaluation of the SHARC framework through controlled
lab experiments demonstrates that SHARC-VR enables novice
operators to complete manipulation tasks in framerate-limited
conditions (i.e., 0.1–0.5 frames per second) faster than expert
pilots using a conventional topside controller. For both novice
and expert users, the SHARC-VR interface also increases the task
completion rate and improves sampling precision. The SHARC
framework is readily extensible to other hardware architectures,
including terrestrial and space systems.

Index Terms—Shared Autonomy, Virtual Reality, Underwater
Manipulation

I. INTRODUCTION

ROBOTIC systems for scientific exploration and interven-
tion in the deep ocean (beyond SCUBA diving depth) are

vital for improved understanding of natural environments and
effective management of regions altered by human activity [1].
However, inaccessibility remains a fundamental impediment to
these deep ocean operations [1, 2]. Technological innovations
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in marine robotics provide a path forward to substantively
improve the efficiency and geospatial precision of deep sub-
mergence operations [2], while also increasing societal en-
gagement and understanding of oceanographic processes [1].

Currently, dexterous sampling tasks at depth are performed
by tethered underwater remotely operated vehicles (ROVs)
equipped with robotic manipulator arms. ROV pilots directly
teleoperate these manipulators with a topside controller in a
shipborne control room using a high-bandwidth, low-latency
tether that supports the realtime streaming and display of
numerous video and telemetry data. However, teleoperation
has several limitations that sacrifice the effectiveness and
efficiency of the tasks being performed. First, the tether
significantly limits the ROV’s maneuverability and increases
the infrastructure requirements for operations [3]. Second, it
places significant cognitive load on the operator, who must
reason over both the high-level scientific objectives and low-
level manipulator control, while simultaneously interpreting
the diverse data streamed from the ROV. Third, operators
typically exercise one joint angle at a time in a “joint-by-
joint” teleoperation mode when using conventional control
interfaces [4, 5], which restricts dexterity, limits efficiency, and
can be error-prone. These problems are exacerbated when op-
erating under bandwidth-limited, high-latency conditions [6].
Despite these limitations, direct teleoperation is still the stan-
dard approach for robotic arm manipulation tasks such as
benthic sample collection and return with ROVs [2].

Unfortunately, access to ROVs for sampling remains pro-
hibitively expensive for many researchers since their operation
requires a surface support vessel (SSV) with a highly trained
operations crew. At the same time, SSV space constraints
limit the number of onboard participants. Reduced berthing for
scientific crew is a particular concern for the U.S. academic re-
search fleet [7]. Expanding shore-based access for remote sci-
entists and technicians to observe and control robotic sampling
processes can decrease the berthing requirements for technical
personnel and increase the number of scientists engaged in
the deployment, both onboard and remote, while reducing
barriers to participation (e.g., physical ability, experience, or
geographic location).

Recent advancements in marine intervention systems are
driven by a desire to extend conventional ship-based teleop-
eration of ROVs beyond the constraints of high-bandwidth
tethers. Offshore service companies are developing ships
equipped to deploy ROVs controlled from shore-based centers
via satellite communication links, while recent advancements
have demonstrated hybrid acoustic and optical communication
systems for tetherless ROV control [8, 9]. These technologies
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aim to significantly reduce the ship-based infrastructure nec-
essary for tether management, which in turn would enable
deployment from smaller vessels, reduce operational costs,
and streamline vehicle deployment and recovery. Furthermore,
in marine robotics, the nascent shift from single-vehicle op-
erations to multi-vehicle cooperative missions will require
shore-based operation centers and tetherless communication
modalities [10].

Shore-based operation of tetherless vehicles requires a com-
bination of satellite, acoustic, and optical-based communi-
cations, which can adversely impact operational robustness
and efficiency by introducing latency and reducing bandwidth.
For direct low-level teleoperation, operators typically require
less than half a second of latency (0.4 seconds) [11], and
their performance declines significantly with greater latency
(particularly beyond 2.6 seconds) [12, 13]. Conventional direct
teleoperation becomes infeasible under bandwidth limitations
or high latency [14], necessitating a different control method.
At extremely low bandwidths, the effects of latency are
diminished relative to the impact of bandwidth. For instance,
if a given bandwidth supports a maximum data update rate
of 0.1Hz, data can be delayed by up to 10 seconds, which
far outweighs the effect from latency due to satellite (e.g.,
<99ms with Starlink [15]), through-water optical (µs-ms), or
acoustic communications (e.g., 8 seconds round-trip acoustic
travel time at 6000m water depth). Consequently, developing
systems capable of operating across extremely low-bandwidth
connections will be crucial to unlocking the full potential
of future shore-based operations and tetherless multi-vehicle
collaboration.

Greater autonomy for marine intervention systems is a
viable solution to the challenges of limited or degraded com-
munication associated with tetherless and shore-based oper-
ations. Although methods for fully autonomous underwater
intervention are advancing, contextual awareness in unstruc-
tured environments remains insufficient for such systems to
operate reliably [16]. Supervisory control-based approaches,
which integrate low-level robot autonomy with human input
for high-level decision-making, are widely used to address
challenges with latency and bandwidth in a variety of applica-
tions ranging from telerobotic planetary exploration [6, 17] to
telesurgery [18, 19, 20]. For underwater infrastructure mainte-
nance applications, the DexROV project implemented a super-
visory control system that can autonomously avoid joint limits
and obstacles in the workspace, and enables semi-autonomous
control by remote users using an exoskeleton [21, 22]. The
DexROV’s shore-based interface incorporates prior models of
the workspace with a 3D scene reconstruction generated by
onboard processing of stereo camera imagery, which are also
transmitted over the satellite link [23, 24, 25, 26]. Recent
work has also explored learning-based approaches to infer
human intent in order to increase an autonomous system’s
robustness to bandwidth limitations during remote teleopera-
tion [27, 28, 29, 30]

While a system’s ability to maintain safe operations in low-
bandwidth environments is paramount, its usability among
a broad user base with minimal training is also important.
ROV pilots typically undergo extensive training to manage

the high cognitive load imposed by conventional teleoperation
interfaces. Pilot training has important ramifications for ROV
operating costs and staffing requirements. Ongoing research
aims to reduce the cognitive load placed on operators, which
could improve the accessibility of operator interfaces for both
expert and novice users alike. User studies comparing ex-
perimental virtual-reality (VR) interfaces to industry-standard
control methods reveal that VR reduces task completion times
while also reducing the cognitive load for operators [31, 32].
A recent study demonstrates that, even when the ROV control
method is left unchanged, a 3D VR interface increases pilots’
sense-of-presence over a conventional 2D visual interface and
reduces task completion time by more than 50% [33].

Similar to how interface improvements can reduce an op-
erator’s cognitive load and task completion times, relaxing
human proprioception and motor control requirements can fur-
ther reduce cognitive demand. Natural language and gesture-
based interfaces provide a succinct mechanism for high-level,
goal-directed control. If made sufficiently expressive, these
interfaces have the potential to increase task efficiency (i.e.,
speed and precision) by decoupling human operator dexterity
from manipulator control [34]. Natural language and gestures
are intuitive and thereby provide a means of command and
control that is accessible to a diverse user base with little prior
training.

Increasing robot autonomy can also improve a system’s
usability, especially among novices. Senft et al. [35] pro-
posed a task-level authoring approach, which enables novice
operators to control a semi-autonomous robot by specify-
ing actions rather than direct motions with an augmented
reality interface. Their user study results demonstrate that
this approach significantly reduces the operator workload,
improves usability, and reduces task completion times when
compared with the manipulator’s standard control interface.
Lawrance et al. [36] developed a system for controlling a semi-
autonomous underwater vehicle (sAUV), which incorporates
automated path planning, generates a sonar-based 3D scene
reconstruction, and estimates a user’s skill level to provide
variable assistance accordingly to better support novices.

Based on our research, we propose the SHared Autonomy
for Remote Collaboration (SHARC) framework [37], which
enables remote scientists to participate in shipboard opera-
tions via a VR or desktop interface across a low-bandwidth
connection. This framework was previously used in a field
demonstration to enable shore-based users without prior pilot-
ing experience to successfully collect seafloor samples across
a satellite connection [37]. In this paper, we present the
design, implementation, and evaluation of this framework. The
contributions of this paper can be summarized as follows:

1) We present the design and implementation of the
SHARC framework, which extends prior approaches to
supervisory control by engaging multiple simultaneous
shore-based users and integrating natural user interfaces,
automated subroutines, and a 3D scene reconstruction
into a VR-based display.

2) We demonstrate that SHARC enables users (regardless
of piloting experience) to perform comparably to ex-
perienced pilots using a conventional controller under
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Fig. 1. Key components within the SHARC Framework. Vehicle data (e.g.,
camera feeds and manipulator joint position feedback) is sent via satellite
communications from the field to the shore-side server that handles the
distribution of data to remote users. SHARC utilizes components of the ROV
autonomy framework described in Billings et al. [38].

full-bandwidth conditions (e.g., ship-side control across
a tether).

3) We demonstrate that SHARC out-performs the con-
ventional controller in low-bandwidth conditions (e.g.,
shore-side control without a tether) for both novice users
and trained pilots.

II. SHARC FRAMEWORK

The SHared Autonomy for Remote Collaboration (SHARC)
framework consists of four primary components: the autonomy
framework, the field server, the shore server, and the shore-
side user interface. Figure 1 provides an overview of key
components within this framework. The remainder of this
section describes each of these components in detail.

A. ROV Autonomy Framework

On the vehicle side, SHARC extends the autonomy frame-
work proposed by Billings et al. [38], which implements visual
processes for tool detection and scene reconstruction, and
exposes an API for the planning and execution of high-level
manipulation tasks (e.g., tool pick-up, Euclidean space end-
effector control). This autonomy framework is built on the
Robot Operating System (ROS1) and leverages the MoveIt
motion planning framework [39]. The implementation used in
SHARC significantly improves upon the original framework
by adding a PID controller on each manipulator joint, which
effectively compensates for the hydraulic manipulator’s hys-
teresis and control offsets reported by Billings et al. [38] with
the addition of a tuned integral term.

The underlying autonomy framework was originally de-
signed to support safe development, testing, and in-field de-
ployment of automation methods on tethered ROV-manipulator
systems via ship-side control [38]. SHARC’s addition of a
ship-to-shore data pipeline and end-user interface notably
extends the framework’s supervision and control capabilities
to shore-based users.

The autonomy framework’s vision system leverages known
geometric features and AprilTag [40] fiducials within the struc-
tured ROV tool-tray to track tools and re-configurable vehicle
components (e.g., door position and tool basket orientation),
which can be robustly detected even in visually degraded
conditions. However, computing a 3D reconstruction of the ex-
ternal working environment from stereo camera frames relies
on natural features, which are sensitive to lighting quality and
turbidity, as demonstrated by Billings et al. [38]. By providing
users with an interactive 3D visualization of the natural scene
reconstruction with projections of the known vehicle and
object models, SHARC effectively leverages human perception
to recognize gaps in the scene reconstruction. With SHARC,
users can still safely plan and execute manipulation tasks in
visually degraded conditions by relying on strong geometric
cues from the structured workspace.

B. User Interface
SHARC’s user interface design aims to reduce the band-

width required for operation by enabling safe and effective
operator control with low data update rates. While direct
teleoperation with conventional controllers typically requires a
data update rate exceeding 10Hz, SHARC remains functional
with update rates that are two orders-of-magnitude lower
by leveraging the aforementioned autonomy framework to
adopt a supervisory control approach, which is widely used
in communication-limited applications [6, 17, 20]. Similar
to Walker et al. [41], SHARC users preview manipulator
trajectories by controlling a virtual surrogate of the robot
(Figure 2). SHARC renders the robot arm’s planned trajectory
and intended actions prior to execution within the context of its
surrounding environment (e.g., a 3D workspace reconstruction
along with the location and label of detected tools), thereby
making its behavior more predictable than conventional inter-
faces such as the topside controller. This provides users with
a responsive interface, even when data updates are infrequent.
Distributing control between the operator and the robot also
enables users to focus on high-level scene understanding and
scientific objectives, while offloading low-level control tasks to
the robot, which should reduce operators’ cognitive load and
lower the amount of training required. This, in turn, enables
safe operations by novice users and trained pilots alike.

Inspired by the ways in which scientists and pilots com-
municate, SHARC enables people to use natural language
speech and hand gestures to convey high-level objectives to
the robot. Complex commands that would be time-consuming
and difficult to execute with conventional controllers can be
succinctly communicated with language. Within a matter of
seconds, users can specify a task that then takes the robot
several minutes to execute. In addition to reducing the cogni-
tive load required of the operator, the intuitive nature of natural
language speech and gestures minimizes the training required
for operation [34, 42] and makes SHARC accessible to a
diverse population of users. These natural input modalities also
have the benefit of remaining functional during intermittent,
low-bandwidth, and high-latency communication [34], thereby
reducing telemetry requirements and enabling participation
from remote users with only rudimentary Internet access.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2024.3431830

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4

Fig. 2. SHARC interfaces and example workflow for scientific sampling. With SHARC, multiple tasks can be planned in parallel by different users via
different interfaces, with execution occurring in series as tasks are completed. The (A, B) SHARC-VR and (D) SHARC-desktop interfaces enabled (C) remote
scientists to direct ROV operations during sea trials at 1000m ocean depth in September 2021 [37]. The SHARC-VR interface was revised based on user
experiences during the sea trials. (E) This revised interface was used during the user study described in Section III.

SHARC’s VR and desktop interfaces display a model of
the manipulator’s current pose with a 3D stereo reconstruc-
tion of the scene and 2D camera feeds in the background.
Through these interfaces, users can collaboratively identify
target sample sites based on real-time data while deferring
low-level control of the manipulator to the automated system.
To support a wide range of users without additional hardware,
we developed a desktop interface and made it cross-compatible
with commonly used operating systems (e.g., Windows, ma-
cOS, and GNU/Linux). We also developed a VR interface
to complement the desktop interface, as an immersive 3D
stereoscopic view of the workspace is known to enhance
users’ contextual awareness and overall scene understanding
compared to a 2D monoscopic display [33]. Similar to the
interface used by the DexROV project [23, 25], SHARC
renders prior models (e.g., tools, the manipulator, and the
vehicle) in context of the 3D reconstruction generated by the
stereo camera. These models reduce the bandwidth required
to communicate the position of structured elements within the
workspace. Figure 2 (A, B, D) illustrates the interfaces used
during our field demonstration [37].

Informed by our experiences with SHARC’s VR interface
during these field operations, we sought to improve the in-
terface’s usability for novices. Incorporating passthrough aug-

mented reality (AR) provides users with continual awareness
of their physical environment, which mitigates inadvertent col-
lisions with objects in their personal space. Additionally, users
encountered difficulties in recalling controller key mappings
with the original interface, which prompted us to transition
to hand tracking and gesture recognition for enhanced con-
trol. Alignment issues during tool pick-up and return were
also prevalent with the original interface. Automating these
structured tasks helped improve efficiency while reducing the
frequency of errors. This revised interface (Figure 2E) was
employed during user testing. Figure 2 illustrates example
workflows using SHARC.

C. Data Pipeline

SHARC’s architecture is designed to facilitate real-time
collaboration among remote users and support multiple si-
multaneous operations. This can increase operations tempo by
parallelizing sampling tasks and data analysis with different
instrumentation, as illustrated in Figure 2. For example, during
our field demonstration [37], one scientist operated the in-
situ X-Ray Fluorescence (XRF) instrument and analyzed its
data in real-time while another scientist (located in a dif-
ferent geographic region) cooperatively planned manipulator
trajectories to potential push core sites. By involving shore-
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based scientists, SHARC enables operators to take advantage
of resources that are difficult for ship-based operators to access
over a ship’s satellite Internet connection, such as cloud-based
speech and natural language processing services.

SHARC implements an efficient, bi-directional data trans-
mission pipeline between the vehicle and the remotely con-
nected users. The processing between the two sides of this
network is segregated into two servers, the “field” server and
the “shore” server, which are connected, generally via satellite,
through an IP network. The field server interfaces directly
with the vehicle’s autonomy framework through a software
bridge to its ROS system and encodes data messages with
the high-performance messaging library, ZeroMQ (ZMQ), for
transmission to the shore server.

ZMQ is used to handle field-to-shore communications rather
than ROS since it is a transport-only middleware that leaves
data marshalling to the user, which enables us to employ a
better compression and representation format for the mes-
sages. Unlike ROS, ZMQ also allows for the creation of
hierarchical network architectures. In this configuration, nodes
in the network can only receive a subset of the messages
available to their parent nodes. This allows us to integrate a
permissions layer that prevents shore-based users from directly
accessing the robot’s internal communications, which would
have serious security and safety implications. To improve the
data transmission speed, the UDP communication protocol is
used for relaying vehicle data. Meanwhile, we use TCP for
relaying user inputs due to its reliability.

SHARC uses ZMQ for message passing between servers
and client devices, and distributes bandwidth among indepen-
dent data streams. This architecture ensures that smaller data
packets (e.g., joint angle feedback) are not disproportionately
delayed while waiting for the complete transmission of larger
packets (e.g., camera footage). Field operators are also given
control over throttling or pausing any data streams between
the field and shore servers to limit bandwidth usage.

The shore server implements a star topology network to
the connected user clients, enabling efficient scaling of the
network to any number of users without increasing processing
requirements on the field-side compute. It also implements
an authentication system to handle incoming user requests.
Any number of clients can be connected as “observers”
to the shore server, which enables users from the general
public to access live data streams without control privileges.
Meanwhile, authenticated members of the operations team can
delegate control authority, operate payload instruments, and
generate task-level plans. One member of the operations team
is designated as the current “science operator,” who is granted
control authority for issuing natural language commands, spec-
ifying end-effector goals, and executing task-level plans. This
designation prevents conflicting commands while maintaining
clarity of who holds current control, and can be seamlessly
handed-off between members of the operations team. Figure 2
illustrates this control hand-off process. Specific details of
the software architecture for the field and shore servers are
provided in Appendix B.

The shore server also implements a natural language in-
terface that translates recorded speech into commands for the

TABLE I
TEST GROUP SIZES

Test group # of
participants

ROV pilots using topside controller 6
ROV pilots using SHARC-VR 5
ROV pilots TOTAL 6

Novices using topside controller 8
Novices using SHARC-VR 9
Novices TOTAL 17

various components of the system. For example, the designated
science operator can issue the verbal command “pick up the
push core on the left.” An on-device speech-to-text module
is paired with an instance of the Distributed Correspondence
Graph (DCG) probabilistic language grounding model [43, 44]
to infer the corresponding structured language command.
When parsing natural language commands, SHARC considers
the current 3D scene understanding to distinguish tools based
on their relative positions and the tool types. These commands
are then sent to the field server for actuation. It is worth noting
that the field server does not distinguish between speech-issued
commands, hand gestures in VR, or mouse clicks on a UI
button. The end-user interface and the shore server converts
raw inputs into commands that the field server can interpret
and execute.

III. USER STUDY DESIGN

To quantitatively compare the SHARC framework and the
conventional topside controller’s suitability for tetherless and
shore-based operations, we conducted a user study that focused
on performance metrics under low-bandwidth conditions with
expert as well as novice participants. Participants completed
representative manipulation tasks using the SHARC-VR inter-
face and the topside controller in a range of simulated band-
width conditions. The study was conducted using a laboratory-
based in-air testbed equipped with a robotic manipulator arm
that is identical to the system used on the Nereid Under Ice
(NUI) HROV (Hybrid ROV). During testing, we measured the
task completion time, success rate, precision, and accuracy to
quantify a participant’s performance with each interface. This
section outlines the study’s design and procedures, with the
overall results presented in Section IV.

A. Participants

Participants in the user study included ROV pilots with
extensive experience operating underwater manipulators, and
novice users without any prior experience. A subset of par-
ticipants used both the SHARC-VR and topside controller
interfaces while a second subset used only one of the two
interfaces, depending on their availability. All participants
were employees at the Woods Hole Oceanographic Institution
(WHOI) and were recruited as volunteers over email and
selected on a first-come first-serve basis. Table I provides the
number of participants who operated each interface.
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Fig. 3. The user study testbed for (A) the block retrieval task and (B) the
push core sampling task. (C) The testbed has a hydraulic manipulator and is
equipped with a basket for tools and samples. The manipulator, camera, tool
basket, and workspace position on the testbed (colored) closely resemble the
layout of the physical vehicle (displayed in monochrome, for reference)

B. Experimental Setup & Testing Procedure

The timed trials were performed using an in-air testbed
setup with a fixed-base mounted seven degree-of-freedom
hydraulic manipulator and complementary topside controller
(Kraft TeleRobotics; Overland Park, KS) [38], which is identi-
cal to the hardware used on the NUI HROV operated by WHOI
and used for our field demonstration [37]. The workspace
consisted of a sandbox that approximates the reachable area of
the manipulator mounted on the NUI vehicle [45]. Visualized
in Figure 3, the testbed includes cameras and a tool basket with
a push core, each positioned to mimic their placement onboard
the NUI vehicle. Users were presented with these four camera
feeds while using both interfaces. Following the approach of
Billings et al. [38], AprilTags were affixed to the tools and
tool basket for accurate camera-based localization. The system
did not rely on fiducials in the environment outside the ROV
tool-tray area, consistent with how it would be deployed in the
real world. During testing, the field and shore server processes
were run on the same computer with artificial software-limited
data update rates to simulate particular bandwidth conditions.
A second computer on the same network was used to run the
SHARC-VR interface.

As a proxy for an underwater imaging system (e.g., stereo
camera [46], laser scanner [47], or imaging sonar [48]), an
Xbox One Kinect (Microsoft; Redmond, WA) was used to
generate the 3D workspace reconstruction during the user
study. The Kinect’s workspace reconstruction is comparable
to an underwater stereo imaging system in good lighting
conditions. For a viewing range of 3 m, the metric pixel
resolution for our underwater stereo system is 1.7 mm with
a depth resolution of ∼3 cm [38], and the Kinect’s metric
pixel resolution is ∼4 mm per pixel with a depth resolution
of ∼3 cm at the same range. While these values represent
the theoretical limits of each sensor, the resolution of the
reconstruction generated by both sensors tends to be lower
in practice.

Participants completed a 15 minute tutorial before starting
trials with the SHARC-VR interface. Before trials with the
topside controller, novices completed a 6 minute tutorial
followed by a 25 minute practice session with direct line-of-
sight to the manipulator, while pilots were given a 10 minute
“warm-up” period instead of a tutorial.

The manipulator testbed was located in an area separate

from the participants for safety. During the initial topside
controller training, participants stood in a designated area
outside of the manipulator workspace with a direct line-of-
sight to the physical arm. During testing, participants operated
the arm from a separate room using either the VR or topside
controller interfaces while an evaluator observed the physical
arm from the training area. During trials using the SHARC-
VR interface, the evaluator monitored the participant’s headset
view and the automated system’s planned arm trajectories.
The evaluator stopped the trial if the manipulator reached
an unsafe configuration, an irrecoverable state was reached
(e.g., dropping a tool outside the workspace), or the trial
time exceeded 10 minutes. Each timed trial was labeled
as “complete” when samples were successfully collected,
“failed” when irrecoverable states were reached, “timed out”
for incomplete attempts, or “crashed” for unsafe manipulator
configurations.

The trials consisted of two different tasks: (1) picking
up a wooden block and placing it in a basket, which is
representative of a low-precision task (e.g., collecting rock
samples); and (2) using a push core to punch a hole in a
printed “bullseye” target and stowing the tool back in the
tool-tray, which is representative of a higher precision task
(e.g., sampling a heterogeneous microbial mat). These tasks
were repeated with camera feeds and pointclouds updated at
different frames-per-second (FPS) to simulate the effects of
bandwidth constraints of different orders of magnitude. The
block pick-up task was tested at 10FPS, 1.5FPS, 0.5FPS,
0.2FPS, and 0.1FPS. The push core task was tested at 10FPS,
0.5FPS, and 0.1FPS. In order to measure sampling precision,
we recorded the distance between the center of the push core
punch mark on the paper target and the printed “bullseye” for
each trial.

IV. USER STUDY RESULTS

In contrast to conventional interfaces, SHARC enables users
to operate with performance benchmarks (i.e., precision, ac-
curacy, task time, and task success rate) comparable to that of
trained pilots, regardless of their prior experience, even when
faced with bandwidth limitations. We define the Task Success
Rate at a given data framerate (FPS) as RFPS = # successes

# trials .
The Task Success Rates while using SHARC-VR were signif-
icantly higher than those obtained using the topside controller
across nearly all tested framerates (Figure 4). This increase is
most pronounced at low framerates—at 0.1FPS, the success
rate among pilots and novices were, respectively, 57% and
278% higher with SHARC than with the conventional topside
controller. These results suggest that SHARC increases the
probability of task success in operational settings, thereby
minimizing time-consuming failures that can damage the ve-
hicle platform, tools, or sensitive environments. Catastrophic
failures that compromise platform survivability can jeopardize
entire science campaigns, and thus SHARC may increase
operations tempo while reducing risk.

It is notable that one pilot failed the first block pick-up trial
with the topside controller, but succeeded in the final one,
demonstrating that even trained pilots risk failure when not
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Fig. 4. Task Success Rates RFPS. Task rate breakdown (A) among test groups
and (B) expressed across framerates. Across most framerates, both trained
pilots and novices had a higher Task Success Rate with SHARC-VR than
with the topside controller.

fully familiar with a conventional controller’s configuration
settings. It is also worth noting that on average, trained
pilots exhibited a higher success rate than novices with both
interfaces, which indicates that operator experience still affects
operational robustness with either interface.

Improved success rates with the SHARC-VR interface can
be partially attributed to the integration of automated subrou-
tines (e.g., tool pick-up and return). While 71% of participants
(seven novices and three pilots) failed at the push core task
during the pick-up or return in at least one of the trials with
the topside controller, none of the participants failed at the
push core task with the SHARC-VR interface. It is also worth
noting that, with the topside controller, 36% of participants
(three novices and two pilots) did not return the tool securely
(i.e., the tool was not completely contained in the quiver at the
end of the episode) in at least one of the trials. Although we
still counted these instances as successful task completions,
these improper returns could potentially lead to lost samples
during transit in real-world field missions.

The gesture-based controls also proved to be less error-
prone than keybinding-based input mechanisms (e.g., topside
controller and handheld VR controllers). Although the con-
ventional topside controller interface had buttons to “lock”
the gripper in place to make it easier to hold an object after it
has been grasped, most novices did not use the feature. One
novice who attempted to use this feature confused the keybind-
ings and accidentally dropped the tool outside the workspace
shortly after taking it out of the quiver. Controller-based input
also proved to be difficult for users in the original SHARC-
VR interface, which uses handheld VR controllers. When
using these controllers, users often forgot the keybindings and
miskeyed commands during development testing. Meanwhile,
during our user study with the gesture-based SHARC-VR
interface, none of the users failed at a task due as a result
of confusing the gestures. Although one error was caused
by a user accidentally clicking the tool-pickup button when
attempting to return the tool, this incident is more likely
indicative of a visual interface design flaw rather than an issue

with the gesture-based input. It is also worth noting that while
this error caused the task to take longer, it did not result in an
unrecoverable state (e.g., dropping the tool) like the topside
controller did.

The frequency of crashes with the respective interfaces
indicates that the 3D reconstruction and prior model rendering
in the SHARC-VR interface improved users’ spatial awareness
over the 2D camera-based interface with the topside controller.
Although 64% of participants (six novices and three pilots)
crashed the arm with the topside controller, only one user
crashed the arm with the SHARC-VR interface. This crash
occurred early in testing, when the user was likely still
becoming familiar with the interface. The other two failures
with the SHARC-VR interface occurred when two novice
users dropped the block outside the crate. In both cases,
the users dropped the block on the edge of the crate, and
the block bounced out. In contrast, five users (including two
pilots) dropped the block outside the crate with the topside
controller. Although further improvements could be made to
the SHARC-VR interface to additionally improve the users’
spatial awareness, these results demonstrate a significant im-
provement over the 2D camera-based interface typically used
during ROV operations.

Figures 5A and 5B display the recorded Task Completion
Times Ti,FPS for block-pickup and push core trials across
framerates. Figure 5C shows the Expected Task Times E[TFPS]
across framerates, computed as the average recorded Task
Completion Time T̄FPS divided by the Task Success Rate

E[TFPS] =
T̄FPS

RFPS
, where T̄FPS =

1

nFPS

nFPS∑
i=1

Ti,FPS.

Mathematically, this considers each trial as an independent
event with a probability RFPS of success, which implicitly
assumes participants can retry failed tasks until successful.
In Figure 5, we fit a power curve to the topside controller
completion times, which increase exponentially with decreas-
ing framerates. For SHARC-VR, we fit a linear trend to the
completion times because the times remain relatively constant
across framerates.

For statistical analysis, we consider results beyond two
standard deviations (2σ, 95% CI) to be statistically significant.
Given that our study involved 23 total participants, each
participant represents roughly 4% of the total, and thus a 95%
CI is the upper limit of what we can reasonably infer from
our dataset.

At 10FPS, there was no statistically significant difference
(95% CI) between participants’ expected time with both inter-
faces. At 0.5FPS or lower, the expected times for both pilots
and novices were lower with SHARC-VR than with the top-
side controller, and this difference increased as the framerate
decreased. At 0.1FPS, the expected time was 2× faster for
pilots with SHARC-VR than with the topside controller and
7.6× faster for novices. In operational settings, these observed
differences would likely be magnified since additional time
would be needed to recover from failures, which occurred
more frequently in trials with the topside controller than with
SHARC-VR. Across all framerates, there is no statistically
significant difference (95% CI) between the expected time for
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Fig. 5. Plots of Task Completion Times, Ti,FPS, for the (A) block pick-up
and (B) push core tasks as well as (C) the Expected Task Times, E[TFPS]. A
power and linear trend are fitted to the topside controller and SHARC-VR data,
respectively. The 2σ distribution of points at each framerate is shaded in C.
At lower framerates, pilots and novices complete both the block pick-up and
push core tasks in less time with SHARC-VR than with the topside controller.
This difference is more pronounced among the Expected Task Times, which
factors in the Task Success Rate.

pilots and novices when using SHARC-VR, and the variance
in times with SHARC-VR is less than that of the topside
controller for both groups.

All participants operated the arm in smooth continuous mo-
tions when using the topside controller in high-bandwidth con-
ditions (i.e., 10FPS). At 1.5FPS, some participants switched
to an incremental positioning approach, where they made a
small movement and then waited for a data update to verify
the arm’s position before proceeding further. At lower framer-
ates, all users adopted the incremental positioning approach.
Naturally, as the framerate decreased, users spent more time
waiting for data updates between movements, which in turn
increased task completion times. Meanwhile, the SHARC-
VR interface adopts a plan-then-execute approach. Although
this approach is similar to incremental positioning, larger arm
motions can be safely achieved between each data update due
to the automated trajectory planning and manipulator control
processes. This kept the SHARC-VR task completion times
low, even in low-framerate settings. Meanwhile, large arm
motions with the topside controller in low-framerate conditions
were the primary cause of crashes.

In order to more closely examine the learning among pilots
and novices during testing, we also compute the Expected Task
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Fig. 6. Expected Task Times for the block pick-up task plotted by trial
number (E[Ttrial]). Initial and final trials are conducted at 10FPS to control
for framerate. SHARC-VR times exhibit a slight negative correlation with
trial number independent of framerate, while topside controller times appear
to be framerate dependent.

Time for the block pick-up task based on the trial number
instead of framerate, which we define as E[Ttrial]. Figure 6
presents this analysis. Both novices and pilots using SHARC-
VR exhibited small but consistent speed improvements with
each successive trial regardless of framerate, indicating that
Expected Task Times are more strongly correlated with learn-
ing than framerate when using the SHARC-VR interface.
In contrast, Expected Task Times for the topside controller
interface increased exponentially as framerate decreased, with
this effect dominating any improvement achieved through
learning.

TABLE II
EXPECTED TASK TIME IMPROVEMENT METRICS

Initial
Time (s)

Final
Time (s)

Absolute
Change (s)

Relative
Change

Pilot topside controller 195.0 72.7 122.3 63%
Pilot SHARC-VR 183.8 107.4 76.4 42%

Novice topside controller 244.2 129.3 114.9 47%
Novice SHARC-VR 154.7 118.8 35.9 23%

Table II reports the differences between the expected times
of the first block pick-up trial (E[T1]) and the last trial (E[T6]).
During the initial trial at 10FPS, novices using SHARC-VR
exhibited the fastest Expected Task Time. However, during the
final trial at 10FPS (∼30 minutes into testing), pilots using
the topside controller were the fastest, which is unsurprising
given their familiarity with conventional manipulation systems.
As the data illustrates, the differences between the Expected
Task Times for the initial (E[1]) and final (E[6]) block pick-up
trials at 10FPS are greater when using the topside controller
than when using SHARC-VR for both pilots and novices. This
implies that the topside controller has an inherently steeper
learning curve than SHARC-VR, and that operator perfor-
mance is highly dependent on familiarity with the topside
configuration (e.g., camera views, workspace layout, controller
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TABLE III
ENSEMBLE ACCURACY AND PRECISION OF PUSH CORE PLACEMENT

↓ Accuracy (cm) ↓ Precision (cm)

Pilot topside controller 2.3 7.0
Pilot SHARC-VR 1.7 4.9

Novice topside controller 2.5 6.8
Novice SHARC-VR 2.8 3.3

settings, and manipulator arm response).
To quantify the participants’ accuracy and precision with

the two interfaces, the push core locations were recorded
relative to the center of a target. Figure 7 illustrates this data,
while Table III presents the average accuracy and precision
for each group. As the data indicates, pilots using SHARC-
VR exhibited the highest accuracy across all test groups,
and the VR interface increased precision for both pilots and
novices. Novices using SHARC-VR had the best precision, but
the worst accuracy of all test groups. On average, using the
VR interface instead of the topside controller decreased the
variance in the participants’ placement positions by ∼30% for
pilots and ∼52% for novices. Pilots and novices using the
topside controller had comparable accuracy and precision.

These results provide additional evidence that the 3D re-
construction and prior model rendering in the SHARC-VR
interface improves users’ spatial awareness compared to the
2D camera-based interface. In SHARC-VR, users viewed their
sampling plan from multiple perspectives in the context of
the 3D reconstruction before execution. Consequently, the
accuracy with SHARC-VR interface is likely dependent on
the 3D reconstruction accuracy. During the user study, objects
in the reconstruction deviated as much as 3 cm from their
actual position due to the Kinect’s limitations. 50% of users
(two novices and all five pilots) attempted to account for this
discrepancy by cross-referencing the push core position with
the camera, while the remainder relied exclusively on the 3D
reconstruction.

Moreover, the automated tool-pickup process likely con-

tributed to SHARC-VR’s improved performance. With the
topside controller, some users encountered challenges in align-
ing the tool with the gripper, which resulted in less precise
sampling and tool return maneuvers. Notably, the improper
tool returns discussed earlier were caused by misaligned grasps
during pickup. In another case, one user returned the tool to
the basket instead of the quiver since the tool’s awkward angle
within the gripper prevented proper alignment with the quiver.
During the push core sampling task, two users missed the tar-
get entirely due to the misaligned grasp (for the dataset, these
trials were still counted as successful task completions. These
push core placements were estimated based on a top-down
photo of the sandbox). In contrast, the auto-pickup subroutine
integrated into SHARC-VR facilitated more consistent grasps,
and all users were able to place the push core within target
and return the tool successfully across the range of tested
framerates with SHARC.

V. DISCUSSION

As our experimental results indicate, SHARC enables
novice users to match the performance of trained pilots
who use a conventional controller in tethered high-bandwidth
conditions, while improving operational efficiency and robust-
ness in low-bandwidth conditions for both pilot and novice
users. The SHARC-VR interface renders prior models in the
context of the current 3D reconstruction, which improved
users’ spatial awareness of the workspace and reduced the
number of crashes, particularly in low-bandwidth conditions.
The automated tool pickup and return processes improved tool
grasps, which consequently improved task precision during
push core sampling and tool return. The gesture-based input
also improved usability among users, and reduced the fre-
quency of miskeyed commands in comparison to the original
controller-based SHARC-VR interface and topside controller.
These results highlight SHARC’s utility in enabling delicate
operations in unstructured environments under bandwidth-
limited conditions, which may be extensible to other sensitive
domains where dexterity is required (e.g., nuclear decom-
missioning [49], deep space operations [50], and unexploded
ordnance/disposed military munition remediation [51]).

SHARC currently supports operations within semi-static en-
vironments, where dynamic changes in the scene are assumed
to progress slowly relative to the data update delay induced
by bandwidth and latency. Satellite-based communications
with Starlink currently transmit at 8–25Mb/s, with a <99 ms
latency for marine applications [15]. Meanwhile, existing
commercial through-water optical modems can transmit up to
10Mb/s with µs-ms latency [52], and the median mobile Inter-
net worldwide transmits 11.3Mb/s with a 27ms latency [53].
With an update packet size of 265 kb or less, which should
be sufficient for robotic manipulation with framerate-limited
feedback [38], the total data update delay from a tetherless
robot to shore-side users should be on the order of a couple
of seconds (for communications across a through-water optical
modem and satellite, 8Mb/s translates to an update rate of >10
FPS, and the combined latency adds up to <2 s). This should
be sufficient to support SHARC-based operations, given that
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participants using SHARC achieved good performance on
representative sampling tasks with data update delays up to
10 seconds (10 seconds is the maximum delay with a 0.1FPS
update rate).

Meanwhile, lower bandwidth acoustic modems can transmit
at 5.3 kb/s (∼0.02 FPS) [54] with ∼8 second latency at full
ocean depth. This translates to a total data update delay of up
to a minute, which requires a semi-static environment. Future
work could relax this semi-static scene assumption and enable
operations across acoustic communications by incorporating
dynamic replanning methods [55, 56, 57] to identify changes
to the scene and adapt the reconstruction or manipulation plan
as necessary, without human intervention.

SHARC uses the stereo camera setup described in Billings
et al. [38] to perceive the environment, which is sensitive to
lighting quality and turbidity. In its current form, SHARC
leverages human perception to recognize gaps in coverage due
to poor visibility conditions and to then adapt the sampling
plan accordingly. Ongoing research directions include multi-
sensor fusion [58] (e.g., optical and acoustic imaging) to
reduce errors and uncertainty in scene reconstruction, nat-
ural object tracking for closed-loop visual servoing [59],
and semantic mapping supported by natural language queues
provided by the human operators [60]. These capabilities will
build on the complementary strengths of human perception and
contextual awareness with machine processing and control to
enable greater automation of tasks while lowering operational
risks within unstructured environments despite low-visibility
conditions.

SHARC is platform-independent and can be readily inte-
grated into other underwater systems equipped with at least
one robotic manipulator, a workspace imaging sensor, and
a data link to one or more operators. SHARC’s current
implementation supports single-manipulator platforms, but fu-
ture work could extend the framework to multi-manipulator
systems [61] distributed across one or more vehicles with more
than one concurrent operator [62]. Coordinated manipulation
could enable vehicles to manipulate objects too large or too
heavy for one manipulator to handle alone [63, 64], complete
tasks that require higher dexterity or redundant degrees-of-
freedom [64], and operate more efficiently by parallelizing
tasks. For a single operator, a dual manipulator setup can
potentially reduce cognitive load since human operators are
intuitively familiar with bi-manual control [64].

VI. CONCLUSION

Currently, deep-ocean exploration requires costly, highly
specialized infrastructure, and limited crew berthing on ships
restricts the number of onboard participants during ROV
field operations. This presents multiple barriers to access for
those who may lack the resources, time, or physical ability
required for at-sea participation in oceanographic research.
In this paper, we present the design and evaluation of the
SHARC framework, which extends prior supervisory con-
trol frameworks by integrating natural user interfaces (e.g.,
language and hand gestures), VR, and automated processes
to enable collaborative operations by multiple simultaneous

remote users. As our field demonstration [37] and user study
results indicate, SHARC enables shore-side novice users to
conduct manipulator operations across a bandwidth-limited
satellite connection using only a basic Internet connection
and consumer-grade hardware, which provides a promising
avenue for increasing access to deep-sea research. Future work
could improve operations with SHARC by further reducing the
bandwidth requirements to enable operations across acoustic
communications, incorporating multi-sensor fusion to enable
operations in low-visibility conditions, and extending SHARC
to multi-manipulator systems for bi-manual control.
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APPENDIX

A. User Interface

SHARC’s end-user interfaces (Figure 8) were created with
Unity (Unity Technologies; San Francisco, CA) for nontech-
nical end-users. Table IV lists the features of these interfaces.
The desktop interface was built using the Runtime Editor Unity
package [65] and supports cross-platform operation, which
was tested on GNU/Linux, macOS, and Windows machines.
The VR interface only supports Windows and was developed
and tested with an Oculus Quest 2 (Meta; Menlo Park, CA).
No software development environment was needed for users
to operate either of these interfaces. In Unity, the Oculus
Integration package with the Interaction SDK was used to
interface with the VR headset, enable the AR/passthrough
mode, and implement hand tracking and gesture recognition.
Implemented gestures are listed in Table V. The reachable
workspace visualization volume was computed based on an
approximation of the arm’s actual reach. Since the desired
end-effector orientation changes the reachable workspace, the
arm’s reachable volume was computed with the gripper facing
directly downwards (this orientation is typically used to collect
samples and pick up tools). The interface is provided with
the geometric tool and manipulator models in advance, and
renders them in context of the 3D reconstruction given tool
pose updates and joint angle feedback. The interfaces also
display the live video feeds from the cameras. Users can
employ these interfaces to send recordings of natural language
speech, tool pickup/return requests, pose requests, and gripper
open/close requests to the shore server.

B. Field and Shore Servers

An overview of SHARC’s back-end implementation is il-
lustrated in Figure 9. The shore server runs a user authen-
tication script and a data management script that use the
high-performance messaging library ZeroMQ (ZMQ) [66] to
receive end-user input and distribute data from the field server
to all online end-user interfaces. On the shore server, the
authentication script checks each incoming request from users
(e.g., natural language commands, and tool, pose, and gripper
requests) against known credentials. This script forwards plan-
ning preview requests from all authenticated users to the field
server, but manipulator movement requests are only forwarded
if they come from the current designated science operator.

TABLE IV
SHARC INTERFACE FEATURES

Feature Desktop
VR

(Field
Demo)

VR
(User
Study)

Live Data Visualizations
1) 3D workspace reconstruction ✓ ✓
2) Live video feeds ✓ ✓ ✓
3) Tool detection ✓ ✓ ✓
4) Robot trajectory visualization ✓ ✓ ✓
5) Manipulator position feedback ✓ ✓ ✓
6) Inbound data monitor ✓ ✓

End-User Request Capabilities
7) Speech interface ✓
8) Automated tool pickup ✓ ✓ ✓
9) Automated tool return ✓
10) Manipulator pose request ✓ ✓ ✓
11) Gripper control ✓ ✓ ✓

Other Interface Features
12) Reachable workspace visualization ✓ ✓
13) Hand tracking ✓
14) Gesture-based controls ✓
15) AR/passthrough mode ✓

TABLE V
SHARC INTERFACE GESTURE-BASED CONTROLS

Gesture Action
Point palm Move cursor for UI interactions
Point palm & Pinch Click UI buttons
Pinch & drag Move end-effector cursor
Thumbs-up Confirm request to move arm
Open palm upwards Open UI menu
Closed fist Close UI menu

The field server runs a ROS/ZMQ Bridge node, which uses
ROS1 to exchange data with the vehicle and the various com-
ponents of the ROV autonomy framework (e.g., the trajectory
planner). This node uses ZMQ to exchange data across a
satellite connection to the shore server. To reduce bandwidth
usage and delay on the satellite communication link between
the field and shore servers, we convert ROS messages to
Concise Binary Object Representation (CBOR) objects [67]
using the cbor2 Python library [68].

In our implementation during the field trials, the field server
and ROV autonomy nodes were run on a computer onboard
the ship. However, this is not a strict requirement for SHARC,
as these processes can also be run onboard a vehicle computer.
Although onboard integration introduces additional bandwidth
limitations and latency due to the communication delay be-
tween the robot and the field server, our user study results
suggest that operations should be feasible if the effective
update delay is ∼10 seconds.

C. Autonomy Framework

The ROV autonomy, 3D reconstruction, MoveIt trajectory
planning, AprilTag tool detection, and hardware (i.e., ma-
nipulator and camera) driver nodes are largely derived from
Billings et al. [38]. The ROV autonomy node takes in end-
user requests and detected tool poses as input, and outputs
end-effector pose requests for the manipulator arm. For the
automated tool pickup and return procedures, the autonomy
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Fig. 8. SHARC (left) desktop and (right) VR interfaces. Annotated features are listed in Table IV.

Fig. 9. SHARC software architecture block diagram.

node sends a series of pose requests to the MoveIt trajectory
planning node based on the current location of the arm and
tools. For example, to return a tool, this node first sends a pose
request to move the tool up and away from the workspace,
then sends a pose request to align the tool with the detected
quiver, and finally sends a pose request to place the tool in the
quiver. The 3D reconstruction node matches detected features
in the workspace across each of the stereo camera images to
reconstruct the workspace. The AprilTag tool detection node
computes tool poses based on the known position of the tags
relative to the tool. The hardware driver nodes are a mix of
open- and closed-source, hardware-specific packages used for
the interfacing with the cameras and manipulator arm.

D. Natural Language Interface
SHARC’s implementation of the natural language speech

interface is also largely derived from Billings et al. [38]. Given
a natural language utterance, the interface first uses an off-the-
shelf recognition module to convert the speech to free-form
text. It then instantiates a probabilistic graphical model in the
form of a Distributed Correspondence Graph (DCG) [43, 44]
that relates words or phrases from the natural language text
to their corresponding referents in a symbolic representation
of the environment (e.g., tools) and action space (e.g., picking
up or stowing a tool). We train this model on 308 additional
examples of natural language commands paired with their
corresponding groundings (Table VI).

TABLE VI
EXAMPLE NATURAL LANGUAGE COMMANDS WITH THE ASSOCIATED

ACTION GROUNDING TYPES USED TO TRAIN DCG MODEL

Natural Language Command Grounded Action Type
“Switch to view four”
“Show the fisheye camera”
“Show the stereo stream”
“Show birds-eye viewpoint”

Adjust UI visualization

“Shift the gripper to port”
“Move the arm to starboard”
“Move up the arm”
“Pitch the arm down”

Adjust end-effector position

“Pick up the pushcore in the tray”
“Pick up the XRF in the basket”
“Grasp the pushcore on the left of the XRF”
“Replace the pushcore in the quiver”

Plan and execute Pick & Place
action

Since the DCG model can generalize beyond the specific
examples present in the training data, this additional data
significantly broadens the original implementation’s capabil-
ities to include a wider variety of tools, actions, and identi-
fying descriptors. While we use English for our experiments,
SHARC supports any natural language as long as a speech-
to-text module and a syntactic parser are available.

One of the challenges we faced while integrating off-
the-shelf speech-to-text modules is their tendency to prefer
commonly used words compared to more uncommon technical
terms. For example, while the phrase “push core” is part of
the module’s vocabulary, the words “push cart” and “push car”
were often generated instead. This could be mitigated by using
a system that can be fine-tuned to the application’s context.
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