
Soft Robots Learn to Crawl: Jointly Optimizing
Design and Control with Sim-to-Real Transfer

Charles Schaff∗, Audrey Sedal†, Matthew R. Walter∗
∗Toyota Technological Institute at Chicago, Illinois, USA 60637

Email: {cbschaff,mwalter}@ttic.edu
†Department of Mechanical Engineering, McGill University, Montreal, Canada

Email: audrey.sedal@mcgill.ca

Abstract—This work provides a complete framework for the
simulation, co-optimization, and sim-to-real transfer of the design
and control of soft legged robots. The compliance of soft robots
provides a form of “mechanical intelligence”—the ability to
passively exhibit behaviors that would otherwise be difficult to
program. Exploiting this capacity requires careful consideration
of the coupling between mechanical design and control. Co-
optimization provides a promising means to generate sophisticated
soft robots by reasoning over this coupling. However, the complex
nature of soft robot dynamics makes it difficult to provide a
simulation environment that is both sufficiently accurate to
allow for sim-to-real transfer, while also being fast enough for
contemporary co-optimization algorithms. In this work, we show
that finite element simulation combined with recent model order
reduction techniques provide both the efficiency and the accuracy
required to successfully learn effective soft robot design-control
pairs that transfer to reality. We propose a reinforcement learning-
based framework for co-optimization and demonstrate successful
optimization, construction, and zero-shot sim-to-real transfer of
several soft crawling robots. Our learned robot outperforms an
expert-designed crawling robot, showing that our approach can
generate novel, high-performing designs even in well-understood
domains.

I. INTRODUCTION

The deformable nature soft robots enables designs that
respond to contact or control inputs in sophisticated ways,
with behaviors that have proven effective across a variety
of domains. The design of such systems is tightly coupled
with the policy that controls their motion, giving rise to a
form of “mechanical intelligence” [49] in which materials
and mechanisms respond to their environment in useful ways
that augment functionality, e.g., conforming to an object to
create a better grasp or storing elastic energy to improve the
efficiency and power of a walking gait. Therefore, methods
that jointly optimize both the robot’s physical design and its
control policy provide a promising approach to discovering
mechanically intelligent soft robots. However, while researchers
have extensively explored the problem of joint design-control
optimization in the context of rigid robots [53, 42, 44, 45, 55,
51, 14, 22, 63, 50, 21, 8, 43], relatively little work exists for
soft robotics.

This work provides a complete framework for the simulation,
co-optimization, and sim-to-real transfer of the design and
control of soft robots. Integral to this framework, we propose
a co-optimization algorithm that utilizes multi-task deep rein-
forcement learning to generate a design-aware policy capable of

�

����
���

��

����

��
��
���
�

��
��
��
�

Fig. 1. Our framework jointly learns the design and control of crawling
soft robots (top) that outperform an expert-designed baseline (bottom). While
trained exclusively in simulation, our learned robots are capable of zero-shot
sim-to-real transfer, with the optimal design moving more than 2× faster than
the baseline in the real world.

generalizing across the space of designs. The algorithm exploits
this policy to quickly focus its search on high-performing
designs. To encourage “mechanical intelligence”, we learn an
open-loop controller, forcing complex behavior to be expressed
through the resulting soft body.

An important prerequisite for co-optimization is a simulator
that is both fast enough to explore a large set of designs
and control strategies and accurate enough to ensure that
the learned robots are physically realizable and capable of
sim-to-real transfer. However, modelling soft bodies is both
challenging and computationally intensive. The best way to
simulate soft bodies for robotics is an open question, and
the few co-optimization approaches for soft robotics suggest
different simulation strategies [27, 54, 24]. However, these
simulators have varying degrees of realism and their ability
to produce soft robots that cross the reality gap is unclear.
Therefore, in addition to designing a co-optimization algorithm,
new simulation approaches are also required to improve
computational efficiency and transferability to the real world.

We employ finite element analysis (FEA), which is the
defacto standard for simulating deformable materials with a
high degree of accuracy. In order to improve the computational
complexity of FEA-based simualation while preserving its
accuracy, we extend the recent work of Goury et al. [20] that

proposes a model order reduction technique for soft robotics
in the open-source FEA simulation framework SOFA [17, 10].
Their reduction technique has a large initial computational
cost, but then allows for simulating a fixed robot with a
computational efficiently sufficient for learning-based methods,
while maintaining physical realism. However, co-optimization
requires a search over many unique designs and reducing
each one is computationally infeasible. To overcome this, we
propose a reconfigurable reduction framework that reduces a
set of composable parts that can then be combined to create
reduced order models of soft robots with varying morphologies.

While our approach is general, we focus our study around
the easily manufacturable PneuNet actuator [40], which has
previously been used to create robots capable of walking
and crawling gaits [18, 52]. We experimentally validate our
proposed approach by learning combinations of PneuNets
and their controllers that together lead to faster gaits, and
demonstrate the ability to successfully transfer optimized
design-control pairs to reality.

Our work contributes a complete simulation and optimization
framework for the joint design and control of soft robots capable
of zero-shot sim-to-real transfer. Specifically, this includes:

1) a model-free algorithm for optimizing the blended design
and control spaces of soft robots;

2) a framework for creating reconfigurable reduced-order
soft robot models that improve computational efficiency
and enable the use of learning techniques;

3) the discovery of pneumatically actuated soft robots that
outperform a standard expert-designed crawling robot in
simulation and reality.

See our webpage1 for code and videos of our results.

II. RELATED WORK

The problem of jointly optimizing a rigid robot’s physical
structure along with its control has a long history in robotics
research. Early work employs evolutionary methods to optimize
the robot’s design along with its (often neural) controller [34,
44, 41, 4]. Another common approach is to assume access
to a parameterized model of the robot’s dynamics and to
then optimize these parameters together with those of control
(or motion) [45, 60, 22, 55, 19, 57, 5]. Bolstered by the
availability of efficient high-fidelity physical simulators, joint
optimization methods based on reinforcement learning are able
to learn capable rigid-body design-controller pairs without prior
knowledge of the dynamics [50, 43, 21, 62].

Compared to rigid robotics, jointly optimizing the design
and control of soft robots is less explored. Of the work that
exists, the large majority focus exclusively on simulation. Many
approaches reason over design and control spaces that include
a mix of discrete and continuous parameters (e.g., voxel-based
soft robots (VSRs) [56] are composed of discrete voxels, but the
input frequency to each voxel is considered to be continuous).
Spielberg et al. [54] propose an autoencoder-based method that
is able to optimize the placement of a large number of such

1https://sites.google.com/ttic.edu/evolving-soft-robots

voxels for simulated locomotion tasks, with fewer iterations
than other approaches. Cheney et al. [9] use an evolutionary
neural strategy to develop designs for VSRs that locomote
in simulation. Kriegman et al. [31] describe an approach to
deforming the structure of VSRs subject to damage such that
the original control policy remains valid. Ma et al. [37] use
a material point method-based simulation and gradient-based
optimization methods to co-optimize the shape and control of
simulated swimming robots. Deimel et al. [13] use particle
filter-based optimization to co-optimize finger angles and the
grasp strategy of a soft gripper. The success of these methods
in simulation is encouraging for soft roboticists, and recent
simulation-based benchmarks allow for a rigorous comparison
of co-optimization methods [11, 3]. However, existing work
provides a limited evaluation of the physical design-control
pairs, and so little is known about their ability to transfer to
the real world. Indeed, experiments on voxel-based soft robots
reveal that their behavior in simulation can differ significantly
from reality [30].

One notable exception, Morzadec et al. [39] experimentally
verify an optimized soft robotic joint, showing how shape
optimized using a finite element analysis-based simulator [10]
translates to improvements in a real-world soft robotic leg,
however they do not consider optimizing the controller. Another
exception is recent work that integrates a pneumatic-based
passive controller into the robot’s design to achieve a forward
walking gait [15], providing an example of how soft robots
can have unclear boundaries between design and control.

Meanwhile, individual design and control methods continue
to be key areas of research in soft robotics [49]. There exist
a wide variety of design concepts for soft robots [7] such as
fluidically pressurizeable soft devices [40, 52], metamaterial-
based designs [48, 35], and cable-driven devices [2]. Soft
roboticists note that existing design optimization methods for
compliant, nonlinear mechanisms, such as topology optimiza-
tion, are challenging to use in soft robotics due to complicated
soft material behavior [7]. The diversity of the design space
for soft robots further exacerbates the challenge of automating
the search for optimal designs [46]. Model-[1, 6] and learning-
based [33, 12, 29] controllers have also proven successful, as
well as hybrid policy designs [61, 2, 26]. Zhu et al. [64] consider
an origami-like robot with various design configurations that all
inform policy optimization, and Morimoto et al. [38] employ
the soft actor-critic algorithm [23] for reaching tasks. Related,
Vikas et al. [59] present a modular approach to designing 3D-
printed motor-tendon soft robots that can be readily fabricated,
and a model-free algorithm for learning the corresponding
control policy. Unlike our framework, however, they do not
jointly reason over design and control.

III. CO-OPTIMIZATION OF DESIGN AND CONTROL

We first describe the general approach to jointly optimizing
robot design and control, and then discuss a specific application
to crawling soft robots. Algorithm 1 and Figure 2 give an
overview of this approach.

https://sites.google.com/ttic.edu/evolving-soft-robots

Fig. 2. Our approach maintains a distribution over designs p(ω). At each
iteration, the method samples a set of designs ω1, . . . , ωn and controls each
using a shared, design-conditioned, policy πθ . We train the policy using soft
actor-critic on a mixture of data from different designs, and update the design
distribution based on the episode returns of the sampled designs.

A. General Approach via Multi-task Reinforcement Learning

The control problem can be modelled as a Markov decision
process (MDP) M = MDP(S,A,P,R), where S is the state
space, A is the action space, P : S × A × S → [0, 1] is
the transition dynamics, and R : S × A × S → R is the
reward function. When co-optimizing design and control, we
additionally define the design space Ω. Assuming we are
optimizing for a single task specified by its reward R, we
define the design-specific MDP Mω = MDP(Sω,Aω,Pω,R)
for each design ω ∈ Ω. In most co-optimization settings with
a single task, the state and action spaces will change between
designs only when those designs have different morphologies.

Let π∗
ω : Sω ×Aω → [0, 1] be the optimal policy for MDP

Mω . The goal of co-optimization is to find the optimal design
and controller pair (ω∗, π∗

ω∗) such that:

ω∗, π∗
ω∗ = arg max

ω,πω

Eπω

[∑
t

γtRt

]
(1)

In this setting, we are faced with many MDPs that share
common structure. Solving each MDP independently is in-
tractable and ignores these similarities, which are critical to
generalizing to new designs. We draw on insights from multi-
task reinforcement learning [58] to more efficiently solve for the
optimal design-control pairs (Eqn. 1) by exploiting this common
structure. Similar to goal-conditioned policies, our approach
learns a single design-conditioned policy πθ : S ×A× Ω →
[0, 1] to control all the designs in Ω for the specified task. This
idea was proposed in the context of co-optimization [50] as
well as for the sub-problem of controlling a set of designs with
different morphologies [28, 32]. This policy can be trained
using any RL algorithm on a mixture of data collected with
designs in Ω.

In order to search over designs, we maintain a distribution
p(ω) over the design space Ω. This distribution generates

Algorithm 1: Joint Optimization of Design and Control
1: Initialize πθ(a|s, ω), p(ω), T = 0
2: while True do
3: Sample designs ω1, ω2, . . . , ωn ∼ pϕ
4: Control ω1, ω2, . . . , ωn with πθ for t timesteps. Add

transitions to replay buffer.
5: Update θ using soft actor-critic.
6: Update Rω1

, Rω2
, . . . , Rωn

with their obtained returns.
7: Set timestep T = T + nt
8: Set βT to match entropy target HT .
9: Set p(ω) = eβT Rω∑

Ω eβT Rω

10: end while

designs for training the controller and models the belief about
which designs are optimal given the current design-conditioned
control policy. At the start of training, p(ω) should provide a
large diversity of designs and then, once the controller has been
sufficiently trained, slowly concentrate probability mass around
high-performing designs. The controller can then specialize to
an increasingly promising subset of designs until the algorithm
converges on a single design and a controller that is then
fine-tuned for that design.

The design distribution can be modeled in a number of
different ways depending on the nature of the design space.
For example, Schaff et al. [50] use a mixture of Gaussians for a
continuous design space, and shift the distribution towards high-
performing designs in a manner analogous to a policy gradient
update. In this work, we assume that the design space is discrete
and that the number of designs is practically enumerable, and
thus employ a categorical distribution. Following the principle
of maximum entropy, we model p(ω) as a Gibbs distribution:

p(ω) =
eβRω∑

ω∈Ω eβRω
(2)

where Rω is the most recent reward obtained by design ω,
and β is an inverse temperature parameter used to control
entropy. At each point in training, we set β to maintain a
decaying entropy target. Specifically, we set β = 0 to specify
a uniform distribution for an initial training period, and then
decay entropy according to a linear schedule. This schedule
is akin to removing a constant fraction of designs from the
search space at each step during training.

B. Application to Soft, Legged Robots

The design space that we study here (Fig. 3) consists of a
disk with N equally spaced positions where soft, pneumatic
actuators can be positioned radially outward. Each actuator is
connected to one of M different pressure regulators. Designing
the robot then amounts to choosing whether (or not) to place
an actuator at each of the N locations and, for each placed
actuator, connecting it to one of the M pressure regulators. Our
specific implementation considers N = 8 candidate locations
and M = 3 regulators, and restricts the design to having
between three and six actuators. This results in a total of 41202

������
������ �����������

������

����������������������

(a) Design Space

(b) Simulated Design

(c) Real-world Design

Fig. 3. A visualization of (a) our design space that consists of a disk with
N = 8 candidate locations for pneumatic actuators, each of which can be
connected to one of M = 3 pressure regulators. On the right are examples of
a (b) simulated and (c) real-world design, where colors denote the pressure
regulator for each actuator. The forward direction is to the right.

unique designs, which can be reduced to 6972 by exploiting
symmetry in the regulator assignments. Each actuator is a
PneuNet [40] which, like similar soft actuators, has been
combined to achieve crawling gaits [20, 52, 18, 59], providing
a well-studied baseline.

While our approach is compatible with any RL algorithm,
we use the standard soft actor-critic (SAC) algorithm because
it offers stable and data-efficient learning dynamics. We train
an open-loop controller modeled as a feed-forward neural
network for the task. This simplification of the controller forces
the design to perform “morphological computation” [49] to
enable intelligent behavior. The policy takes as input the design
parameters along with the four most-recent actions and outputs
pressure targets for each regulator.

IV. DESIGN-RECONFIGURABLE MODEL ORDER
REDUCTION

To obtain a finite-element model (FEM) whose speed is
tractable for reinforcement learning, we perform model-order
reduction (MOR). This section presents our extension of the
MOR method proposed by Goury et al. [20] to the problem
of co-optimization.

A. Reduction through Snapshot POD and Hyperreduction

The finite element method provides an approximate nu-
merical solution to partial differential equations (PDEs) by
discretizing space into a mesh consisting of a set of finite ele-
ments. Often, dense meshes (and subsequently, large amounts
of computation) are needed to reach acceptable accuracy.

The soft actuator mesh contains nodes with position qtn and
velocity vtn at discrete time step tn. At each tn, simulation
requires solving a discrete form of Newton’s second law [20]:

A(qtn , vtn)dv = b(qtn , vtn) +H⊤λ, (3)

where dv = vtn+1
−vtn , A ∈ Rd×d collects inertial and internal

forces, b ∈ Rd contains terms from internal and external forces,
and HTλ ∈ Rd collects constraints (e.g., associated with

p2

p1

Fig. 4. Our proposed technique for model order reduction that is compatible
with co-optimization. A: Sample candidate designs and record their animations.
B: Collect parts across designs and transform them into a common reference
frame. C: For each part, perform a snapshot POD reduction and hyperreduction
to obtain a reduced-order basis for motion, and reduced integration domain.
We create reductions for new designs by combining reductions of their parts.

contact with the floor), with d being the number of degrees-of-
freedom in the mesh. When using dense meshes for accurate
simulation, constructing the matrix A and solving this system
of equations are often the main bottleneck in FEM simulations.

We first reduce the system dimension through snapshot
proper orthogonal decomposition (POD). Using the methods
of Goury et al. [20], we find a low-dimensional subspace
Φ that well-approximates the space of possible motions and
deformations while reducing the order through a Galerkin
projection onto Equation 3:

Φ⊤A(qtn , vtn)Φdα = Φ⊤b(qtn , vtn) + ΦTH⊤λ. (4)

We achieve this by recording “snapshots” of the position qt of
the mesh throughout a series of predefined motions that try to
cover the space of common deformations. The simulation then
uses lower-dimensional coordinates α, with qtn = q0 +Φαtn .

Though snapshot POD reduces the time to solve Equation 3,
it still requires computing the high-dimensional matrix A
at every time step. We therefore perform a hyperreduction
to further approximate A by predicting its entries from the
contributions of a small number of elements. We use the
hyperreduction method of energy conservation sampling and
weighting (ECSW) [16]. For further details regarding this two-
part method and a demonstration in soft robotics, we refer the
reader to Goury et al. [20].

B. Modularized Reduction for Design-Reconfigurability

The MOR method described in the previous section uses
a single fixed mesh. For high-dimensional soft robot design

spaces, separately reducing each design is computationally
intractable. Instead, we define a modularized design space:
each design ω ∈ Ω is defined as a combination of a small set
of fixed parts P . We then reduce each part in P using the
method of Section IV-A independently and combine the parts
in arbitrary ways to form new designs. The number of times
we perform MOR is then of the same size as P rather than
the size of Ω.

MOR on the modularized design space only well-
approximates the full-order model when the computed subspace
Φp for each part p ∈ P is close to all frequently achieved
deformations. Because designs will deform in different ways,
it is necessary to include ‘snapshots’ of motions from a large
set of designs to achieve high-quality reduced-order models.
Therefore, careful snapshot selection on each module in P is
crucial and inaccuracies may be exploited during optimization
to result in invalid design-control pairs. We achieve high-quality
reduced-order models for each part by collecting snapshots
from a heuristically chosen subset of Ω and animating those
designs by cycling through the pressure extremes of each
actuator.

When constructing the reduced basis for new designs, we
transform the basis Φp to match the initial pose (ti, Ri) of
each part pi by rigidly rotating the node positions that make
up each basis vector:

Φpi

j =
[
RiΦ

p
j [0 : 3] RiΦ

p
j [3 : 6] · · ·RiΦ

p
j [n− 3 : n]

]
, (5)

where Φp
j ∈ Rn is the jth column of Φp and Φp

j [k : l] is a slice
of that vector from index k to index l. We ignore the initial
translation ti because translation basis vectors are included in
Φp. Figure 4 gives an overview of this approach.

C. Reduction of Crawling Soft Robots

We apply this reduction technique to our design space of
crawling soft robots. Our designs are composed of two parts: the
central disk, and some number of identical PneuNets. Therefore,
the above approach allows us to perform two reductions (one
for each part) as opposed to reducing each of the 6972 designs
in our design space. We found that a sparse disk mesh was
sufficiently fast and accurate for simulation and we therefore
only reduce the PneuNet.

For the reduction of the PneuNet, we select a heuristic
set of 256 designs for which we collect snapshots. Each
design contains a unique subset of the eight potential PneuNet
positions, and each PneuNet is controlled independently.
Similar to Goury et al. [20], we iterate through the extremes of
each actuator and record snapshots at fixed time intervals. This
can be seen as a walk through the vertices of an n-dimensional
hypercube, where n is the number of PneuNets present. In
order to verify the accuracy of our reduction, we evaluate it
on a set of four test designs and animations by computing
the distance between the node positions of the reduced and
unreduced models. We perform a grid search over the two
tolerances in the reduction algorithm and select the reduction
that has the best time-accuracy trade off. See Appendix B for
more details.

(a) Baseline Design

������
������
������

(b) Experimental Setup

(c) Baseline Gait

4.5

(d) Reward vs. Phase

Fig. 5. Our baseline consists of (a) an expert-designed soft robot with four
legs, where the fore and hind legs are attached to pressure regulators one
and two, respectively. The experimental setup consists of (b) three pressure
regulators, a crawling surface, and 3.15 mm outer-diameter tubing connected
to the robot (in the the distance). (c) Snapshots of the expert-designed gait.
(d) Reward (distance traveled) obtained by an offset-sine gait with different
phase shifts. A phase difference of 110◦ achieves the highest reward.

V. EXPERIMENTS

We test our approach by attempting to find a design and
open-loop controller that crawl as far as possible on a flat
plane in a 20 second episode. We define reward as the distance
traveled in the (forward) x-direction (in cm) as measured at
the center of the disk.

After performing model order reduction, we carry out FEM
simulation using the SOFA Finite Element framework [17] with
the soft robotics [10] and model order reduction [20] plugins.
We model the PneuNet legs (including the inflatable and
constraint material) and central disk as linear elastic materials.
We assign input pressures as pressure constraints on surface
meshes internal to the PneuNets. We estimated the Young’s
modulus of the PneuNet material (Smooth-On DragonSkin
30) based on the published Shore hardness together with the
method of Qi et al. [47]. We modeled the constraint layer of
the PneuNet as being linear elastic with a Young’s modulus
twice the magnitude of the inflatable material. We tuned the
Poisson’s ratio in order to maintain numeric convergence
and qualitative realism. The friction model used is Coulomb
friction. To account for any inaccurate or unmodelled effects,
we measure deformation of a single, real PneuNet under fixed
pressures, find the corresponding pressures that results in the

same deformation of the simulated PneuNet, and fit an affine
function to this data. Pressures commanded by our learned
policies are then mapped through this function to ensure a
simulated response similar to that of the real PneuNets. We
find that this step greatly improves sim-to-real transfer.

We built an experimental platform to evaluate the per-
formance of our learned soft robot designs. The platform
consists of a pressure chamber at 400±100 kPa in series with
three pressure regulators. Each pressure regulator is connected
by a lightweight tube to the robot and is controlled by a
programmable power supply. We created a modular assembly
scheme in which any robot from the design space can be
built. We 3D-printed a lightweight polymer disk that was
then attached to molded, soft PneuNet legs [40] (Smooth-On
DragonSkin 30). Appendix C provides additional details on
the fabrication procedure.

We designed a baseline design-controller pair similar to the
robot used by Shepherd et al. [52]. The baseline (Fig. 5) has
two fore legs and two hind legs placed 45◦ apart with each
pair controlled by a single regulator. Based on recent analysis
of inching gaits [18], we constrain each pressure regulator
to produce a sine wave of equal amplitude and period. We
achieve forward motion by imposing a phase shift between the
sine waves for the fore and hind legs. We select a pressure
range of 0 to 90 kPa to avoid both physical instabilities (i.e.,
aneurysms of the PneuNets) and numerical instabilities in the
FE simulator. We use the maximum amplitude allowed in this
range of 45 kPa and choose a period of 4 sec, which is the
fastest period that led to stable motion. The optimal phase shift
depends heavily on friction [18] so we conducted experiments
with different phase shifts between 0◦ and 180◦ in increments
of 10◦, and chose the value that resulted in the highest reward.
Figure 5 shows the effect of phase shift on the reward.

We use 96 parallel environments for data collection. Each
environment contains a design sampled from p(ω) (Algorithm 1,
line 3) that is controlled with the current policy for one
episode (Algorithm 1, line 4). The control policy is then
updated using the soft actor-critic algorithm on data from
a replay buffer (Algorithm 1, line 5). We repeat this process
for 1M environment timesteps during which we fix the design
distribution to be uniform for the first 200K timesteps, after
which we linearly decay the entropy to zero at 1M timesteps.
See Appendix A for more details on the experimental setup,
including a full list of simulation and learning parameters. After
training, we manufacture several of the highest-performing
designs and conduct a series of experiments to evaluate the
sim-to-real transfer of the learned design-control pairs.

VI. RESULTS

We examined the performance of the top-five learned design-
control pairs that our framework discovers, our baseline design-
control pair, and their capacity for sim-to-real transfer. We refer
to the baseline as “B” and the learned pairs as “L1–L5” in order
of decreasing reward. Figure 6 visualizes these designs and
compares their reward to that of the baseline in simulation and
in the real world (tested over five trials). The top four learned

Fig. 6. A comparison of the reward (distance traveled in cm) achieved in
simulation and reality for the duration of the 20 sec episode for the baseline
robot (B) and the top-five learned design-control pairs (L1–L5).

Fig. 7. A histogram of rewards throughout training, weighted by the design
distribution. The blue line represents the highest reward achieved at each
point throughout training. The designs pictured on the left show important
mode switches, and the right shows other high-performing designs. The design
distribution is fixed to be uniform until 200K timesteps and then a temperature
parameter is tuned to match a linearly decaying entropy target.

robots (L1–L4) outperform the baseline in both simulation and
the real world, while the fifth robot (L5) performs comparably
to the baseline in the physical experiments. The top learned
robot, L1 outperforms the baseline (in real measurements) by
a factor of 2.3.

Figure 7 inspects the training dynamics of our approach;
it shows a histogram of rewards achieved by the design
distribution throughout training. In the beginning of training,
the design distribution is constrained to be uniform and
nearly every design achieves zero reward. Starting at 200K
timesteps, the algorithm constrains the distribution with a
linearly decaying entropy, after which the algorithm specializes
to high performing designs (i.e., L5). Approximately halfway
through training, the algorithm converges on design L1, which
achieves a reward that is several centimeters better than the
next-best design-control pair.

pbase

psens

�

�

��

��
�
��
��
��
�
�

� � �� �� ��
�������

���
����

�
���

(a) Baseline Policy

pπ*ω

psens

� � �� �� ��

�

�

�

�

�

��

��

��

��
�
��
��
��
�

������

	��
����

�����

(b) Learned Policy with Highest Reward

Fig. 8. A comparison between the (a) baseline (B) and (b) highest-performing learned robot (L1) in terms of the reward (distance traveled in cm) achieved in
simulation and reality for the duration of the 20 sec episode, along with the corresponding control policy in terms of commanded and sensed pressures.

A. Qualitative Analysis of Learned Designs and Gaits
Observing the learned design-control pairs in simulation

and through real-world experiments reveals that they exploit
changes in frictional forces in clever ways to create forward
motion. Figure 8 compares the open-loop (pressure) gaits and
reward trajectories (in simulation and the real-world) over the
duration of the 20 sec episode for the baseline and top learned
design-control pairs. The baseline robot (B) uses a symmetric
design that moves forward through out-of-phase actuation of
the front and hind legs (Fig. 8(a)). In contrast, robot L1 uses
an asymmetric design alongside out-of-phase actuation of the
three attached pressure regulators. The result of this design
and motion is a pivoting behavior visible in the photos within
Figure 8(b) and the supplementary video. Due to its asymmetry,
the soft robot rolls to its side and the contact area of the front
leg with the floor is reduced (leading to reduced frictional forces
on that leg). This reduction in contact area enables the front
PneuNet ‘leg’ to slip forward instead of pushing backward. The
result is that robot L1 uses forward-slipping motion without
as much backward displacement per step (a.k.a. backsliding)
in L1 (0.7 cm backsliding) compared to the baseline (1.2 cm
backsliding).

Figures 9 and 10 show the reward per timestep and
pressurization (commanded and sensed) for robots L2–L5.
Four of the five top robots (L1, L2, L4, and L5) also leverage
asymmetric morphologies (Fig. 6) to tilt the front leg onto its
corner or edge and reduce friction by reducing contact. Gaits
for the L2–L5 designs (Fig. 10) operate in similar stages to L1:
the hind legs inflate first to anchor the robot and subsequently
follow a cycle that is out of-phase with the cycle followed by

the front legs. While the morphology of robot L3 is symmetric,
the use of regulator three on only one leg adds asymmetry to
its gait. Interestingly, each of the learned gaits inflate the hind
legs before the fore legs and the baseline does the opposite. We
find that the learned gaits, especially L1, L2, and L5, make the
most forward progress at the transition between inflation of the
fore legs and deflation of the back legs (e.g., overlap of green
and orange sensed pressures in Figure 8(b)). We hypothesize
that the asymmetry of the learned designs makes this motion
possible. See our webpage2 for side-by-side recordings of the
learned designs and gaits in simulation and reality.

B. Sim-to-Real Transfer
Given the goal of being able to co-optimize the design

and control of physically realizable soft robots, we compare
the learned robots and baseline in physical experiments. We
measure the zero-shot sim-to-real transfer performance by
manufacturing the learned designs and applying the learned
policy without modification.

We find that all of optimized designs and gaits make
consistent forward progress, with four out of five (L1–4)
outperforming the baseline in physical measurements, and
one performing comparably (L5) to the baseline. The highest-
performing robot (L1) and robot L4 have strong agreement
with simulation; with the standard deviation across trials taken
into account, real reward reaches within 1 cm of the simulated
reward.

Despite strong qualitative shape agreement seen in the
supplementary video, L2, L3, and L5 see a pronounced drop

2https://sites.google.com/ttic.edu/evolving-soft-robots

https://sites.google.com/ttic.edu/evolving-soft-robots

��

�

��

�

�

�

�

�

����

����

����

����

��
�
��
��
��

�

��
�
��
��
��

�

��
�
��
��
��

�

��
�
��
��
��

�

� � �� �� ��
�����
�

Fig. 9. Reward per timestep achieved in simulation and reality by the second-
to fifth-ranking learned design-controller pairs L2–L5.

in performance. A comparison of the simulated and real
reward over time shows the main reason for this performance
decrease. Figure 9 reveals that while these reward functions
have qualitatively similar waveforms, the backsliding phases of
the waveforms appear to have higher magnitude in reality than
in simulation. The initial phase of each of these gaits inflates
the back legs, relying on the friction from the front leg(s) to
hold the robot in place rather than slide backwards. The front
PneuNets slip very little in simulation, but they maintain less
grip in the real world. The resulting error in the backsliding
phase of each of these gaits is then accumulated with every
step, resulting in less forward motion.

Figure 8(a) compares the forward progress of the simulated
baseline against its real-world counterpart. Despite detailed
tuning of simulation parameters, our baseline gait achieves
poor reward in simulation. The simulated baseline gait does
indeed make slow forward progress. Yet, in key segments
of the gait (shown by images in Fig. 8(a)), the simulation
records less progress, or backward progress, compared to the
real-life measurement. As shown by prior analysis of crawling
robots [18, 59], this type of sinusoidal gait is very sensitive
to frictional forces. Because the design is symmetric, the gait
relies on the subtle differences in friction to enable timing of
stick-slip interactions for forward motion. As a result, error
accrual due to backward sliding that was already evident in
the learned designs is of even higher magnitude here.

While there are many other differences between simulation
and reality, such as dynamics associated with the pressure
regulators and damping of high frequency motions, we find
that the modelling errors associated with stick-slip transitions
the largest effect on the transfer performance of our designs.

pπ*ω

psens

pπ*ω

psens

pπ*ω

psens

�

pπ*ω

psens

�

Time (s)

Fig. 10. Commanded and sensed pressures pπ∗ω and psens for the second-
to fifth-ranking learned design-controller pairs L2–L5.

Stick-slip transitions are notoriously difficult to model [36],
and often requires smoothness approximations for numeric
stability. Overall we still see mostly successful transfer for all
five optimized designs.

VII. CONCLUSION

This work describes a complete framework for the sim-
ulation and co-optimization of the design and control of
soft robots capable of zero-shot sim-to-real transfer. We
present an algorithm for co-optimization and a framework to
create reconfigurable, reduced-order models for soft robotics.
Experiments demonstrate that our framework learns design-
gait pairs that outperform an expert-designed baseline in a soft
robot locomotion task. We further characterize the successful
qualitative and quantitative transfer of these learned pairs from
simulation to reality.

Soft robots are compliant-bodied and mechanically intel-
ligent. As a result, their design and control spaces are not
well-separated. For many tasks it difficult or impossible to
explore these design/control spaces through prototypes or
analysis alone; simulation is needed to build and evaluate
designs and controllers in a tractable manner. Our work
takes a step in this direction by showing that it is possible
to combine reinforcement learning techniques with finite

element simulation to deliver fast and physically accurate co-
optimization for soft robotics.

This work has some limitations. Modelling errors, due to
friction, linear elasticity, etc., caused us to linearly warp simula-
tion parameters to obtain numerical stability and realism. Even
so, these errors led to a degradation of transfer performance for
some designs. Future work will include improved simulation
techniques as well as investigations into domain adaptation and
domain randomization methods as a means of improving sim-
to-real transfer. Given the success of this method for simple
locomotion, we plan to explore adaptations of this framework
to different design and control spaces as well as more complex
tasks such as manipulation.

ACKNOWLEDGMENTS

We thank Olivier Goury and Hugo Talbot for assistance
implementing SOFA and the MOR module, and Arthur
MacKeith for additional simulation support.

REFERENCES

[1] J. M. Bern, P. Banzet, R. Poranne, and S. Coros,
“Trajectory optimization for cable-driven soft robot
locomotion,” in Proceedings of Robotics: Science and
Systems (RSS), 2019.

[2] J. M. Bern, Y. Schnider, P. Banzet, N. Kumar, and
S. Coros, “Soft robot control with a learned differen-
tiable model,” in Proceedings of the IEEE International
Conference on Soft Robotics (RoboSoft), 2020.

[3] J. Bhatia, H. Jackson, Y. Tian, J. Xu, and W. Matusik,
“Evolution gym: A large-scale benchmark for evolving
soft robots,” in Advances in Neural Information Process-
ing Systems (NeurIPS), 2021.

[4] J. Bongard, “Morphological change in machines accel-
erates the evolution of robust behavior,” Proceedings
of the National Academy of Sciences, vol. 108, no. 4,
pp. 1234–1239, 2011.

[5] G. Bravo-Palacios, A. Del Prete, and P. M. Wensing,
“One robot for many tasks: Versatile co-design through
stochastic programming,” IEEE Robotics and Automa-
tion Letters, vol. 5, no. 2, pp. 1680–1687, 2020.

[6] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan,
“Modeling and control of soft robots using the Koopman
operator and model predictive control,” in Proceedings
of Robotics: Science and Systems (RSS), 2019.

[7] F. Chen and M. Y. Wang, “Design optimization of soft
robots: A review of the state of the art,” IEEE Robotics
& Automation Magazine, 2020.

[8] T. Chen, Z. He, and M. Ciocarlie, “Hardware as policy:
Mechanical and computational co-optimization using
deep reinforcement learning,” arXiv:2008.04460, 2020.

[9] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson,
“Unshackling evolution: Evolving soft robots with multi-
ple materials and a powerful generative encoding,” in
Proceedings of the Annual Conference on Genetic and
Evolutionary Computation (GECCO), 2013.

[10] E. Coevoet, T. Morales-Bieze, F. Largilliere, Z. Zhang,
M. Thieffry, M. Sanz-Lopez, B. Carrez, D. Marchal,
O. Goury, J. Dequidt, and C. Duriez, “Software toolkit
for modeling, simulation, and control of soft robots,”
Advanced Robotics, vol. 31, 2017.

[11] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A
review of physics simulators for robotic applications,”
IEEE Access, 2021.

[12] U. Culha, S. O. Demir, S. Trimpe, and M. Sitti,
“Learning of sub-optimal gait controllers for magnetic
walking soft millirobots,” in Proceedings of Robotics:
Science and Systems (RSS), 2020.

[13] R. Deimel, P. Irmisch, V. Wall, and O. Brock, “Auto-
mated co-design of soft hand morphology and control
strategy for grasping,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), 2017.

[14] K. M. Digumarti, C. Gehring, S. Coros, J. Hwangbo, and
R. Siegwart, “Concurrent optimization of mechanical
design and locomotion control of a legged robot,” in
Mobile Service Robotics, 2014, pp. 315–323.

[15] D. Drotman, S. Jadhav, D. Sharp, C. Chan, and M. T. Tol-
ley, “Electronics-free pneumatic circuits for controlling
soft-legged robots,” Science Robotics, vol. 6, no. 51,
2021.

[16] C. Farhat, P. Avery, T. Chapman, and J. Cortial, “Dimen-
sional reduction of nonlinear finite element dynamic
models with finite rotations and energy-based mesh
sampling and weighting for computational efficiency,”
International Journal for Numerical Methods in Engi-
neering, vol. 98, no. 9, pp. 625–662, 2014.

[17] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles,
S. Marchesseau, H. Talbot, H. Courtecuisse, G. Bousquet,
I. Peterlik, et al., “SOFA: A multi-model framework
for interactive physical simulation,” in Soft Tissue
Biomechanical Modeling for Computer Assisted Surgery,
ser. Studies in Mechanobiology, Tissue Engineering and
Biomaterials, 2012, pp. 283–321.

[18] B. Gamus, L. Salem, A. D. Gat, and Y. Or, “Understand-
ing inchworm crawling for soft-robotics,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 1397–1404,
2020.

[19] M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski,
and S. Coros, “Skaterbots: Optimization-based design
and motion synthesis for robotic creatures with legs and
wheels,” ACM Transactions on Graphics (TOG), vol. 37,
no. 4, 2018.

[20] O. Goury and C. Duriez, “Fast, generic, and reliable
control and simulation of soft robots using model order
reduction,” Transactions on Robotics, vol. 34, no. 6,
pp. 1565–1576, 2018.

[21] D. Ha, “Reinforcement learning for improving agent
design,” Artificial Life, vol. 25, no. 4, pp. 352–365,
2019.

[22] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane,
“Joint optimization of robot design and motion parame-

ters using the implicit function theorem,” in Proceedings
of Robotics: Science and Systems (RSS), 2017.

[23] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor,” in Proceedings
of the International Conference on Machine Learning
(ICML), 2018.

[24] J. Hiller and H. Lipson, “Dynamic simulation of soft
multimaterial 3D-printed objects,” Soft Robotics, vol. 1,
pp. 88–101, 2014.

[25] D. P. Holland, E. J. Park, P. Polygerinos, G. J. Bennett,
and C. J. Walsh, “The soft robotics toolkit: Shared
resources for research and design,” Soft Robotics, vol. 1,
no. 3, pp. 224–230, 2014.

[26] T. Howison, S. Hauser, J. Hughes, and F. Iida, “Reality-
assisted evolution of soft robots through large-scale
physical experimentation: A review,” arXiv:2009.13960,
2020.

[27] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T.
Freeman, J. Wu, D. Rus, and W. Matusik, “ChainQueen:
A real-time differentiable physical simulator for soft
robotics,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2019.

[28] W. Huang, I. Mordatch, and D. Pathak, “One policy
to control them all: Shared modular policies for agent-
agnostic control,” arXiv:2007.04976, 2020.

[29] D. Kim, S.-H. Kim, T. Kim, B. B. Kang, M. Lee, W. Park,
S. Ku, D. Kim, J. Kwon, H. Lee, et al., “Review of
machine learning methods in soft robotics,” PLOS ONE,
vol. 16, no. 2, 2021.

[30] S. Kriegman, A. M. Nasab, D. Shah, H. Steele, G.
Branin, M. Levin, J. Bongard, and R. Kramer-Bottiglio,
“Scalable sim-to-real transfer of soft robot designs,” in
Proceedings of the IEEE International Conference on
Soft Robotics (RoboSoft), 2020.

[31] S. Kriegman, S. Walker, D. Shah, M. Levin, R. Kramer-
Bottiglio, and J. Bongard, “Automated shapeshifting for
function recovery in damaged robots,” in Proceedings
of Robotics: Science and Systems (RSS), 2019.

[32] V. Kurin, M. Igl, T. Rocktäschel, W. Boehmer, and S.
Whiteson, “My body is a cage: The role of morphology
in graph-based incompatible control,” arXiv:2010.01856,
2021.

[33] K. Lee, S. Kim, S. Lim, S. Choi, M. Hong, J. Kim,
Y.-L. Park, and S. Oh, “Generalized Tsallis entropy
reinforcement learning and its application to soft mobile
robots,” in Proceedings of Robotics: Science and Systems
(RSS), 2020.

[34] H. Lipson and J. B. Pollack, “Automatic design and
manufacture of robotic lifeforms,” Nature, vol. 406,
pp. 974–978, 2000.

[35] J. I. Lipton, R. MacCurdy, Z. Manchester, L. Chin, D.
Cellucci, and D. Rus, “Handedness in shearing auxetics
creates rigid and compliant structures,” Science, vol. 360,
no. 6389, pp. 632–635, 2018.

[36] J. Luo and K. Hauser, “Robust trajectory optimization
under frictional contact with iterative learning,” in
Proceedings of Robotics: Science and Systems (RSS),
2015.

[37] P. Ma, T. Du, J. Z. Zhang, K. Wu, A. Spielberg,
R. K. Katzschmann, and W. Matusik, “DiffAqua: A
differentiable computational design pipeline for soft
underwater swimmers with shape interpolation,” arXiv
preprint arXiv:2104.00837, 2021.

[38] R. Morimoto, S. Nishikawa, R. Niiyama, and Y. Ku-
niyoshi, “Model-free reinforcement learning with en-
semble for a soft continuum robot arm,” in Proceedings
of the IEEE International Conference on Soft Robotics
(RoboSoft), 2021.

[39] T. Morzadec, D. Marcha, and C. Duriez, “Toward shape
optimization of soft robots,” in Proceedings of the IEEE
International Conference on Soft Robotics (RoboSoft),
2019.

[40] B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt,
R. F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. J.
Walsh, and G. M. Whitesides, “Pneumatic networks for
soft robotics that actuate rapidly,” Advanced Functional
Materials, vol. 24, no. 15, pp. 2163–2170, 2014.

[41] S. Murata and H. Kurokawa, “Self-reconfigurable robots,”
IEEE Robotics & Automation Magazine, vol. 14, no. 1,
pp. 71–78, 2007.

[42] J.-H. Park and H. Asada, “Concurrent design optimiza-
tion of mechanical structure and control for high speed
robots,” Journal of Dynamic Systems, Measurement, and
Control, vol. 116, no. 3, pp. 344–356, 1994.

[43] D. Pathak, C. Lu, T. Darrell, P. Isola, and A. A.
Efros, “Learning to control self-assembling mor-
phologies: A study of generalization via modularity,”
arXiv:1902.05546, 2019.

[44] C. Paul and J. C. Bongard, “The road less travelled:
Morphology in the optimization of biped robot loco-
motion,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2001.

[45] C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design
and control of tensegrity robots for locomotion,” Trans-
actions on Robotics, vol. 22, no. 5, 2006.

[46] J. Pinskier and D. Howard, “From bioinspiration to
computer generation: Developments in autonomous soft
robot design,” Advanced Intelligent Systems, 2021.

[47] H. Qi, K. Joyce, and M. Boyce, “Durometer hardness
and the stress-strain behavior of elastomeric materials,”
Rubber Chemistry and Technology, vol. 76, no. 2,
pp. 419–435, 2003.

[48] A. Rafsanjani, Y. Zhang, B. Liu, S. M. Rubinstein, and
K. Bertoldi, “Kirigami skins make a simple soft actuator
crawl,” Science Robotics, vol. 3, no. 15, 2018.

[49] D. Rus and M. T. Tolley, “Design, fabrication and control
of soft robots,” Nature, vol. 521, pp. 467–475, 2015.

[50] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter,
“Jointly learning to construct and control agents using

deep reinforcement learning,” in Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), 2019.

[51] J. Seo, J. Paik, and M. Yim, “Modular reconfigurable
robotics,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, pp. 63–88, 2019.

[52] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin,
A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, and
G. M. Whitesides, “Multigait soft robot,” Proceedings
of the National Academy of Sciences, vol. 108, no. 51,
pp. 20 400–20 403, 2011.

[53] K. Sims, “Evolving virtual creatures,” in Proceeding of
the International Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), 1994.

[54] A. Spielberg, A. Amini, L. Chin, W. Matusik, and D.
Rus, “Co-learning of task and sensor placement for soft
robotics,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1208–1215, 2021.

[55] A. Spielberg, B. Araki, C. Sung, R. Tedrake, and D. Rus,
“Functional co-optimization of articulated robots,” in
Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2017.

[56] J. Talamini, E. Medvet, A. Bartoli, and A. De Lorenzo,
“Evolutionary synthesis of sensing controllers for voxel-
based soft robots,” in Proceedings of the Artificial Life
Conference (ALIFE), 2019.

[57] O. Taylor and A. Rodriguez, “Optimal shape and motion
planning for dynamic planar manipulation,” Autonomous
Robots, vol. 43, no. 2, pp. 327–344, 2019.

[58] N. V. Varghese and Q. Mahmoud, “A survey of multi-
task deep reinforcement learning,” Electronics, 2020.

[59] V. Vikas, E. Cohen, R. Grassi, C. Sözer, and B. Trimmer,
“Design and locomotion control of a soft robot using
friction manipulation and motor–tendon actuation,” IEEE
Transactions on Robotics, vol. 32, no. 4, pp. 949–959,
2016.

[60] M. G. Villarreal-Cervantes, C. A. Cruz-Villar, J. Alvarez-
Gallegos, and E. A. Portilla-Flores, “Robust structure-
control design approach for mechatronic systems,” Trans-
actions on Mechatronics, vol. 18, no. 5, pp. 1592–1601,
2013.

[61] I. Vitanov, A. Rizqi, and K. Althoefer, “Shape recon-
struction of soft-body manipulator: A learning-based
approach,” in Proceedings of the Annual Conference
Towards Autonomous Robotic Systems (TAROS), 2020.

[62] J. Whitman, M. Travers, and H. Choset, “Learning
modular robot control policies,” arXiv:2105.10049, 2021.

[63] A. Zhao, J. Xu, M. Konaković-Luković, J. Hughes,
A. Spielberg, D. Rus, and W. Matusik, “Robogrammar:
Graph grammar for terrain-optimized robot design,”
ACM Transactions on Graphics (TOG), vol. 39, no. 6,
2020.

[64] Y. Zhu, J. Rossiter, and H. Hauser, “Learning in growing
robots: Knowledge transfer from tadpole to frog robot,”
in Proceedings of the International Conference on
Biomimetic and Biohybrid Systems, 2019.

APPENDIX A
LEARNING AND SIMULATION PARAMETERS

Table I lists the hyperparameter settings that we used for
co-optimization. We represent each design as a concatenation
of eight four-dimensional one-hot vectors indicating whether
each PneuNet is present and which regulator it is connected
to. Our policy is open-loop and receives the last four pressure
actions as input. The actions are concatenated with the design
representation to create a 44-dimensional input to the policy
and value networks. Both the policy and value networks are
four-layer feed-forward networks and each hidden layer has
[400, 200, 100] units, respectively. We train on a 32-core AMD
EPYC 7502, with the experiment taking eight days to complete.

Hyperparameter Value

Number of environments 96
Maximum timesteps 1M
Buffer size 100K
Batch size 512
Discount factor (γ) 0.95
Policy learning rate 0.0006
Q-function learning rate 0.0020
Optimizer ADAM(β1 = 0.9, β2 = 0.999)
Target network smoothing coefficient 0.01
Learning start 10K
Timesteps per SAC update 1
Timesteps per sampled design 20 (one episode)
Entropy linear decay start 200K
Entropy linear decay end 950K
Entropy target start uniform
Entropy target end 0

TABLE I
SOFT ACTOR CRITIC AND CO-OPTIMIZATION PARAMETERS

Table II provides our simulation parameters. We use a linear
elastic model and set Young’s modulus for the silicone using
known material parameters. The Young’s modulus for the
paper and disk were chosen to be significantly stiffer that the
silicone. The Poisson ratios were set to maintain realism while
avoiding numerical instabilities. The masses were measured
from their real counterparts but then scaled by a factor of
2.5 to avoid numerical instability. The friction coefficient was
chosen to qualitatively approximate the stick-slip behavior of
the baseline design when all the PneuNets are inflated and
deflated simultaneously.

Figure 11 shows the linear pressure scaling used to align
the PneuNet bending response between simulation and reality.
To calibrate the action scaling, we record the bending of a
single PneuNet under pressures from 10 kPa to 100 kPa, in
increments of 10 kPa. We then search for the pressures in
simulation which achieve an equivalent bend and fit a linear
function to the results.

Parameter Value

Elastic model linear
Young’s modulus for PneuNet silicone 1160 kPa
Poisson ratio for PneuNet silicon 0.2
Young’s modulus for PneuNet paper 2320 kPa
Poisson ratio for PneuNet paper 0.49
Young’s modulus for disk 5000 kPa
Poisson ratio for disk 0.3
PneuNet mass 105 g
Disk mass 75 g
Friction coefficient 1.2
Gravity 9800mN

TABLE II
SOFA SIMULATION PARAMETERS

Fig. 11. The linear pressure scaling used to align the behavior of a single
PneuNet in simulation and reality. In simulation, we scale the pressures
output by the policy prior to applying we apply them. This helps to reduce
discrepancies between simulation and reality caused by modelling error.

APPENDIX B
MODEL ORDER REDUCTION EVALUATION

The snapshot-POD reduction method has two tolerances that
must be set, one for the error induced by the basis Φ, and
one for the error induced by the hyperreduction. To explore
the effect of these two parameters and to verify the validity
of our reduced models, create a test set of four designs and
animations:

1) the Hamiltonian animation uses the baseline four-legged
design and iterates through the pressure extremes of the
four PneuNets.

2) the baseline animation also uses the baseline design and
a gait similar to the baseline gait from our experiments.

3) the two leg animation uses a design with two alternately
inflating PneuNets at a 90◦ angle.

4) the six leg animation uses a design with six PneuNets
that alternately inflate in two groups of three.

For each design and animation, we compare the node positions
of the mesh using the unredeced and reduced-order models. We
perform a coarse grid search over the two MOR tolerances and

70 Hamiltonian Path Animation
E
E 60
.......

50

w
•

C 40 •

·-

30
•

GJ 20

10

ca:
0

•
•

•• •
• •

200 250 300 350

-

-

-

-

-

- •

•

400 175

•

•

I •

200 225

Baseline Animation

•

• •
•

250 275 300 325

•

•

••

•

350 375 100

Real Time (s)

•

•

Two-Leg Animation

•

• •

•
•

120 140 160 180

• Six-Leg Animation
• tolm_0.00l0_tolg_0.0032

•
• tolm_0.00l0_tolg_0.0100
• tolm_0.00l0_tolg_0.0320
• tolm_0.0032_tolg_0.0010
• tolm_0.0032_tolg_0.0032
• tolm_0.0032_tolg_0.0100
• tolm_0.0032_tolg_0.0320

• • tolm_0.0l00_tolg_0.0010
• tolm_0.0l00_tolg_0.0032
• tolm_0.0l00_tolg_0.0100
• tolm_0.0l00_tolg_0.0320

-

• •

•
•

• • •
•

250 300 350 400 450 500 550

Fig. 12. This plot shows the trade off between positional errors introduced by the reduction and the time to simulate each animation for a 3x3 grid search
over the 2 MOR tolerances. We choose a mode tolerance of 0.0032 and a hyperreduction tolerance of 0.0010 (red dot) for our experiments.

plot the simulation speed and accuracy of each reduction. Errors
are computed as the L2 distance between the node positions
of the reduced and unreduced model averaged over each node
in the mesh and each timestep. Based on this analysis, we use
a mode tolerance of 0.0032 and a GIE tolerance of 0.001 for
our experiments.

APPENDIX C
HARDWARE AND FABRICATION DETAILS

Figure 13 displays our experimental platform and robot
design. We keep a pressure chamber at 400±100 kPa attached
in series with three pressure regulators (Enfield TR-010-gs).
The learned and baseline policies are executed on a Raspberry
Pi where the pressure commands are converted to voltage
commands and sent to a programmable power supply (BK
Precision 9129B). The power supply then sends voltages to
each of the three pressure regulators through a breadboard that
converts the voltages into an acceptable range. Each pressure
regulator is connected by a lightweight tube to the robot. We
connect an external pressure sensor to each regulator to verify
that the correct pressure is applied.

We created a modular assembly scheme in which any
robot from the design space can be built. We 3D-printed

a lightweight polymer disk (Fig. 13 (right)) with uniformly
distributed locations where we can attach the PneuNet actuators
while routing the pneumatic cables away from the robot
(Fig. 13 (left)). We 3D-printed moulds for the PneuNets based
on a modification of the design given in the Soft Robotics
Toolkit [25] such that the two end prismatic segments are filled
rather than hollow (Fig. 13 (right)), which allows the first
prismatic segment to be used as an attachment point to the
disk. We fabricated the PneuNet actuators using Smooth-On
DragonSkin 30 silicone.

Fig. 13. Left: A picture of our hardware set up consisting of a Raspberry
Pi, three pressure regulators, two power supplies, three pressure sensor, and a
breadboard connecting everything to the Pi. Right: A picture of our 3D-printed
disk and a molded PneuNet cut in half to display the internal structure.

	Introduction
	Related Work
	Co-Optimization of Design and Control
	General Approach via Multi-task Reinforcement Learning
	Application to Soft, Legged Robots

	Design-Reconfigurable Model Order Reduction
	Reduction through Snapshot POD and Hyperreduction
	Modularized Reduction for Design-Reconfigurability
	Reduction of Crawling Soft Robots

	Experiments
	Results
	Qualitative Analysis of Learned Designs and Gaits
	Sim-to-Real Transfer

	Conclusion
	Appendix A: Learning and Simulation Parameters
	Appendix B: Model Order Reduction Evaluation
	Appendix C: Hardware and Fabrication Details

