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Abstract: A robot’s ability to complete a task is heavily dependent on its physical
design. However, identifying an optimal physical design and its corresponding
control policy is inherently challenging. The freedom to choose the number of
links, their type, and how they are connected results in a combinatorial design
space, and the evaluation of any design in that space requires deriving its optimal
controller. In this work, we present N-LIMB, an efficient approach to optimizing
the design and control of a robot over large sets of morphologies. Central to our
framework is a universal, design-conditioned control policy capable of controlling
a diverse sets of designs. This policy greatly improves the sample efficiency of our
approach by allowing the transfer of experience across designs and reducing the
cost to evaluate new designs. We train this policy to maximize expected return
over a distribution of designs, which is simultaneously updated towards higher
performing designs under the universal policy. In this way, our approach con-
verges towards a design distribution peaked around high-performing designs and
a controller that is effectively fine-tuned for those designs. We demonstrate the
potential of our approach on a series of locomotion tasks across varying terrains
and show the discovery novel and high-performing design-control pairs.
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1 Introduction

Figure 1: Our approach produces optimized robots
and controllers for a given task by searching over large
sets of morphologies. This figure shows the optimiza-
tion of a wall-climbing robot from early in the training
process (top row) to the final design (bottom row).

In this work, we study the efficient and au-
tomatic co-optimization of a robot’s phys-
ical structure as well as the corresponding
controller. The morphological design of a
robot is inherently coupled with its control
policy. Traditional approaches either rea-
son separately over design and control or
perform design-control optimization by it-
eratively updating and fabricating the cur-
rent set of candidate designs, optimizing
their corresponding controllers, and eval-
uating the performance of these design-
control pairs. Data-driven approaches ca-
pable of efficient co-optimization provide a
promising alternative to what is currently a
time-consuming process.

However, the search over discrete mor-
phologies and their controllers is inherently
challenging. The optimization process is



two-fold, requiring: 1) a search over a prohibitively large, discrete, and combinatorial space of
morphologies, and 2) the evaluation of each examined morphology by solving for its optimal con-
troller. The second step is particularly non-trivial and computationally expensive, especially for
learned controllers, which makes it challenging to examine a large set of morphologies.

We present Neural Limb Optimization (N-LIMB), an efficient algorithm for computing optimal
design-control pairs across a large space of morphologies (Fig. 1). N-LIMB is a non-trivial ex-
tension to the work of Schaff et al. [1], which provides a model-free approach to co-optimization
over continuous design parameters, together with a learned controller for robots with a single, fixed
morphology. Their approach exploits the shared structure of each design to train a universal, design-
conditioned controller that is able to generalize across the space of valid designs, thus avoiding the
need to solve an optimal control problem for each design. This controller is trained in expectation
over a distribution of designs, which is then subsequently updated towards higher-performing de-
signs. Adapting these components (i.e., a universal controller and design distribution) to a large set
of morphologies is challenging. In fact, developing universal controllers that generalize across mor-
phologies has emerged as an important topic independent of morphological optimization [2, 3, 4].

Our N-LIMB architecture overcomes these challenges to jointly optimize robot design and control
over a large space of morphologies through three key contributions. Our approach represents the
space of morphologies with a context-free graph grammar. This has two benefits: it allows for the
easy incorporation of fabrication constraints and inductive biases into the symbols and expansion
rules of the grammar; and it provides a way to iteratively generate designs by sampling expansion
rules. The latter allows us to define complex, multi-modal distributions over the space of morpholo-
gies via a novel autoregressive model that recursively applies expansion rules until a complete graph
has been formed. We parameterize the universal controller with a morphologically-aware trans-
former architecture. We evaluate the effectiveness of N-LIMB on a series of challenging locomotion
tasks, demonstrating the ability to learn complex, high-performing designs coupled with agile con-
trol policies. For videos and code, please visit our webite: https://sites.google.com/ttic.edu/nlimb.

2 Related Work

Co-optimization of robot design and control: There exists a large body of work that addresses the
problem of optimizing the physical design of a robot along with the corresponding control policy.
Initial research on co-optimization is concerned with identifying the discrete morphology of high-
performing robots [5, 6, 7]. This morphology may take the form of a composition of fixed-size 3D
blocks [5] or deformable voxels [8, 9, 10], or as a topology of rigid parts connected by fixed or
actuated joints [11, 12, 13, 14, 15, 16, 17, 18], which is the approach that we take here.

A common approach to optimizing over discrete designs is to perform evolutionary search (ES)
over a population of candidate designs [5, 6, 19, 20, 21, 7, 22, 23, 24, 25, 8, 26, 9, 27]. However,
ES is prone to local minima and is sample-inefficient, in part due to the need to maintain sepa-
rate control policies for each candidate design in the population. Our approach improves upon the
sample-efficiency of these methods sharing experience across designs through a single control pol-
icy. Alternatively, several approaches improve sample efficiency by leveraging additional knowledge
or assumptions about the system dynamics, typically in the context of optimizing the continuous pa-
rameters of a fixed morphology. These approaches include trajectory optimization [28, 29], linear
approximations to the dynamics [30], and leveraging differentiable simulators [31].

Similar to our approach, several reinforcement learning-based strategies to co-optimization exist for
both continuous [1, 32, 33, 34] and discrete design spaces [10, 35, 14]. Luck et al. [33] use a soft
actor-critic algorithm and use a design-conditioned Q-function to evaluate designs. Chen et al. [34]
model the design space as a differentiable computational graph, which allows them to use standard
gradient-based methods. In the context of discrete design spaces, Spielberg et al. [10] propose
an autoencoder-based method that jointly optimizes the placement and control of a large number
deformable voxels for soft-body locomotion tasks. Yuan et al. [36] represent the design generation
process as part of the environment and train a dual-purpose design generation and control policy.
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Universal control policies: Traditional population-based co-optimization strategies are difficult
to scale due to the need to maintain separate controllers for each design within the population as
it changes over time. Recent approaches adopt a single design-aware control policy to improve
optimization efficiency. Schaff et al. [1] propose such an approach for optimization within fixed
morphology. More sophisticated controllers leverage graph neural networks (GNN) [37] structured
according to the robot morphology [38, 14, 15, 2, 36]. Recently, shared controllers based on self-
attention mechanisms [3, 4] have outperformed GNNs due to the ability to propagate information
across nodes more effectively than the message-passing schemes of GNNs. Motivated by the empir-
ical success of self-attention over GNNs, we leverage transformers [39] to model our controller.

3 Co-optimization of Design and Control

In this section, we introduce the problem of jointly optimizing the physical design and corresponding
control of a robot in the context of a specified task.

3.1 Problem Definition

We formulate the problem of co-optimizing design and control as a set of related reinforcement
learning problems. Given a set of robot designs Ω and a task definition, we define a design-specific
Markov decision process (MDP) for each ω ∈ Ω: Mω = MDP(Sω,Aω,Pω,Rω), where Sω is the
state space, Aω is the action space, Pω : Sω × Aω × Sω → [0, 1] is the transition dynamics, and
Rω : Sω × Aω × Sω → R is the reward function. When optimizing for a single task objective, it
is natural that these MPDs share some common structure, e.g., the state space only changes based
on the proprioceptive information of available to each design, the action spaces differ only in the
number of controllable degrees of freedom, and each Rω encodes the same task objective.

Let π∗
ω : Sω × Aω → [0, 1] be the optimal policy for MDP Mω and Eπ∗

ω
[
∑

t γ
trt] be its expected

return. The goal of co-optimization is to find the optimal design-controller pair (ω∗, π∗
ω∗) such that:

ω∗, π∗
ω∗ = arg max

ω,π∗
ω

Eπ∗
ω

[∑
t

γtrt

]
. (1)

3.2 Co-optimization via Universal and Transferable Policies

Algorithm 1: Joint Optimization of Design and Control
1: Initialize πθ(a|s, ω), pϕ(ω), T = 0, T0

2: while T < BUDGET do
3: Sample designs ω1, ω2, . . . , ωn ∼ pϕ
4: Control ω1, ω2, . . . , ωn with πθ for t timesteps
5: Update θ using PPO with collected trajectories
6: Set timestep T = T + nt
7: if T > T0 then
8: Compute average episode returns Rω1 , Rω2 , . . . , Rωn

9: Update ϕ using ∇ϕ ≈
∑n

i=0 ∇log pϕ(ωi)Rωi

10: end if
11: end while

Based on Equation 1, the search
over the design space Ω requires
access to the optimal controller
π∗
ω for each design. Obtain-

ing these controllers can be chal-
lenging, as it is often computa-
tionally intractable to train inde-
pendent controllers for each de-
sign. However, we can lever-
age the shared structure between
each design to efficiently train
a design-conditioned controller:
π : S ×A×Ω → [0, 1]. Ideally,
this controller would serve as a proxy for optimal controllers as well as generalize zero-shot to un-
seen designs in the design space. Implementing such a controller has been studied in the context of
co-optimization [1, 36, 40] as well as the transfer of control policies across morphologies [2, 3, 4].

With such a control policy, the co-optimization procedure reduces to search over the design space
Ω. In this work, we use a zero-order search algorithm based on policy gradients that optimizes a
distribution over the design space towards higher performing designs. Let pϕ be a distribution over
Ω parameterized by ϕ and πθ be a design-conditioned policy. Then, our training objective is to
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Figure 2: Our approach defines the space of valid designs using a context-free graph grammar in
which terminal symbols denote robot parts and expansion rules describe how those parts can be
combined. Left: An example design and its corresponding graph structure. Right: The definition
of a bio-inspired grammar that produces quadruped and hexapod designs. Nonterminal symbols are
denoted with white boxes, terminal symbols with colored boxes, and expansion rules are denoted
with a colon. Bottom: Terminal symbols and their corresponding parts, where joints are colored
according to their degrees-of-freedom.

maximize the expected return of πθ under the design distribution pϕ:

ϕ∗, θ∗ = arg max
ϕ,θ

Eω∼pϕ
Eπθ

[∑
t

γtrt

]
. (2)

The controller can then be trained using any standard RL algorithm and the design distribution can
be updated with any zero-order method. Similar to past work [1], we use policy gradients to update
both the policy and the design distribution. This leads to the following update equations:

∇ϕ = Eω∼pϕ
[∇ϕlog pϕ(ω)Eπθ

[Rt]] ∇θ = Eω∼pϕ
[Eπθ

[∇θlog πθ(st, at)Rt]] , (3)

where R is the expected return at time t. This algorithm trains a controller to maximize performance
in expectation over the design distribution pϕ. When this controller is sufficiently trained, it is used
as a proxy for the optimal controllers of each design and pϕ is updated towards higher performing
designs. Then training continues until pϕ converges on a single design and πθ is optimized for that
design. See Algorithm 1 for details.

4 N-LIMB: Optimizing Design and Control over Morphologies

While Schaff et al. [1] successfully employ the above approach to find optimal design-control pairs,
their approach is limited to simple, fixed (i.e., pre-defined) kinematic structures and is not able to
optimize across morphologies. We propose a framework that builds on this approach to perform
morphological optimization. We describe a general approach to defining combinatorial spaces of
robot designs, a policy architecture that is able to control and generalize across that space, and a
way to parameterize and optimize complex distributions over the design space.

4.1 Graph Grammars for Defining Design Spaces across Morphologies

In this work, we explore the use of context-free graph grammars to define the space of valid mor-
phologies. We define a context-free graph grammar as the tuple (N,T,R, S), where N denotes the
set of non-terminal symbols, T denotes the set of terminal symbols, R = {ris = (s,Gi

s)} is the
set of production rules that map a non-terminal symbol s ∈ N to a graph Gi

s, and S is the starting
graph. The application of a production rule replaces a node with non-terminal symbol s with the
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(a) Actor-critic architecture

(b) Autoregressive model for design generation

Figure 3: (a) Self-attention based actor-critic architecture. Rigid body pose and attributes are en-
coded and processed via a transformer encoder to produce actions for each DoF and a value estimate.
(b) The design distribution is modeled via an autoregressive transformer architecture. Partial graphs
are processed by the model to produce a distribution over expansion rules of the grammar. Rules are
sampled and applied until no non-terminal symbols remain within the graph.

corresponding graph Gi
s. Nodes within these graphs express limb information (e.g., geometry, pose,

mass, inertia, etc.), and edges contain joint information (e.g., type, the kinematic transformation
between limbs, max torque, gear ratio, etc.).

With the end goal being to build and deploy optimized design-control pairs, fabrication constraints
must be taken into account, including what parts can be used and in which ways can they be feasibly
combined. Context-free grammars can naturally capture these constraints, with terminal symbols
that correspond to available parts and expansion rules that represent limits on how those parts can
be combined. In this way, the grammar focuses the optimization only on feasible designs.

In our experiments, we use a simple grammar (Fig. 2) to define the space of quadruped and hexa-
pod robots. This grammar generates robots as a composition of simple shapes, maintains left-right
symmetry, and allows for a variety of joint types and limbs with varying numbers of parts and sizes.

4.2 Universal Controllers via Morphologically-aware Transformers

Our co-optimization algorithm requires a universal controller that can act as a proxy for the optimal
controller across the design space Ω. Control policies that employ graph neural networks [38, 2]
as well as those that use self-attention [3, 4] have proven effective at handling the varying number
of rigid-bodies and controllable degrees-of-freedom across morphologies. In this work, we use the
transformer architecture [39] to parameterize an actor-critic network as it was shown to outperform
graph neural networks [3]. For an overview of our actor-critic architecture, see Figure 3(a).

At each point in time, the agent receives various types of state information: local information about
each rigid body and joint (e.g., pose, velocity, etc.), morphological information (e.g., shape, inertial,
joint axes, etc.), and global sensory information (e.g., cameras, terrain observations, task-relevant
observations, etc.). Our architecture consists of three core components: the first module encodes
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local and morphological information; the second processes that information through self-attention
and then appends global information; and the third module decodes actions and a value estimate.

Rigid-body embeddings: We encode each robot by flattening its graph structure into a sequence of
rigid-body embeddings using a depth-first traversal. Each of these embeddings contains local pose
and morphological information about the rigid body, as well as each controllable degree-of-freedom
that connects it to its parent. Information about geometries, degrees-of-freedom, and inertia are
encoded separately using two-layer MLPs and concatenated to obtain the rigid-body embedding.

Process: The rigid-body embeddings are combined with positional encodings and processed with
a transformer encoder. Similar to Gupta et al. [4], we postpone the fusion of global information,
such as observations about the surrounding terrain, until after the self-attention layers to both re-
duce the number of transformer parameters as well as avoid diluting the low-dimensional pose and
morphological information. Terrain observations are comprised of sparsely sampled height-field in-
formation that is encoded into a flat embedding vector using a three-layer MLP and concatenated
with each processed rigid-body embedding.

Decoding actions and value estimates: After the addition of global sensory information, we pro-
duce a value estimate by averaging the outputs of a value-decoder MLP across each rigid-body. For
each degree-of-freedom associated with a rigid body, we concatenate an embedding of that DoF
before applying an action-decoder MLP that produces the mean and state-independent standard de-
viation of a Gaussian distribution.

4.3 Autoregressive Models for Design Generation

Given the definition of a graph grammar, designs can be generated by autoregressively sampling
expansion rules until the resulting graph contains only terminal symbols. To build such a model,
we again use the transformer architecture [39]. Sampling designs in this way allows, in principle,
for arbitrary distributions over the design space that can capture multi-modal behavior and complex
dependencies between symbols. For an overview of our model, see Figure 3(b).

At each stage of generation, the model receives as input a partial graph G. This graph is then flat-
tened to a sequence of symbols s1, . . . , sn using a depth-first traversal. Those symbols are then
embedded using an embedding table, combined with a positional encoding, and processed with a
transformer encoder to produce representations hs1 , . . . , hsn . We decode logits for each expansion
rule by computing a dot-product between each representation hsi and learnable embeddings corre-
sponding to each expansion rule rjsi associated with symbol si. These logits are combined across all
symbols in G using a softmax operation. An expansion rule is then sampled from this distribution,
used to update the graph G, and then this process is repeated until G contains only terminal symbols.

5 Results

We evaluate our N-LIMB framework by performing co-optimization of design and control for loco-
motion tasks involving a variety of terrains. In all cases, N-LIMB efficiently finds high-performing
design-control pairs that outperform baselines.

Experiment Details: We optimize and evaluate design-control pairs using the IsaacGym GPU-
based physics simulator [41], allowing us to train with thousands of parallel environments on a single
GPU. The locomotion task rewards each robot for making as much forward progress as possible
within a fixed amount of time, with penalties for energy consumption, large actuation torques, and
reaching joint limits. Episodes are terminated early if the robot has fallen over. We consider three
different terrain types: (i) flat terrain (“Flat”); (ii) a terrain with randomly placed gaps of random
widths that the robot must cross (“Gaps”); and (iii) a terrain with randomly placed walls of different
heights that the robot must climb over (“Walls”). We run the N-LIMB algorithm on a single NVIDIA
A4000 GPU for 1B timesteps (roughly two days). We use Proximal Policy Optimization [42] to train
both the controller and design distribution. For more details and hyperparameters, see Appendix A.3.
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Figure 4: Left: A comparison between the designs learned by N-LIMB and those of the random
search baseline for the three terrain types. Right: A visualization of the learned gaits.

Figure 5: Plots that show the reward (mean and standard deviation) of designs sampled from the
design distribution over the course of training for the three terrain types. Dashed horizontal lines
denote the rewards of the highest performing design-control pairs for the baseline algorithm.

Baselines: Similar to previous work in co-optimization [1, 16, 17], we compare our framework
against a decoupled approach that randomly samples designs from the hexapod grammar and trains
controllers for each design individually. To ensure a fair comparison with our approach, we provide
the baseline with the same computational budget as N-LIMB.

Results: Across all three terrains, we find that N-LIMB is able to outperform the random search
baseline by a large margin. Figure 4 shows the best designs found by N-LIMB and the baseline, as
well as the learned gaits while traversing difficult sections of each of the three terrain types. While
N-LIMB initially favors quadruped designs in some cases (Fig. 1), it converges to hexapod designs
for all three terrain types. N-LIMB chooses to connect the body links with ball joints, suggesting that
additional degrees of freedom outweighs a reduction in available torque and narrower joint limits.
The choice of a hexapod design may be a result of the fact that achieving longer bodies with our
grammar requires a design with six legs. Indeed, on the Gaps terrain (Fig. 4, middle row), N-LIMB
selects a design that has the largest body available within the grammar through the use of larger
body links, which is necessary to cross wider gaps. The baseline similarly identifies a long-bodied
hexapod, but it connects the body links with fewer degrees of freedom, reducing its flexibility. On
the Walls terrain, however, the optimal design (Fig. 4, bottom row) has a smaller body and connects
limb links with “knee” joints, which can fold back 180◦, allowing the robot to fold its limbs while
cresting or pushing off the wall. In contrast, the optimal baseline design has legs with a single, small
link, which limits the height of the walls that the baseline can climb over. For locomotion on the
Flat terrain, N-LIMB converges to a design identical to that of the Gaps terrain, except that the torso
is comprised of three small (vs. large) body links, trading off the need to span wide gaps for the
availability of lower-torque bounding gates. The baseline identifies a hexapod with single-link legs
and replaces some of the ball joints with pitch and roll joints.
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Figure 5 shows the quantitative performance of N-LIMB compared against the baseline. It displays
the mean and standard deviation of returns obtained by designs sampled from the design distribution
throughout training. Early on, the ability for the policy to control the set of morphologies drawn
from the design distribution is limited. However, as the controller improves and N-LIMB updates
the design distribution, we see that the algorithm yields designs paired with the universal control
policy that quickly outperform the baseline.

Figure 6: A visualization of the generaliz-
ability of the universal N-LIMB controller as
a fraction of the reward achieved using con-
trollers trained separately on designs sampled
from the initial design distribution. In all
three domains, the relative reward improves
until, after 100M timesteps (dashed line), we
begin to update the design distribution, upon
which the N-LIMB policy learns to specialize
to higher-performing designs.

Generalization of the Universal Controller: Cru-
cial to our approach is a universal controller that
provides a proxy for the optimal controller when
evaluating a design. If this controller is unable to
provide a reasonable estimate of a design’s opti-
mal performance, the design distribution may incor-
rectly focus the search around suboptimal designs.
To verify that our controller provides a reasonable
proxy, we compare it against controllers trained in-
dividually on each design sampled from the initial
design distribution. Figure 6 shows the performance
of the universal controller as a fraction of the reward
of the individually trained controllers at four check-
points during training. We keep the design distribu-
tion fixed for the first 100M steps of training, dur-
ing which the universal controller impressively ob-
tains up to 80% of the performance of individually
trained controllers. Once we begin updating the de-
sign distribution (after 100M timesteps), we see a
performance expectedly declines as the controller
specializes to the shifting design distribution.

6 Limitations

Among the limitations of this work, we only show results in simulated settings. While we designed
our grammar to preclude difficult-to-fabricate designs, we do not demonstrate real-world transfer of
the learned design-controller pairs. Inspired by the success of sim-to-real transfer for control [43, 44]
and co-optimization [35], future work will investigate the real-world performance of the resulting
designs. Further, we place bio-inspired constraints on our grammar to avoid unreasonable designs
and, in turn, to improve the efficiency of optimization. These rules may be overly conservative,
preventing our method from learning designs that while being atypical, are well-suited to the task.

7 Conclusion

We presented N-LIMB, an efficient and effective approach to co-optimizing robots and their con-
trollers across large, combinatorial sets of morphologies. N-LIMB formulates the set of valid mor-
phologies as a context-free graph grammar, allowing users to easily incorporate fabrication con-
straints and inductive biases, focusing search on realizable robots. Given such a grammar, we pa-
rameterize a distribution over the design space using a novel autoregressive model that recursively
samples the expansion rules of the grammar ntil a completed robot is formed. The optimization is
carried out by training a universal controller in expectation over the design distribution, while simul-
taneously shifting that distribution towards higher performing designs. In this way, the optimization
process converges to a design-control pair that is jointly optimal for the given task. We demon-
strate the potential of our approach by learning high-performing design-control pairs on a variety of
locomotion tasks and terrains.
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Figure 7: Images depicting the three terrains used in our experiments. In the “Walls” and “Gaps”
environments, the walls (gaps) are randomly spaced with heights (widths) that increase farther from
the agent’s initial pose.

A Implementation Details

A.1 Terrain Details

We test our approach on the three terrain types pictured in Figure 7. The “Walls” terrain places
barriers that the robot must climb over. These barriers are randomly spaced throughout the terrain
and are assigned a random height. To enable some form of curriculum learning, we limited the
height of the barriers in the vicinity of the agents initial pose. The “Gaps” terrain similarly places
gaps at random locations with random widths that we limited in the same way as initial wall heights.
We randomly generated the terrains each time the algorithm sampled new designs.

A.2 Network Details

Our actor-critic network consists of a transformer encoder with one layer of self-attention, a model
dimension of 256, and 4 attention heads. The input to the encoder is a sequence of rigid body
embeddings created from a concatenation of geometric, inertial, and joint embeddings. We use a
two-layer MLP to encode information about each geometry and subsequently added these geometric
encodings together. Similarly, we use a two-layer MLP to encode information about each degree-
of-freedom and then add them together. The network also uses a two-layer MLP to encode inertial
information. These three embeddings are then concatenated together. We order the rigid-body
embeddings by flattening the robot’s kinematic tree with a depth-first traversal, added with a learned
positional encoding, and dropout is applied with p = 0.1. We separately encode terrain information
with a three-layer MLP. After the transformer encoder, terrain information is concatenated with
each token. We apply a three-layer value-decoder MLP to each token and then average the output
to produce a value estimate. To produce actions, we concatenate degree-of-freedom information
with each token and then pass the result to a three-layer action-decoder network, which produces
the mean and (state-independent) standard deviation of a Gaussian distribution.

Our autoregressive design distribution also consists of a transformer encoder with one layer of self-
attention, a model dimension of 256, and 4 attention heads. We order partial graphs using a depth-
first traversal, and embed symbols for each node with an embedding table, that we then add with a
positional encoding and feed to the transformer encoder. For non-terminal symbols, we decode the
resulting representations with a two-layer MLP and compute the dot product with embeddings of
the grammar’s expansion rules to produce logits. We combine these logits across nodes, and create
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a categorical distribution via softmax. Robot generation proceeds by sampling expansion rules and
updating the graph until only terminal symbols remain.

A.3 Hyperparameters

The following table details the specific hyperparameter settings that we used for the experiments
presented in the paper.

Environment Hyperparameter Value

Number of environments 2048
Maximum episode length 1000
dt 1/60 sec
Termination height 0.08
Reward: forward progress weight 3.8
Reward: alive bonus 0.5
Reward: termination cost 2.0
Reward: energy cost scale 0.01
Reward: squared action cost scale 0.035
Reward: joints at limit cost scale 0.2

PPO Hyperparameter Value

Discount factor (γ) 0.99
GAE λ 0.95
Rollout length 128
Batch size 16384
Epochs per rollout 4
Clip param 0.2
Policy loss coefficient 1
Value loss coefficient 3.7
Entropy bonus coefficient 0.0
Action bounds loss coefficient 100
Max gradient norm 1.0
KL target 0.04
Initial learning rate 0.0003
Optimizer ADAMW(β1 = 0.9, β2 = 0.999,weigth decay = 0.018)

N-LIMB Hyperparameter Value

Maximum timesteps 1B
Policy warm-up period 60M
Timesteps per design 3000
Update period 12M
Batch size 2048
Epochs per update 2
Clip param 0.2
Policy loss coefficient 1
Entropy bonus coefficient 0.02
Max gradient norm 0.1
KL target 0.0126
Initial learning rate 0.001
Optimizer ADAMW(β1 = 0.9, β2 = 0.999,weight decay = 0.018)

Table 1: Environment, PPO, and N-LIMB Hyperparameters
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B Visualization of the Design Space

Figure 8: A visualization of randomly sampled designs from the hexapod grammar. The grammar
contains millions of combinations of limb and joint parameters.
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