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Abstract

In classic reinforcement learning (RL) and decision making problems, policies are evaluated
with respect to a scalar reward function, and all optimal policies are the same with regards to
their expected return. However, many real-world problems involve balancing multiple, sometimes
conflicting, objectives whose relative priority will vary according to the preferences of each
user. Consequently, a policy that is optimal for one user might be sub-optimal for another.
In this work, we propose a multi-objective decision making framework that accommodates
different user preferences over objectives, where preferences are learned via policy comparisons.
Our model consists of a Markov decision process with a vector-valued reward function, with
each user having an unknown preference vector that expresses the relative importance of each
objective. The goal is to efficiently compute a near-optimal policy for a given user. We consider
two user feedback models. We first address the case where a user is provided with two policies
and returns their preferred policy as feedback. We then move to a different user feedback model,
where a user is instead provided with two small weighted sets of representative trajectories and
selects the preferred one. In both cases, we suggest an algorithm that finds a nearly optimal
policy for the user using a small number of comparison queries.

1 Introduction

Reinforcement learning (RL) and sequential decision making have been a driving force behind many
of the recent technological advancements in various domains such as autonomous driving [25], robot
control [21], healthcare [48], and game play [32]. Traditional RL [28] is largely based on the following
scheme: the algorithm designer specifies some scalar reward function, e.g., in each frame (state of
the game), the reward is a scaled change in the game’s score [32], and finds a policy that is optimal
with respect to this reward.

While sequential decision making problems typically involve optimizing a single scalar reward, there
are many domains for which it is desirable or necessary to optimize over multiple (potentially
conflicting) objectives at once. For example, safety, speed, and comfort are all desired objectives of
autonomous cars, but speed could negatively impact safety (e.g., it would take longer for the vehicle
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to suddenly stop) or comfort (e.g., fast turns). Sequential decision making problems with one or
more objectives are referred to as multi-objective, and in the specific case of RL, they are referred
to as multi-objective RL (MORL).

As the advancement of technology gives rise to personalized machine learning [31], in this paper, we
design efficient algorithms for personalized multi-objective decision making. Namely, we aim to find
the optimal policy for a user that reflects their preferences over k objectives using as few queries as
possible.

Prior works have concentrated on approximating the Pareto-optimal solution set® [19, Section 10.2],
but to the best of our knowledge, we are the first to provide algorithms with theoretical guarantees
for specific personalized multi-objective decision-making via policy comparisons. Furthermore,
the problem we handle in this work has also been described as ‘challenging and unsolved’ by Roijers
et al. [35, Section 8.3].

Similar to prior works on multi-objective decision making, we model the problem using a finite-
horizon Markov decision process (MDP) with a k-dimensional reward vector, where each entry
is a non-negative scalar reward representative of one of the k objectives. To account for user
preferences, we assume that a user is characterized by a (hidden) k-dimensional preference vector
with non-negative entries, and that the personalized reward of the user for each state-action is the
inner product between this preference vector and the reward vector (for this state-action pair).
We also distinguish between the k-dimensional value of a policy, which is the expected cumulative
reward when selecting actions according to the policy, and the personalized value of a policy, which
is the scalar expected cumulative personalized reward when selecting actions according to this policy.
The MDP is known to the agent and the goal is to learn an optimal policy for the personalized
reward function (henceforth, the optimal personalized policy) of a user via policy comparative
feedback.

This formalization implies the following. Suppose there are two policies for which the value vectors
are identical in all but one component, and the first policy has a larger value in that component.
Then, all the users should, at least weakly, prefer the first policy—e.g., if the agent could offer a
safer version of a car without compromising comfort or speed, no rational user would reject this
improvement.

However, having conflicts between objectives together with preferences that differ between users
implies that users do not always agree on the set of optimal policies, and more importantly, that the
optimal personalized policies for different users could have significantly different (k-dimensional)
values, e.g., the safest car might be the optimal personalized policy for one user, who is fine with
not maximizing the speed objective. The same user will not be satisfied with the fastest car, even
though it might be optimally personalized for other users. In an ideal world, there would be an
autonomous car that obtains maximal safety, maximal speed, and maximal comfort all at once.
Such a car would be optimal for all, but to this day there are many domains for which this is
fundamentally impossible.

If people could clearly define their preferences over objectives (e.g., “my preference vector has 3 for
the safety objective, 2 for speed objective, and 1 for the comfort objective”), the problem would be
easy—one would simply use the personalized reward function as a scalar reward function and solve
for the corresponding policy. As this type of fine-grained preference feedback is difficult for users to
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define, especially in environments where sequential decisions are made, we restrict the agent to rely
solely on comparative feedback.

Indeed, as knowledge of the user’s preference vector is sufficient to solve for their optimal personalized
policy, the challenge is to learn a user’s preference vector using a minimal number of easily
interpretable queries. We therefore concentrate on comparison queries. The question is then what
exactly to compare? Comparing state-action pairs might not be a good option for the aforementioned
tasks—what is the meaning of two single steps in a chess game?

Since we are interested in learning preferences via policy comparison queries, we also suggest an
alternative, more interpretable representation of a policy. Namely, we design an algorithm that
given an explicit policy representation (as a mapping from states to distributions over actions),
returns a weighted set of trajectories of size at most k£ + 1, such that its expected return is identical
to the value of the policy?. It immediately follows from our formalization that for any user, the
personalized return of the weighted trajectory set and the personalized value of the policy are also
identical.

We remark that while we have presented this work in the context of autonomous driving, our approach
applies more generally to a broad class of domains that involve personalized multi-objective decision
making. For example, when users purchase a robotic vacuum cleaner, they could indicate their
preferences over the possible objectives (e.g., faster, but possibly incomplete cleanup vs. slower, more
thorough cleanup) by providing comparative feedback regarding simulated trajectories displayed on
an app. Medical care is another example, where one might prefer a particular balance between the
success of a treatment and the side effects.

Contributions We summarize our contributions as follows.

e In Section 3, we formalize the problem. Our model allows one to elicit user preferences via
comparative feedback. As an alternative to an explicit policy representation, we propose a
weighted trajectory set as a more interpretable representation.

e We provide an efficient algorithm of finding an approximate optimal personalized policy in
Section 4, where the policies are given by their formal representations. More specifically, we
first provide an algorithm that finds a minimal set of policies with independent k-dimensional
values that span the space of all value vectors of policies as a pre-processing step. Next,
we show how to use this set to estimate any user’s preference vector efficiently via policy
comparison queries. We then use the learned preference vector to find the user’s optimal
personalized policy.

e In Section 5, we design two efficient algorithms that return a small weighted set of representative
trajectories for each policy, such that the expected return of this set (according to the weights)
is identical to the value of the policy. These sets can be used by an alternative feedback
approach whereby we ask the user to indicate their preference between two such sets.

2A return of a trajectory is the cumulative reward obtained in the trajectory. The expectation in the expected
return of a weighted trajectory set is over the weights.



2 Related Work

Multi-objective sequential decision making There is a long history of work on multi-objective
sequential decision making [35], with one key focus being the realization of efficient algorithms for
approximating the Pareto front [12, 11]. In the context of multi-objective RL [19], the goal can be
formulated as one of learning a policy for which the average return vector belongs to a target set
(hence the term “multi-criteria” RL), which existing work has treated as a stochastic game [29, 30].
Other works seek to maximize (in expectation) a scalar version of the reward that may correspond
to a weighted sum of the multiple objectives [7, 13] as we consider here, or a nonlinear function of
the objectives [15].

The parameters that define this scalarization function (e.g., the relative objective weights) are often
unknown and vary with the task setting or user. In this case, preference learning [44] is commonly
used to elicit the value of these parameters. Doumpos and Zopounidis [17] describe an approach to
eliciting a user’s relative weighting in the context of multi-objective decision-making. Bhatia et al.
[9] learn preferences over multiple objectives from pairwise queries using a game-theoretic approach
to identify optimal randomized policies. In the context of RL involving both scalar and vector-valued
objectives, user preference queries provide an alternative to learning from demonstrations, which
may be difficult for people to provide (e.g., in the case of robots with high degrees-of-freedom), or
explicit reward specifications [14, 36, 3, 43, 18, 22, 46, 16, 45, 20, 27]. These works typically assume
that noisy human preferences over a pair of trajectories are correlated with the difference in their
utilities (i.e., the reward acts as a latent term predictive of preference). Many contemporary methods
estimate the latent reward by minimizing the cross-entropy loss between the reward-based predictions
and the human-provided preferences (i.e., finding the reward that maximizes the likelihood of the
observed preferences) [16, 20, 27, 26, 33].

Wilson et al. [43] describe a Bayesian approach to policy learning whereby they query a user for
their preference between a pair of trajectories and use these preferences to maintain a posterior
distribution over the latent policy parameters. The task of choosing the most informative queries is
challenging due to the continuous space of trajectories, and is generally NP-hard [1]. Instead, they
assume access to a distribution over trajectories that accounts for their feasibility and relevance to
the target policy, and they describe two heuristic approaches to selecting trajectory queries based
on this distribution. Finally, Sadigh et al. [37] describe an approach to active preference-based
learning in continuous state and action spaces. Integral to their work is the ability to synthesize
dynamically feasible trajectory queries. Biyik and Sadigh [10] extend this approach to the batch
query setting.

Comparative feedback in other problems Comparative feedback has been studied in other
problems in learning theory, e.g., combinatorial functions [6]. One closely related problem is active
ranking /learning using pairwise comparisons |23, 24, 40, 47|. These works usually consider a given
finite sample of points. Kane et al. [24] implies a lower bound of the number of comparisons is linear
in the cardinality of the set even if the points satisfy the linear structural constraint as we assume
in this work. In our work, the points are value vectors generated by running different policies under
the same MDP and thus have a specific structure. Besides, we allow comparison of policies not
in the policy set. Thus, we are able to obtain the query complexity sublinear in the number of
policies. Another related problem using comparative/preference feedback is dueling bandits that
aim to learn through pairwise feedback [2, 49] (see also Bengs et al. [8], Sui et al. [42] for surveys),
or more generally any subsetwise feedback [41, 38, 39, 34]. However, unlike dueling bandits, we



consider noiseless comparative feedback.

3 Problem Setup

We consider a Markov decision process (MDP) represented by a tuple (S, A, so, P, R, H), with finite
state and action sets, S and A, respectively, an initial state sy € S, and finite horizon H € N.
The transition function P : S x A — SimplexS maps state-action pairs into a state probability
distribution. To model multiple objectives, the reward function R : S x A + [0, 1]* maps every
state-action pair to a k-dimensional reward vector, where each component corresponds to one of
the k objectives. We assume that the MDP is known to the learner. The return of a trajectory
o H—1
T = (80,00, ---,SH-1,0H—1,5H) is given by ®(7) =317 1" R(s¢, ay).

A policy m is a mapping from states to a distribution over actions. We denote the set of policies
by II. The walue of a policy m, denoted by V7™, is the expected cumulative reward obtained
by executing the policy 7 starting from the initial state, so. Put differently, the value of 7 is

VT =V7™(s9) = Egy=s, [ f;Ol R(St,ﬂ(St))} € [0, H]*, where S; is the random state at time step ¢
when executing 7, and the expectation is over the randomness of P and w. Note that V™ = E,. [®(7)],
where 7 = (sg,7(s0), S1,...,7(Sg—1),SH) is a random trajectory generated by executing .

We assume the existence of a “do nothing” action ay € A, available only from the initial state sg,
has zero reward for each objective R(sp,ap) = 0 and keeps the system in the initial state, i.e.,
P(so|s0,a0) = 1 (e.g., this action corresponds to not moving in autonomous driving or refusing to
play in a chess game.). We also define the “do nothing” policy 7y that always selects action ag and
has a (deterministic) value of V™ = 0.

Since the rewards are bounded between [0, 1], we have that 1 < ||V™||, < VkH for every policy .
For convenience, we denote Cy = vkH. We denote by d < k the rank of the space spanned by all
the value vectors obtained by II, i.e., d := rank(span({V7 |7 € II})).

To incorporate personalized preferences over objectives, we assume each user is characterized by an
unknown k-dimensional preference vector w* € R with a bounded norm 1 < ||w*||, < C,, for some
(unknown) Cy, > 1. We avoid assuming that C,, = 1 to accommodate for general linear rewards.
This preference vector encodes preferences over the multiple objectives and as a result, determines
the user preferences over policies.

Formally, for a user characterized by w*, the personalized value of policy 7 is (w*, V™) € RT. We
denote by 7* := argmax, c (w*, V™) and v* = <w*,V”*> the optimal personalized policy and
its corresponding optimal personalized value for a user who is characterized by w*. We remark
that the “do nothing” policy mp (that always selects action ag) has a value of V™ = 0, which
implies a personalized value of (w*, V™) = 0 for every w*. For any two policies 7; and 79, the
user characterized by w* prefers m over ma if (w*, V™ — V™) > 0. Our goal is to find the optimal
personalized policy for a given user using as few interactions with them as possible.

Given two policies 71,2, the user returns m = mo whenever (w*, V™ — V™) > ¢; otherwise, the
user returns “indistinguishable” (i.e., whenever |(w*, V™ — V7™)| < ¢). Here € > 0 measures the
precision of the comparative feedback and is small usually. The agent can query the user about their
policy preferences using two different types of policy representations:



1. Explicit policy representation: An explicit representation of policy 7 as a mapping from states
to actions, 7 : S — A.

2. Weighted trajectory set representation: A policy 7 is represented as a k-sized set of trajectory-
weight pairs {(p;, 7))}/, for some x < k41 such that (i) the weights p1, ..., p, are non-negative
and sum to 1; (ii) every trajectory in the set is in the support of the policy 7; and (iii) the
expected return of the trajectories from this set according to the weights is identical to the
value of the policy, i.e., VT =37 | p;®(r;). We require the trajectories in this set to be in
the support of the policy, to avoid trajectories that do not make sense, such as trajectories
that “teleport” between different unconnected states (e.g., commuting at 3 mph in Manhattan
in one state and then at 40 mph in Hawaii for the subsequent state).

In both cases, the feedback is identical and depends on the hidden precision parameter €. As a result,
the value of € will affect the number of queries and how close the value of the resulting personalized
policy is to the optimal personalized value. Alternatively, we can let the agent decide in advance on
a maximal number of queries, which will affect the optimality of the returned policy.

4 Learning from Explicit Policies

In this section, we consider the case where the interaction with a user is based on explicit policy
comparison queries. We design an algorithm that outputs a policy being nearly optimal for this
user. For multiple different users, we only need to run part of the algorithm again and again. For
brevity, we relegate all proofs to the appendix.

We start by observing that finding the preference vector w* (up to a positive scaling) of the user is
sufficient for the computation of the optimal personalized policy efficiently. It follows from the fact
that the optimal policy is invariant to a multiplication of the reward function by a positive scalar

(&8 )
Observation 1. Let (S, A, so, P, R'(w*), H) be an MDP that is identical to the original besides the
reward function, which is given by R (w*) = <w7* R> L (w*, R). The optimal policy for

Tw > 2/ = T,
this new MDP has the optimal personalized value for that user. Since R'(w*), unlike R, is a scalar
function, if w* is given one can compute the optimal policy and its personalized value efficiently,

e.g., using the Finite Horizon Value Iteration algorithm.

Due to the structure model that is limited to meaningful feedback only when the compared policy
values differ at least ¢, the exact value of w* cannot be recovered. We proceed by providing a
high-level description of our ideas of how to estimate w*.

1. Basis policies: We find policies y, ..., T4, and their respective values, V™, ... V™ € [0, H|*,
such that their values are linearly independent and that together they span the entire space of
value vectors.? These policies will not necessarily be personalized optimal for the current user,
and instead serve only as building blocks to estimate the preference vector, w*. In Section 4.1
we describe an algorithm that finds a set of basis policies for any given MDP.

2. Basis ratios: For the basis policies, denote by a; > 0 the ratio between the personalized value

3Recall that d < k is the rank of the space spanned by all the value vectors obtained by all policies.



of a benchmark policy, 71, to the rest, i.e.,
Vie[d—1]:aq;(w*, V™) = (w*, V7Titt) | (1)

We will estimate @; of «; for all ¢ € [d — 1] using comparison queries. A detailed algorithm for
estimating these ratios appears in Section 4.2.

For intuition, if we obtain exact ratios a; = «; for every i € [d — 1], then we can compute the vector
ﬁ as follows. Consider the d — 1 equations and d — 1 variables in Eq (1). Since d is the maximum
number of value vectors that are linearly independent, and V™ ... V74 form a basis, adding the
equation ||w||; = 1 yields d independent equations with d variables, which allows us to solve for w*.
The details of computing an estimate of w* are described in Section 4.3.

4.1 Finding a Basis of Policies

The process of efficiently finding d policies with d linearly independent value vectors that span
the space of value vectors is not trivial. The naive approach of selecting the k policies that each
optimizes one of the k objectives might fail— in Appendix M, we show an instance in which these
k value vectors are linearly dependent even though there exist k policies that their values span a
space of rank k.

Besides linear independence of values, another challenge is to find a basis of policies to contain a
benchmark policy, 71 (where the index 1 is wlog) with a relatively large personalized value, (w*, V™),
so that @;’s error is small (e.g., in the extreme case where (w*, V™) = 0, we will not be able to
estimate «;).

For any w € R¥, we use 7 denote a policy that maximizes the scalar reward (w, R), i.e.,

7 = argmax (w, V™) | (2)
mell

and by v¥ = <w, V”w> to denote the corresponding personalized value. The personalized optimal
policies and values can be computed efficiently as suggested in Observation 1. Let ey, ..., e, denote
the standard basis. To find m; with large personalized value (w*, V™), we find policies 7% that
maximize the j-th objective for every j = 1,...,k and then query the user to compare them until
we find a 7 with (approximately) a maximal personalized value among them. This policy will be
our benchmark policy, 7r;. The details are described in lines 1-6 of Algorithm 1.



Algorithm 1 Identification of Basis Policies

1: initialize 7¢" « 7°
2: for j=2,...,k do
3. compare 7° and 7%
if 7% = 7¢" then 7° « 71
end for

*
e

v

[ S
%

| 2

m — 7 and u; +
7. fori=2,...,k do
8 arbitrarily pick an orthonormal basis p1, ..., pgt1—; of span(V™ ... V7i-1)
9: Jmax ¢ argmax;epyqq_; max(|[vPi[, [v=r|)

10:  if max(|vPimax|,|v~Pimax|) > 0 then

1

11: Ty 4= wPimax if |pPimax| > |v ™ Pimax |; otherwise m; «— ™ Pimax. u; < pj;,

12 else

13: output (my,ma,...), (u1,us,...) and stop

14:  end if

15: end for

After finding 71, we next search the remaining d — 1 polices o, ..., 74 sequentially (lines 8-13 of
Algorithm 1). For i = 2,...,d, we find a direction u; such that (i) the vector u; is orthogonal to
the space of current value vectors span(V™ ..., V™i-1) and (ii) there exists a policy m; such that
V7™ has a significant component in the direction of u;. Condition (i) is used to guarantee that
the policy m; has a value vector linearly independent of span(V™ ... V™i-1). Condition (ii) is

used to cope with the error caused by inaccurate approximation of the ratios @;. Intuitively, when
la; V™ — VTitt], < e, the angle between a; V™ — V™1 and o; V™ — V™i+t could be very large,
which results in an inaccurate estimate of w* in the direction of a; V™ — V™i+1. For example, if

V™M =e;and V™ =e; + #eei for i = 2,...,k, then 7y, m; are “indistinguishable” and the estimate
ratio @;—1 can be 1. Then the estimate of w* by solving linear equations in Eq (1) is (1,0,...,0),

which could be far from the true w*. Finding u;’s in which policy values have a large component
can help with this problem.

Algorithm 1 provides a more detailed description of this procedure. Note that if there are multiple
users with different preference vectors, we only need to run Algorithm 1 once for all users, but need
to re-estimate the «;’s for different users.

4.2 Computation of Basis Ratios

As we have mentioned before, comparing basis policies alone does not allow for the exact computation
of the a; ratios as comparing 71, m; can only reveal which is better but not how much. To this end,
we will use the “do nothing” policy to approximate every ratio o; up to some additive error |@; — oy
using binary search over the parameter @; € [0,C,] for some C,, > 1 (to be determined later) and
comparison queries of policy ;41 with policy a;m + (1 — @;)mo if @; < 1 (or comparing m and
a%_m_ﬂ +(1- a%)71'0 instead if @; > 1).* Notice that the personalized value of a;m; + (1 — &;)m is

4We write a;m1 + (1 — @;)mo to indicate that 71 is used with probability @;, and that 7o is used with probability
1—a;.



identical to the personalized value of m; multiplied by @;. We stop once @; is such that the user
returns “indistinguishable”. Once we stop, the two policies have roughly the same personalized value,
ie.,

| (w*, V™) — (w*, V™itt)| <, ifa; <1,

1 ~
(w*, V™) — — (w*, V™) <€, if a; > 1. (3)

Q;
Eq (1) combined with the above inequality implies that |&; — «;| (w*, V™) < Cue. Thus, the
approximation error of each ratio is bounded by |a; — o] < wci“’fﬁ) To make sure the procedure
will terminate, we need to set C, > W since a;’s must lie in the interval [0, (’M)*UW] Upon
stopping binary search once Eq (3) holds, it takes at most O(dlog(Cy (w*, V™) /€)) comparison
queries to estimate all the a;’s.

*

Due to the carefully picked 71 in Algorithm 1, we can derive the following upper bounds for W
and |a; — ay).

Lemma 1. When e < %, we have W*”W < 2k. By setting C, = 2k, the returned Q;’s satisfy
that |@; — ay| < 2e.

We set C,, = 2k from now on. The pseudo code of the above process of estimating «a;’s is deferred
to Algorithm 4 in Appendix B.

4.3 Preference Approximation and Personalized Policy

We move on to present an algorithm that estimates w* and calculates a nearly optimal personalized
policy. Given the m;’s returned by Algorithm 1 and the @;’s returned by Algorithm 4, we define the
matrix A € R¥* as

V7r1T
R (alv‘n'l _ Vﬂ'g)T
A= : . (4)
(@ V™ — V)T

Let @ be a solution to Az = e;. We will show that @ is a good estimate of w’ := T VY

and that 7% is a nearly optimal personalized policy. In particular, when e is small, we have
(@, V™) — (w',V™)| = O(e3) for every policy 7. Putting this together, we derive the following
theorem.

Theorem 1. Consider the algorithm of computing A defined in Eq (4) and any solution W to
Az = e, and outputting the policy 7° = arg max, (W, V™), which is the optimal personalized
policy for preference vector w. Then the output policy ™ satisfying that

v* — <w*,V”@> <O ((\/E-i- 1)d+% 6§>

by using O(klog(k/e€)) comparison queries.



Computation Complexity We remark that Algorithm 1 solves Eq (2) for the optimal policy in
scalar reward MDP at most O(k?) times. Using, e.g., Finite Horizon Value iteration to solve for
the optimal policy takes O(H|S|?|.A|) steps. However, while the time complexity it takes to return
the optimal policy for a single user is O(k?H|S|?|A| + klog(%)), considering n different users rather
than one results in an overall time complexity of O((k? + n)H|S|?|A| 4+ nklog(£)).

Proof Technique The analysis of Theorem 1 has two parts. First, as mentioned in Sec 4.1,
when [[o; V™ — VTit1]|, < €, the error of ;4 can lead to inaccurate estimate of w* in direction
a; V™ —V7Ti+1, Thus, we consider another estimate of w* based only on some 7;41’s with a relatively
large |la; V™ — V7itt||,. In particular, for any § > 0, let ds := min, )< — 1. That

1>2:max(|v¥i|,
is to say, for ¢ = 2,...,ds, the policy m; satisfies (u;, V™) > ¢ and for any policy 7, we have
{(ugs41,V™) < 6. Then, for any policy 7 and any unit vector & € span(V™, ..., V™)L we have
&vm < Vké. This is because at round ds 4+ 1, we pick an orthonormal basis p1,. .., Pk—ds of
span(V™ ... V™)L (line 8 in Algorithm 1) and pick ug,+1 to be the one in which there exists a
policy with the largest component as described in line 9. Hence, |(p;, V)| < for all j € [k — ds].
Then, we have (£, V7T) = Zk_d‘s (&, p;) (pj, V™) < Vké by Cauchy-Schwarz inequality. Let A® ¢

Jj=1

v

R%** be the sub-matrix comprised of the first ds rows of A. Then we consider an alternative
estimate W(®) = arg min_, 75 y—e, 1%[l5; the minimum norm solution of z to Az = e;. We upper

bound sup, ‘<@(5), V™) — (w',V™)| in Lemma 2 and sup,, [(@, V™) — (@, V™)| in Lemma 3. Then
we are done with the proof of Theorem 1.
Lemma 2. If |a; — a;] < €4 and a; < Cy, for alli € [d—1], for every § > 4C§Cvd%eé, we have

*

_wr
(w*, V)

50 R ve Cac4vd§||w/||zfa ’ ’
[@®, V) — (w', V)| < O(=2—122 4+ VES ([w'|,) for all wr, where w' =
Since we only remove the rows in A corresponding to u;’s in the subspace where no policy’s value
has a large component, @ and @) are close in terms of sup. |<1ﬁ, VT — <1ﬁ(5), V’T>|.

Lemma 3. If |a; — a;| < €q and o; < C,, for all i € [d — 1], for every policy = and every
o> 4C’§Cvd%e§, we have

G-VT =0 . VT < O(VE+ 1) CLe),

3
CaCLd? ||w']|ea
where ¥ = %ﬂ)”; + VS ||w'||, is the upper bound in Lemma 2.

Note that the result in Theorem 1 has a factor of k%, which is exponential in d. Usually, we consider
the case where k = O(1) is small and thus k% = O(1) is small. We get rid of the exponential
dependence on d by applying @(®) to estimate w* directly, which requires us to set the value
of § beforehand. The following theorem follows directly by assigning the optimal value for § in
Lemma 2.

Theorem 2. Consider the algorithm of computing A defined in Eq (4) and any solution @® to
AP g = e, for § = k3es and outputting the policy 7 = arg max, ey <@(5), V”>. Then the policy

7o satisfies that
@(9) 13 1
v — (w, VT §(9(k:?e§) .

10



Notice that the algorithm in Theorem 2 needs to set the hyperparameter § beforehand while we
don’t have to set any hyperparameter in Theorem 1. The improper value of ¢ could degrade the
performance of the algorithm.

Though we think of k as a small number, it is unclear whether the dependency on € in Theorems 1
and 2 is optimal. The tight dependency on ¢ is left as an open problem. We briefly discuss a
potential direction to improve this bound in Appendix H.

5 Learning from Representative Sets

In the last section, we represented policies using their explicit form as state-action mappings.
However, such a representation could be challenging for users to interpret. For example, how safe is
a car described by a list of |S| states and actions such as “accelerate by 50%”? In this section, we
design algorithms that return an alternative, more interpretable policy representation—a weighted
trajectory set.

Recall the definition in Section 3, a weighted trajectory set is a small set of trajectories from the
support of the policy and corresponding weights, with the property that the expected return of the
trajectories in the set (according to the weights) is exactly the value of the policy (henceforth,
the exact value property).®As these sets preserve all the information regarding the multi-objective
values of policies, they can be used as policy representations in policy comparison queries of
Algorithm 4 without compromising on feedback quality. Thus, using these representations obtain
the same optimality guarantees regarding the returned policy in Section 4 (but would require extra
computation time to calculate the sets).

There are two key observations on which the algorithms in this section are based:

(1) Each policy 7 induces a distribution over trajectories. Let ¢7(7) denote the probability that a
trajectory 7 is sampled when selecting actions according to 7. The expected return of all trajectories
under g™ is identical to the value of the policy, i.e.,

VT =g (r)@(). ()

In particular, the value of a policy is a convex combination of the returns of the trajectories in
its support. However, we avoid using this convex combination to represent a policy since the
number of trajectories in the support of a policy could be exponential in the number of states and
actions.

(2) The existence of a small weighted trajectory set is implied by Carathéodory’s theorem. Namely,
since the value of a policy is in particular a convex combination of the returns of the trajectories in
its support, Carathéodory’s theorem implies that there exist k£ + 1 trajectories in the support of
the policy and weights for them such that a convex combination of their returns is the value of the
policy. Such a (k 4 1)-sized set will be the output of our algorithms.

5Without asking for the exact value property, one could simply return a sample of O(logk/(¢')?) trajectories
from the policy and uniform weights. With high probability, the expected return of every objective is €’-far from its
expected value. The problem is that this set does not necessarily capture rare events. For example, if the probability
of a crash for any car is between (¢’)* and (€¢’)?, depending on the policy, users that only care about safety (i.e., no
crashes) are unlikely to observe any “unsafe” trajectories at all, in which case we would miss valuable feedback.
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We can apply the idea behind Carathéodory’s theorem proof to compress trajectories as follows.
For any (k + 2)-sized set of k-dimensional vectors {1, ..., g2}, for any convex combination of
them p = Zfif pilti, we can always find a (k + 1)-sized subset such that p can be represented as
the convex combination of the subset by solving a linear equation. Given an input of a probability
distribution p over a set of k-dimensional vectors, M, we pick k + 2 vectors from M, reduce at least
one of them through the above procedure. We repeat this step until we are left with at most k£ + 1
vectors. This algorithm, referred to as C4 (Compress Convex Combination using Carathéodory’s
theorem), is described in Algorithm 2. The construction of the algorithm implies the following
theorem immediately.

Algorithm 2 C4: Compress Convex Combination using Carathéodory’s theorem

1: input a set of k-dimensional vectors M C R* and a distribution p € Simplex™
2: while [M| > k+ 1 do
3:  arbitrarily pick k + 2 vectors pu1, ..., o from M
4. solve for x € RF+2 st. Zf:rf x;(u;01) = 0, where pol denote the vector of appending 1 to u
5: g < argmaX;c(yo ﬁ
6: if z;, <0 then z + —z
Ty ) and Vi € [k + 2, plus) < p(as) — s
8 remove p; with p(u;) =0 from M
9: end while

10: output M and p

Theorem 3. Given a set of k-dimensional vectors M C R* and a distribution p over M, C4(M,p)
outputs M' C M with |M'| < k+ 1 and a distribution q € SimplexM/ satisfying that Bjq (1] =
Emp (1] in time O(| M| k3).

So now we know how to compress a set of trajectories to the desired size. The main challenge is how
to do it efficiently (in time O(poly(H |S||.A|))). Namely, since the set of all trajectory returns from
the support of the policy could be of size Q(|S|H)7 using it as input to C4 Algorithm is inefficient.
Instead, we will only use C4 as a subroutine when the number of trajectories is small.

We propose two efficient approaches for finding weighted trajectory representations. Both approaches
take advantage of the property that all trajectories are generated from the same policy on the same
MDP. First, we start with a small set of trajectories of length of 1, expand them, compress them,
and repeat until we get the set of trajectory lengths of H. The other is based on the construction
of a layer graph where a policy corresponds to a flow in this graph and we show that finding
representative trajectories is equivalent to flow decomposition.

In the next subsection, we will describe the expanding and compressing approach and defer the
flow decomposition based approach to Appendix J due to space considerations. We remark that
the flow decomposition approach has a running time of O(H?|S|* + k3H |S|*) (see appendix for
details), which underperforms the expanding and compressing approach (see Theorem 4) whenever
|S|H + |S|k* = w(k* + K|S|). For presentation purposes, in the following we only consider the
deterministic policies. Our techniques can be easily extended to random policies.®

6In Section 4, we consider a special type of random policy that is a mixed strategy of a deterministic policy (the
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5.1 Expanding and Compressing Approach

The basic idea is to find k + 1 trajectories of length 1 to represent V™ first and then increase

the length of the trajectories without increasing the number of trajectories. For policy m, let
V™(s,h) =Eg,=s [ ?__01 R(Sy, W(St))} be the value of 7 with initial state Sp = s and time horizon h.

Since we study the representation for a fixed policy 7 in this section, we slightly abuse the notation
and represent a trajectory by 77 = (s, s1,...,sm). We denote the state of trajectory 7 at time ¢ as
s = s;. For a trajectory prefix 7 = (s, $1,...,s,) of 7 with initial state s and h < H subsequent
states, the return of 7 is ®(7) = R(s,7(s)) + Zf;ll R(s¢,m(st)). Let J(7) be the expected return of
trajectories (of length H) with the prefix being 7, i.e.,

J(1) =0(r)+V(sp,H—h).

For any s € S, let 7 o s denote the trajectory of appending s to 7. We can solve V™ (s, h) for all
s € §,h € [H] by dynamic programming in time O(kH |S |2) Specifically, according to definition,
we have V7 (s,1) = R(s,7(s)) and

V7T (s,h+1)=R(s,n(s)) + Z P(s'|s,m(s))V™ (s, h). (6)
s'eS

Thus, we can represent V™ by

V™ =R(so,m(s0)) + Y _ P(s]s0, m(s0))V" (s, H — 1)
seS

= ZP(S|SO,7T(80))J(307 s).

sES

By applying C4, we can find a set of representative trajectories of length 1, ") C {(s¢, s)|s € S},
with ‘F(l)‘ < k+1 and weights gV e SimplexF(l) such that

vi= 3" p(r)I(r). (7)

TeF)

Supposing that we are given a set of trajectories F(*) of length t with weights () such that
VT =3 cro B (7).J(7), we can first increase the length of trajectories by 1 through Eq (6) and
obtain a subset of {7 0 5|7 € F(*), s € S}, in which the trajectories are of length ¢ + 1. Specifically,
we have

Vi= Y BYT)P(slst, m(s])) I (Tos). (8)

TEF®) s€8

Then we would like to compress the above convex combination through C4 as we want to keep
track of at most k + 1 trajectories of length ¢ + 1 due to the computing time. More formally, let
Jpw = {J(Tos)|t € F® s e S} be the set of expected returns and Pr® g € SimplexF(t) xS with
pro go (T0s) = BY(1)P(s|s7,m(s])) be the weights appearing in Eq (8). Here pp g defines a

output from an algorithm that solves for the optimal policy for an MDP with scalar reward) with the “do nothing”
policy. For this specific random policy, we can find weighted trajectory representations for both policies and then
apply Algorithm 2 to compress the representation.
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distribution over Jpe) with the probability of drawing J(7 o s) being pp) g (7 o 5). Then we can
apply C4 over (Jpw,pp® go) and compress the representative trajectories {7 o s|7 € F® s e S}
We start with trajectories of length 1 and repeat the process of expanding and compressing until we
get trajectories of length H. The details are described in Algorithm 3.

Algorithm 3 Expanding and compressing trajectories

compute V™ (s, h) for all s € S, h € [H] by dynamic programming according to Eq (6)

. FOO = {(s0)} and B (s0) =1

: fOI'f,:O,...,H—l do

Jpw « {J(tos)|r € FO s € S} and ppe g (T0s) « BO(1)P(s|s],m(s])) for 7 € F) s €
S {expanding step}

(JED, BUAD) « CA(Jpr, ppw o) and FFD «— {7]J(r) € J¢+D}{compressing step}

: end for

output FU) and )

Wy

IR

Theorem 4. Algorithm 3 outputs F) and B satisfying that ‘F(H)‘ <k+land) ) cpom B (1)®(T) =
V™ in time O(k*H |S| + kH |S|?).

The proof of Theorem 4 follows immediately after the construction of the algorithm. According to
Eq (7), we have V™ =Y __.q) BY(7)J(7). Then we can show that the output of Algorithm 3 is a
valid weighted trajectory set by induction on the length of representative trajectories. C4 guarantees
that |F(t)| <k+1lforallt=1,...,H, and thus, we only keep track of at most k + 1 trajectories at
each step and achieve the computation guarantee in the theorem.

Corollary 1. Running the algorithm in Theorem 1 with weighted trajectory set representation
returned by Algorithm 3 gives us the same guarantee as that of Theorem 1 in time O(k*>H|S|?|A| +
(KPH |S| + K2 H |S|*) log(%)).

6 Discussion

In this paper, we designed efficient algorithms for learning users’ preferences over multiple objectives
from comparative feedback. The efficiency is expressed in both the running time and number of
queries (both polynomial in H,|S|,|Al, k and logarithmic in 1/¢). The learned preferences of a user
can then be used to reduce the problem of finding a personalized optimal policy for this user to a
(finite horizon) single scalar reward MDP, a problem with a known efficient solution. As we have
focused on minimizing the policy comparison queries, our algorithms are based on polynomial time
pre-processing calculations that save valuable comparison time for users.

The results in Section 4 are of independent interest and can be applied to a more general learning
setting, where for some unknown linear parameter w*, given a set of points X and access to
comparison queries of any two points, the goal is to learn arg max c y (w*,z). E.g., in personalized
recommendations for coffee beans in terms of the coffee profile described by the coffee suppliers
(body, aroma, crema, roast level,...), while users could fail to describe their optimal coffee beans
profile, adopting the methodology in Section 4 can retrieve the ideal coffee beans for a user using
comparisons (where the mixing with “do nothing” is done by diluting the coffee with water and the
optimal coffee for a given profile is the one closest to it).
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When moving from the explicit representation of policies as mappings from states to actions to
a more natural policy representation as a weighted trajectory set, we then obtained the same
optimality guarantees in terms of the number of queries. While there could be other forms of policy
representations (e.g., a small subset of common states), one advantage of our weighted trajectory set
representation is that it captures the essence of the policy multi-objective value in a clear manner
via O(k) trajectories and weights. The algorithms provided in Section 5 are standalone and could
also be of independent interest for explainable RL [4]. For example, to exemplify the multi-objective
performance of generic robotic vacuum cleaners (this is beneficial if we only have e.g., 3 of them—
we can apply the algorithms in Section 5 to generate weighted trajectory set representations and
compare them directly without going through the algorithm in Section 4.).

An interesting direction for future work is to relax the assumption that the MDP is known in advance.
One direct way is to first learn the model (in model-based RL), then apply our algorithms in the
learned MDP. The sub-optimality of the returned policy will then depend on both the estimation
error of the model and the error introduced by our algorithms (which depends on the parameters in
the learned model).
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A  Proof of Lemma 1

Lemma 1. When e < 2”];2 , we have W*”W < 2k. By setting C, = 2k, the returned Q;’s satisfy

that |a2 — ail S 4k2€.

v*

Proof. Since m, is chosen as the policy with the highest personalized value among all the policies
which are optimal for single objectives (lines 1-6 of Algorithm 1), it directly follows that

(w*, V) > max <w*, V’Tei> — ke.

As 7% is the optimal personalized policy when the user’s preference vector is e;, we have that

k k k
vt = <w*,V”*> = Zw:‘ <V7r*,ei> < Zw:‘ <V”ei,ei> < <w*,ZV”ei> ,
=1 i=1 i=1

1=

where the last inequality holds because the entries of V™ and w* are non-negative. Therefore,
there exists i € [k] such that (w*, V™) > £ (w*, V™ ) = Lv*.

Then we have

e; 1 1
(w*, V™) > m%c <w*,V7r > — ke > %U* —ke> —u*,
1€

when € < 517. By rearranging terms, we have @v;}w < 2k.

By setting C, = 2k, we have |a; — o] (w*, V™) < Cye = 2ke and thus, |a; — o] < %26 |

B Pseudo Code of Computation of the Basis Ratios

The pseudo code of searching @;’s is described in Algorithm 4.
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Algorithm 4 Computation of Basis Ratios

1: input: (V™ ... V™) and C,
2: fori=1,...,d—1do

3: letl=0,h=2C, and @; = C,

4:  while True do

5: if @; > 1 then

6 compare 7y and 2741+ (1= 7-)mo; if 71 = Z-mip1+ (1 — 3-)m then h « &y, @  H5;
if ™ < &Liﬂ-i""l + (1 - aii)ﬂ'o then | + q;, a; +— %

7: else

8: compare ;41 and aim + (1 7&1)7’(0; if ai’/Tl + (1 764\1‘)’/T0 = g1 then h ai, (/)é\l “— #,
if ai’ﬂ'l + (1 — ai)ﬂ'o < Tit1 then [ + (/Jé\l', &1 «— %

9: end if

10: if “indistinguishable” is returned then

11: break

12: end if

13:  end while

14: end for

15: output: (Qq,...,04-1)

C Proof of Theorem 1

Theorem 1. Consider the algorithm of computing A defined in Eq (4) and any solution @ to
Az = e, and outputting the policy 7° = arg max,. o (W, V™), which is the optimal personalized
policy for preference vector w. Then the output policy ™ satisfying that

v = (w, V) <0 ((Vﬂ 1)6”% eé>

by using O(klog(k/e€)) comparison queries.

Proof. Theorem 1 follows by setting e, = 453 € and C, = 2k as shown in Lemma 1 and combining

the results of Lemma 2 and 3 with the triangle inequality.

Specifically, for any policy 7, we have

(@, V™) — (w', V™) < ‘(@7 VT — <,@(6), V’T>

+ (@, v7) = w',v)

3
CoaCd? |lw'|3 eq

LR Vs ) )

Cvkt vl
v*§2

<O((VE + 1) 0, (

<O((VE+ 1745 [l ( +9)).
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[lw” ]
(w=,V7)

v* — <w*,V”m> = (w*, V™) (<w’,V”*> - <w',V”m>>
Cyk* [w']|5 €

< {(w*, V™) (@ V) = (@, V™) + O((VE+ 1) |, (S 5)))

Since ||w’|| = and (w*, V™) > ﬁ from Lemma 1, we derive

v*§2

4 1.5 *
-0 ((\/E_,'_l)d—d(;-‘rB ||w*||2(CVk ”w ||26 _1_5))

4 1.4 /
<0 (<w*7 V7r1> (\/EJr 1)d7d(s+3 ||’LUI||2 (Cvk ||w H2€ + 5))
’1)*252

U*

2 %12
-0 <(CV ||U} |2)§(\/%+1)d+1366é> )

The first inequality follows from

(7707 = (Y (87 s (5 (5 ) o).
and applying (9) twice- once for 7* and once for 7. The last inquality follows by setting § =

1
CEES |w*||,e) 3
(Gl .

v

D Proof of Lemma 2

2 1
Lemma 2. If |a; — ;] < e and a; < Cy, for all i € [d— 1], for every § > 4C§ Cvd%egi, we have

_wr
(w*, V)

5(8) Iy Cacédég ||w/HZ€a / ’
[@®, V™) — (w', V)| < O(F=0—122 4+ VES [w'|,) for all w, where w' =
To prove Lemma 2, we will first define a matrix, A,

Given the output (V™ ... V™) of Algorithm 1, we have rank(span({V™,..., V™ })) = d;.

Let by, ...,b4—a; be a set of orthonormal vectors that are orthogonal to span(V™, ..., V™) and
together with V™ ... V™ form a basis for span({V™|r € I1}).

We define A1) e RI¥k a5 the matrix of replacing the last d — ds rows of A with by, ..., bi—d,,
ie.,

Vﬂ'lT
(alV’” — V‘n’g)T

A(full) — (ad5_1V7T1 _ deé)'l'
b

baas
Observation 2. We have that span(AT“) = span({V™|r € I1}) and rank(A(“) = d.
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Lemma 4. For all w € R satisfying AU""w = e, we have |w- V™ —w' - V7| < V&GS |w'|, for all
.

We then show that there exists a w € R satisfying A®™Ww = e; such that |@®) - V™ —w - V7| is
small for all 7 € II.

2 L1
Lemma 5. If |a; — a;| < e and a; < Cy, for all i € [d—1], for every § > 4C3 Cyd3ed there exists

3

5 2
CaCyd? ||w']] ea

52

aw € R¥ satisfying ATy = e, s.t. |1’D(5) VT —w - V”| < O( ) for all w.

We now derive Lemma 2 using the above two lemmas.
Proof of Lemma 2. Let w be defined in Lemma 5. Then for any policy 7, we have

3
CaCd w5 €a

@ VT —w VT 2

+VES [|[w']y)

< |39 VT —w v 4w VT VT < O

by applying Lemma 4 and 5. ]

E Proofs of Lemma 4 and Lemma 5

Lemma 4. For allw € R satisfying AT"Ww = ey, we have |w - V™ —w' - V| < V&G |w'|, for all
.

Proof of Lemma /. Since span( A = span({V™|7 € I1}), for every policy 7, the value vector can
be represented as a linear combination of row vectors of AT ie., there exists a = (ay,...,aq) € R?
s.t.

d
VT = Z aiAngIl) = AT (10)
i=1

Now, for any unit vector & € span(by,...,bs_q,), we have (V7™ &) < Vkd.

The reason is that at each round ds + 1, we pick an orthonormal basis p, . . ., pr_g, of span(V™, ... Vs )+
(line 8 in Algorithm 1) and pick w441 to be the one in which there exists a policy with the largest
component as described in line 9. Hence, [(p;, V™)| < ¢ for all j € [k — ds].

It follows from Cauchy-Schwarz inequality that (£, V™) = Ef;f (& p)) (g, V™) < VG

Combining with the observation that b1, ...,b4—4, are pairwise orthogonal and that each of them is
orthogonal to span(V7,... V74 ) we have

d d
Z a?:‘<V’T, Z aibid6>

i=ds+1 i=ds+1

which implies that

(11)




Since w’ satisfies Aw’ = e;, we have

AWy — (1,0,...,0, (b, w') ..., (ba_ag, w')) .

For any w € R* satisfying Af™Dw = e, consider @ = w + Zf:_ld‘s (b;,w'y b;. Then we have

A(full),[[) — A(full)w/'
Thus, applying (10) twice, we get
T-VT = ~TA(full)Ta _ ,w/TA(full)Ta —w V™.

Hence,

)

d
w- VT —w -V =|w-V" =@ V7| @ Zai(w—w)~A(ﬁ‘“)
i=1

d

Z a; <bi—d5 : w’}

i=ds+1

d
(0)
Y alwlly < VES ],

i=ds+1

where Eq (a) follows from (10), inequality (b) from Cauchy-Schwarz, and inequality (c¢) from applying
(11).

2 1
Lemma 5. If |&; — oi| < e and a; < Cy for all i € [d— 1], for every § > 4CECyd3 el there exists

3

5 2
CaCydZ ||w']] ca
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aw € RF satisfying ATy = e, s.t. ’@(5) VT —w - V”| <Of ) for all w.
Before proving Lemma 5, we introduce some notations and a claim.
e For any z,y € R, let 0(x,y) denotes the angle between x and y.
e For any subspace U C R¥, let 6(z,U) := minyep 0(z, y).
e For any two subspaces U,U’ C R*, we define 0(U,U’) as 0(U,U’) = max,ey mingey 0(z, ).

e For any matrix M, let M; denote the i-th row vector of M, M;.; denote the submatrix of M
composed of rows 7,7+ 1,..., 7, and M;. denote the submatrix composed of all rows j > 1.

e Let span(M) denote the span of the rows of M.

Recall that A € R?%F is defined in Eq (4) as
V’T\'lT
R (@ V™ — V)T
A= .

(adilvﬂ’l _ de)'l'
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which is the approximation of matrix A € R?** defined by true values of a, i.e.,

VTI'lT
(V™ — V)T
A=

(ad—lvﬂl _ Vﬂ'd)—r

We denote by AG) — Elzdé,A(‘s) = A4, € R4 >k the sub-matrices comprised of the first ds rows of
A and A respectively.

Claim 1. If |a; — o;| < €4 and o; < Cy, for all i € [d — 1], for every § > 4C§Cvd%e§, we have

6(span(AS)), span(A5))) < .. s, (12)

and s 5
B(span(AY)), span(A3))) < ne..s, (13)

4C,C2%dseq
where Ne, s = — 5.

&) and U = spaun(gl7 .. ,a) Let €4ce, Ynew > 0
and €gee < Y200/ (100), and assume that 0(&;, Ui_1) > Ynew fori =2,...,1, and that 0(&;, &) < €ace
fori=1,...,1.

Then,

To prove the above claim, we use the following lemma by [5].
Lemma 6 (Lemma 3 of [5]). Let U; = span(&y, ..

Q(Ul, ﬁl) < 21@ .

Ynew

Proof of Claim 1. For all 2 < i < dg, we have that

(A span(AQ)_ 1)) >0(A span(AL)_)) > sin(9(A, span(AT)_))))

ny
<a)‘A§)~Ui ® 5 § 5

S s s > :
[a®] ~ [a®|| ~ T@-avm =V, = o+ 10y
2 2

where Ineq (a) holds as u; is orthogonal to span(ggi)_l) according to line 8 of Algorithm 1 and Ineq (b)
holds due to ’A\l@ uz‘ = |V™ -u;| > 6. The last inequality holds due to ||a;—1V™ — V™|, <
aiy [V lp + [[Villy < (Ca + 1Cv.

Similarly, we also have

]

5 5
0(AP) span(AY) ) > Cot 10y

We continue by decomposing V™ in the direction of V™ and the direction perpendicular to V™.

: . ym . vt h._ v L. ym Il L. |yt
For convince, we denote v; := V™ - Vi, V=, Vi, Vo =V™ -V and v;- = HVl H2
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Then we have
O(AY AP = (V™ = V™ @ V™ — V) =0, V™ =V — v a v - vl - vty

If (a;V™ — Vl-H) (i VT — V;H) >0, i.e., a1 V™ — VZ-H and o1 V™ — Vi” are in the same
direction, then

- T I . T I
0A® A0 — |aret HO‘HV Villy " HO‘HV Vi H2
(A;”, A7) = |arctan ol — arctan ol
N e
< T - T (14)

_ e — e IIVT

vt
€ Cv
< alv, &
where Ineq (14) follows from the fact that the derivative of arctan is at most 1, i.e., aarg% =
lim arctana—arctanz __ 1 <1
a—T a—x 1422 =

Ineq (15) holds since v > (V™ w;)| > 4.

If (@ V™ — Vi”) (oo VT — V”) <0, ie, @1 V™ — VZ-H and a; 1 V™ — ViH are in the opposite

3

directions, then we have ‘ a1 V™ — Vi”’ —I—‘ o V™ — Vi” = [[(Qic1 — i) V™|, < € [V,
2 2
Similarly, we have
IO e N LR,
Q(Ag ),AE )) = |arctan T Z + arctan T 2
b3 b3
[&icvvm — v Hai_lvﬂl _yl
< 2y 2
B vy vi
< V™,
|07
6ozC’V
- 4

By applying Lemma 6 with €acc = 5(15ch7 Tnew = ma (&i: &) = (Aigr, A\i—i-l) (and (&, &) =
~ 1
(Aiy1, Ai11)), we have that when 6 > 10%((7& + 1)%Cvd§ €S,

2ds(Co + 1)C2 ¢,
< ( 52 ) v = MNew,6 >

Wl

O(span(AS)), span(A3)))

and s 5
0(span(A5), span(AL)) < e, 5.
This completes the proof of Claim 1 since C, > 1. ]
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Proof of Lemma 5. Recall that @(®) = arg min zs5),_e, [[Z[ly is the minimum norm solution to
AC) g —e.

Thus, (@, b;) =0 for all i € [d — ds).
Let A1,...,Ag;—1 be any orthonormal basis of span(Aé?)).

We construct a vector w satisfying AWy = e; by removing ©(®)’s component in span(Ag?)) and
rescaling.

Formally,
o) — bt (@O, 0) A

:1_V771'(Zd6 1<A(6) )\>)\) (16)

It is direct to verify that Ay -w = V™ -w =1 and A; -w = 0 for i = 2,...,ds. As a result,
Ay = e;.

Combining with the fact that @(®) has zero component in b; for all i € [d— ds], we have AWy = e;.

According to Claim 1, we have
6(span(A5)), span(AS))) < e, 5.
Thus, there exist unit vectors Ay, ... ,Xdé_l € span(gg?)) such that O(\;, \;) < Ney 6
Since A©®)H(®) = e1, we have ©(%) . X; =0 for all i = 1,...,ds — 1, and therefore,
-] -0 =50 2 [

This implies that for any policy 7,

ds—1
Ve ST @D x| < IVl Vs @9 nens < Co/ds [ @9 s
i=1

Denote by vy =V . fii*l @9, \;) \;), which is no greater than Cy+/ds ||[@® ||, 7. .
=1 9 '€a,
We have that

8 vr 7| < G0 yr_ L ey +‘1@<6>.Vw_w.vw
1—v 1—7
e, v 1 RS e
n A VT

<= T ;( )

Y82, Cv | CvVds [@]]; ne 5
< +

1—7v 1—v

=2(Cy ||@?||, + 10y Vs |5 ne, s (a7)

where the last equality holds when Cy+/ds || @®]|, e, s < 3-
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Now we show that H@(‘S)H2 < C'||w'||, for some constant C.

Since @® is the minimum norm solution to A®z = e1, we will construct another solution to
Az = ey, denoted by @y in a simillar manner to the construction in Eq (16), and show that
[@oll, < Cflw’l.

Let &1,...,&4,—1 be any orthonormal basis of span(ggf)).

We construct a @ s.t. A® @, = e, by removing the component of w’ in Spal’l(zz[g?)) and rescaling.
Specifically, let
Ty = w' — Z?i;l (W', &) & . (18)
1= (v (20 &) &)
Since Ay’ = ey, it directly follows that <ﬁ17@0> = (V™ @y) = 1 and that <A\i,7:U\O> = 0 for

1= 2, .. .,d5, i.e., A(é)’@o = e].

Since Claim 1 implies that Q(Span(ﬁg?)), span(Ag;))) < Ne, 5, there exist unit vectors &, ... de €

span(Ag?)) such that 6(&;,&) < Ne,.5-
As w' has zero component in span(Aéé)), w’ should have a small component in span(ﬁéﬂs)).

In particular,

(W', &) = ‘<w/7€i - gz>

S ||w/||2 7750475 ’

which implies that

ds—1
D &) &l < Vs Wy 7en s
=1 2

Hence

< Cvvds ||w']|yMey.s -

ds—1
<Vﬂ1a(z <w/7€i>€i)>

i=1

As a result, [|@oll, < 2 ||w'|l, when Cy+/ds [|w'||y e, s < %, which is true when €, is small enough.

4k>e

v*

According to Lemma 1, ¢, < € > 0ase—0.
Thus, we have |’@(5)H2 < ||@oll, < 2 ||w'||, and Cy/ds ||@(5)||2776m5 <1l
Combined with Eq (17), we get

‘@“)-V”—w-w

=0 ((Cv [W/lly + DOy Vs [0/l 7, 5) -

4C,Cidse,

Since Cy ||w'||, > [(V™,w')| = 1, by taking 7., s = —*5——= into the above equation, we have
4 3 2
‘@(5) VT —w- V™| =0 <Candi2||w |2€a> ’
which completes the proof. [ ]
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F Proof of Lemma 3

Lemma 3. If |a; — a;| < €q and o; < C,, for all i € [d — 1], for every policy = and every
2 1
6 >4C¢3 Cvd%eo‘i, we have

@G-V — @ V| < O((VE + 1)1 Ce®)

4 % e
CoCydy ||w 2
52

where €®) = 4 VS |lw'|l, is the upper bound in Lemma 2.

Proof. Given the output (V™ ... V™) of Algorithm 1, we have rank(span({V™,..., V74 })) = ds.

For i = ds+1,...,d, let ¥; be the normalized vector of V™i’s projection into span(V™,..., V7i-1)+
with ([l = 1

Then we have that span(V7™, ... V™=t ;) = span(V™, ..., V™) and that {¢;|i =ds + 1,...,d}
are orthonormal.

For every policy 7, the value vector can be represented as a linear combination of Ay, ..., A4y, Yas+1,-- -, Yd,

. . . d - d
i.e., there exists a unique a = (a1,...,aq) € R s.t. V7 =30 a;A; + D ieds i1 @it

Since 1); is orthogonal to v; for all j # ¢ and ; is are orthogonal to span(gl, . 72(16), we have
a; = <Vﬂ,wl> for i > ds + 1.

This impliese that

ds d d
S VT (50 NS AN 4 7. S b (50 .
‘(wﬂf ) <w ,V > < ;az <<w7 Z> <w ,AZ>) + i:%:ﬂaz (0, ¥;)| + i:%;laz <w ,z/;l> )

(a) (b) (e)

Since A®) @ = AO GO = ey, we have term (a) = 0.
We move on to bound term (c).

Note that the vectors {¢;|i = ds+1,...,d} are orthogonal to span(V7™, ..., V™) and that together
with V7™ ... V™4 they form a basis for span({V™|r € II}).

Thus, we can let b; in the proof of Lemma 2 be 9;4,.
In addition, all the properties of {b;|i € [d — ds|} also apply to {¢;|i =ds +1,...,d} as well.
Hence, similarly to Eq (11),

Consequentially, we can bound term (c) is by

(c) < Vké ”1’17(5)”2 = g\/E(usle
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since H@(‘S)HQ < 3 ||lw'||, when Cy+/dy ||w'|[37e,.,5 < % as discussed in the proof of Lemma 5.
Now all is left is to bound term (b).

We cannot bound term (b) in the same way as that of term (c) because ||@||, is not guaranteed to
be bounded by [|w’|,.

Fori=ds+1,...,d, we define
€ = ‘<¢i7Ai> :

For any i,j =ds + 1,...,d, v; is perpendicular to V™ thus ’<1/)i, EJ>‘ = (Y, Q1 V™ = V)| =
[{(1;, V™)|. Especially, we have
€ = ‘<¢za A\z>

Let A” =4 - Z] ds 11 <A\i71/)j> 1 denote A;’s projection into span(//l\l, ce //l\ds).

= |<'¢)Zvvﬂl>| .

Since Ei has zero component in direction v; for j > 7, we have A\‘Zl = EZ- — E;:dﬁl <EZ, 1/1j> ;.

Then, we have
0= <LE,&> =0 - AL‘ + - | ' <A\i7¢j>¢j =w-A - 4 (V™05 (W, 95)

where the first equation holds due to A = ey.

By rearranging terms, we have

(V™ i) (D, i) = Z (V7 5) (@, 45 - (19)
j=ds+
Recall that at iteration j of Algorithm 1, in line 8 we pick an orthonormal basis p1,..., pr+1—;
of span(V™, ..., V™i-1)L. Since 1; is in span(V™, ..., V™i-1)L according to the definition of 1;,
|(V™ 4h;)| is no greater then the norm of V™’s projection into span(V ™, ..., V™i-1)L,

Therefore, we have

[(V™ )] < Vk  max (V™ o) < Vk  max max(’<V“ﬂl,pl>

le[k+1—7] lelk+1—j]

) <V7T_pl ; *Pl>‘)

DRIV, ) € VRV, 05| = Ve, 20)

where inequality (d) holds because 7' is the optimal personalized policy with respect to the
preference vector p;, and Equation (e) holds due to the definition of u; (line 9 of Algorithm 1).
Inequality (f) holds since (V™,1;) is the norm of V™ ’s projection in span(V™,...,V™-1)L and
u; belongs to span(V™, ..., VTi-1)L,
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By taking absolute value on both sides of Eq (19), we have

i—1

(@ v = @ Al = 0 (V) (89| < |0 Al ). @
j:d5+1 j= ds+1
We can now bound ‘@ . A\” as follows.
]@.&'] = |6® ﬁ!] (22)
~ d ~ ~
= a® . (4~ Y <Ai,¢j>l/}j) - ‘@(6) . Ai‘ (23)
j=ds+1
< |a® .Ai'Jr ‘@«s). g,_A.)
< ' A+ (@) —w) - A+ 29 (A - 4y
<0+ (Cot Dsup (00 —wf)- V7 +OVH@5
< C'Cue

for some constant C’ > 0.

Eq (22) holds because A® @ = AOG®) = e; and A\‘ll belongs to span(zzl\(‘s)). Eq (23) holds because
@ is the minimum norm solution to Az = e;, which implies that @ - ¢; = 0. The last
inequality follows by applying Lemma 2.

We will bound ¢; |{@, 1;)| by induction on i =ds +1,...,d.
In the base case of i = dgs + 1,

€ars1 (B, Yay )] < |- Al 4| < C'Coe®
Then, by induction through Eq (21), we have for i = ds + 2,...,d,
& |(@,9:)| < (VEk+ 1) 410" Crel®

Similar to the deviation of Eq (20), we pick an orthonormal basis p1, .. ., ppr1_; of span(V™ ... V7i-1)L
at line 8 of Algorithm 1, then we have that, for any policy ,

(VT )l < VE max (VT o) < VEVT )| < VRV 00)] = Ve

le[k+1—1]

Then we have that term (b) is bounded by

d d
G = S el @< S [Vl 1.6
i=ds+1 i=ds+1

d
<VE > @) < (Vi+ 1)1 0 Cre®

i=ds+1
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Hence we have that for any policy ,

(@, V)~ (8, V7)) < (VE+ )40 Cue® 4 SV ol

G Proof of Theorem 2

Theorem 2. Consider the algorithm of computing A defined in Eq (4) and any solution W to
AP g = e, for 6 = k3es and outputting the policy 7 = arg max, c <@(5), V”>, Then the policy

7o satisfies that
(%) 13 1
v — (W, VT SO(kTeg) .

Proof of Theorem 2. As shown in Lemma 1, we set C,, = 2k and have ¢, = 47’ff5. We have
|lw'|| = <w‘|*w;|,|,l> and showed that (w*, V™) > £- in the proof of Lemma 1.

Cy k°|[w* || e

1
By applying Lemma 2 and setting § = (v72) 3, we have

@(9) * @(8)
v* — <w*, VT > = (w*, V™) (<w',V7r > - <w’, VT >)

. 2(®) wkS ||w* .
< (W', V™) ((«ﬁ“), v - <@<5>, VT > +O(VE 'l (W)3)>

v*2

CVR w*|l, €

=O(Vk [[w|, (F— 5—2)).

H Dependency on ¢

In this section, we would like to discuss a potential way of improving the dependency on € in
Theorems 1 and 2.

Consider a toy example where the returned three basis policies are m; with V™ = (1,0,0), m
with V™ = (1,1,1) and 73 with V™ = (1,7, —n) for some n > 0 and w* = (1, w9, ws) for some
Wa, W3.

The estimated ratio @ lies in [1 + wg + w3 — €, 1 + wg + w3 + €], and Qs lies in [1 + nwy — nws —

€, 1 + nwy — nws + €]. Suppose that @1 = 1+ wy + w3 + € and ds = 1 + nws — nwz + €.

By solving
1 0 0 1
wy+wz+e -1 —1|lw=1]0
nwg —nNws +€ —1n N 0
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we can derive @y = wy + §(1 + %) and w3 = w3 + §(1 — %)
The quantity measuring sub-optimality we care about is sup, [(w, V™) — (w*, V™)|, which is upper
bounded by Cvy ||w — w*||,. But the ¢, distance between w and w* depends on the condition number

of E, which is large when 7 is small. To obtain a non-vacuous upper bound in Section 4, we introduce
another estimate @W(®) based on the truncated version of A and then upper bound H@(‘S) —w*||, and

sup, |<@7 VT — <f@(5), V’T>| separately.

However, it is unclear if sup, |(@, V™) — (w*, V™)| depends on the condition number of A. Due to
the construction of Algorithm 1, we can obtain some extra information about the set of all policy
values.

First, since we find 7 before w3, 7 must be no greater than 1. According to the algorithm, V™2 is
the optimal policy when the preference vector is us (see line 11 of Algorithm 1 for the definition of
ug) and V'™ is the optimal policy when the preference vector is uz = (0,1, —1). Note that the angle
between uy and V™2 is no greater than 45 degrees according to the definition of us. Then the values
of all policies can only lie in the small box B = {z € R?| |ug | < |[(u2, V™), |u;)r:r| < us, V™3)[}.
It is direct to check that for any = € B, |{(@, z) — (w*,z)| < (1++/2)e. This example illustrates that
even when the condition number of A is large, sup,, |(@, V™) — (w*, V™) can be small. It is unclear if
this holds in general. Applying this additional information to upper bound sup,, [{w, V™) — (w*, V7™)|
directly instead of through bounding Cy ||W — w*||, is a possible way of improving the term €3.

I Proof of Theorem 3

Theorem 3. Given a set of k-dimensional vectors M C R* and a distribution p over M, C4(M, p)
outputs M' C M with |[M'| < k+ 1 and a distribution q € Simplex satisfying that B, (1] =
E,p (1] in time O(|M| k3).

Proof. The proof is similar to the proof of Carathéodory’s theorem. Given the vectors pq, ..., g1
picked in line 3 of Algorithm 2 and their probability masses p(y;), we solve z € R¥*2 g.t. Zfilz x; (o
1) = 0 in the algorithm.

Note that there exists a non-zero solution of x because {yu; o 1]i € [k + 2]} are linearly dependent.
. . d+2
Besides, z satisfies ) ;] x; = 0.

Therefore,
d+2 d+2
D o) = vxi) = > pls)-
i=1 i=1
For all 4, if z; < 0, p(u;) —va; > 0 as v > 0; if ; > 0, then p&"i) < p&ifo) = % and thus

p(pi) — vz > 0.

Hence, after one iteration, the updated p is still a probability over M (i.e., p(u) > 0 for all u € M and
. d+2 d+2 d+2 d+2
Y penr P(M) = 1). Besides, S0 (p(pi) = vaa)ps = Y507 plpa)ie — 7 Y507 wapss = Yooy (i) -

Therefore, after one iteration, the expected value E,,p, (1] is unchanged.
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When we finally output (M’, q), we have that ¢ is a distribution over M and that E,q [11] = Epvp (1]

p(Hig)

Due to line 6 of the algorithm, we know that x;, > 0. Hence p(us,) — v2io = p(ttio) — == i, = 0.
0

We remove at least one vector y;, from M and we will run for at most |M| iterations.

Finally, solving z takes O(k®) time and thus, Algorithm 3 takes O(|M|k3) time in total. |

J Flow Decomposition Based Approach

We first introduce an algorithm based on the idea of flow decomposition.

For that, we construct a layer graph G = ((L(® U ... U LH+D) E) with H 4 2 pairwise disjoint
layers L(© ... L+ where every layer t < H contains a set of vertices labeled by the (possibly
duplicated) states reachable at the corresponding time step ¢, i.e., {s € S|Pr(S; = s|Sp = so) >

0}.

Let us denote by 2" the vertex in L® labeled by state s.

Layer LUH+1) = {xiHH)} contains only an artificial vertex, xiH'H), labeled by an artificial state
*.
For t =0,...,H — 1, for every e LW, xSH) € LD we connect ) and xSH) by an edge

labeled by (s, s’) if P(s'|s,7(s)) > 0. Every vertex 2" in layer H is connected to 2" ™) by one
edge, which is labeled by (s, *).

We denote by E®) the edges between L(Y) and L*+1). Note that every trajectory 7 = (sg, s1,...,51)

corresponds to a single path (xgg), mg), e ,xﬁ’;’), xiHH)) of length H 4 2 from xffj) to 2D

This is a one-to-one mapping and in the following, we use path and trajectory interchangeably.
The policy corresponds to a (;vffj), xSkHH))—ﬂow with flow value 1 in the graph G. In particular, the
flow is defined as follows.
When the layer ¢ is clear from the context, we actually refer to vertex z{) by saying vertex s.
Fort=0,...,H — 1, for any edge (s,s') € E®, let f: E — R* be defined as

f(s, Sl) = Z q" (1), (24)

T:(s}',erl):(s,s’)

where ¢™(7) is the probability of 7 being sampled.

For any edge (s, *) € EM) let f(s,%) = 2 (s,syepui-n f(s',5). It is direct to check that the function
f is a well-defined flow. We can therefore compute f by dynamic programming.

For all (sq,s) € E©), we have f(sg,s) = P(s|so,7(s0)) and for (s,s') € E®),

f(s,s") = P(s'|s,m(s)) > f(s",5). (25)

s“:(s”,s)EE(tfl)

Now we are ready to present our algorithm by decomposing f in Algorithm 5.
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Each iteration in Algorithm 5 will zero out at least one edge and thus, the algorithm will stop within
|E| rounds.

Algorithm 5 Flow decomposition based approach

1: initialize @ « 0.

2: calculate f(e) for all edge e € E' by dynamic programming according to Eq (25)

3: while Je € FE s.t. f(e) >0 do

4:  pick a path 7 = (50,81, ...,8m,%) € L(O x LM x ... x LHAD st f(s;,8141) >0Vi >0
5. fr < ming iy - f(€)

6: Q< QU{(r, fr)}, fle) < f(e)— fr forein 7

7: end while

8: output @

Theorem 5. Algorithm 5 outputs Q satisfying that 3 ¢ \co fr®(7) = V7™ in time O(H?|S|?).

The core idea of the proof is that for any edge (s, s') € E®), the flow on (s, s) captures the probability
of St = s A Si41 = s’ and thus, the value of the policy V™ is linear in {f(e)|e € E}.

The output @ has at most |E| number of weighted paths (trajectories). We can further compress
the representation through C4, which takes O(|Q| k%) time.

Corollary 2. Ezecuting Algorithm 5 with the output Q first and then running C4 over {(®(7), f-)|(7, fr) €
Q} returns a (k + 1)-sized weighted trajectory representation in time O(H? |S|> + k3 H |S|?).

We remark that the running time of this flow decomposition approach underperforms that of the
expanding and compressing approach (see Theorem 4) whenever |S|H +|S|k* = w(k*+k|S]).

K Proof of Theorem 5

Theorem 5. Algorithm 5 outputs QQ satisfying that Z(r,fT)eQ fr®(7) = V™ in time O(H?|S|?).

Proof. Correctness: The function f defined by Eq (24) is a well-defined flow since for all
t=1,...,H, for all s € L) we have that

fls,8) = > Yo D= > d

s'e L+ (s,s")€E®) s’€L(t+1):(s,8")EEM® T:(s] 57, 1)=(5,5") Tis]=s

= Z f(s")s).

s"EL(”’l):(S”,S)GE(”*U
In the following, we first show that Algorithm 5 will terminate with f(e) =0 for all e € E.

First, after each iteration, f is still a feasible (z(?), 2(#+1))-flow feasible flow with the total flow
out-of (9 reduced by f,. Besides, for edge e with f(e) > 0 at the beginning, we have f(e) > 0
throughout the algorithm because we never reduce f(e) by an amount greater than f(e).

Then, since f is a (z(?), 2(#+1))-flow and f(e) > 0 for all e € E, we can always find a path 7 in
line 4 of Algorithm 5.
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Otherwise, the set of vertices reachable from z(®) through edges with positive flow does not contain
zH+1D) and the flow out of this set equals the total flow out-of z(?). But since other vertices are not
reachable, there is no flow out of this set, which is a contradiction.

In line 6, there exists at least one edge e such that f(e) > 0 is reduced to 0. Hence, the algorithm
will run for at most |E| iterations and terminate with f(e) =0 for all e € E.
Thus we have that for any (s,s') € E®)| f(s,s') = D (o f)EQH(ST 571 )=(5,57) I+

t4+1

Then we have

=Y Y Rism(s) > q" (1)

t (s,8")EE®) TZ(SI,SZ_'_l):(S,Sl)

= R(s,m(s)) >, fr
t=0 (s,s")cE(®) (7, fr)€Q:(s] 187, 1)=(5,5")
H-1
= > (X R(sTm(sD))
(r.f-)eQ =0
= fr®(7)
(r.fr)eQ

Computational complexity: Solving f takes O(|E|) time. The algorithm will run for O(|E|)
iterations and each iteration takes O(H) time. Since |E| = O(|S|* H), the total running time of
Algorithm 5 is O(|S|*> H2). C4 will take O(k3 |E|) time. ]

L Proof of Theorem 4

Theorem 4. Algorithm 3 outputs F) and B satisfying that ‘F(H)‘ <k+land) ) cpom B (1)®(T) =
V™ in time O(K*H |S| + kH |S|?).

Proof. Correctness: C4 guarantees that ’F(H)‘ <k+1.

We will prove ) pom) ﬁﬁ’”@(f) = V™ by inductionon t =1,..., H.

Recall that for any trajectory 7 of length h, J(7) = ®(7) 4+ V (s}, H — h) was defined as the expected
return of trajectories (of length H) with the prefix being 7.
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In addition, recall that Jpu) = {J(r 0 s)|r € F) s € S} and Prv g was defined by letting
Prw g (T 0s) = BO(T)P(s|s], w(s])).
For the base case, we have that at t =1

V™ = R(so,7(s0)) + ZP(S\SO,W(SO))V s, H—1) ZP sls0, m(50))J((s0) © 5)
seS seS

= pro o ((so) 0s)J((s0)os) = Y BU(r)J(7).

seS reF )

Suppose that V™ =Y, @ B (7/)J (') holds at time ¢, then we prove the statement holds at
time ¢ + 1.

Yo B8O I = Y BOEN@E) +VT(sT H — 1))

TIEF®) TIEF®)
) (@(H) + 3 Pslsi w(s7)) (R(s7'm(s7)) + V7 (s, H t)))
FrEF®) seS
= 3 DB PGslst w(s ) (D) + ROsT w5 ) + V(s H 1))
e F(t) s€S
= 3 ST BOE)P(sls  w(s7) (@(r 0 5) + V(s H — 1))
e F(t) s€S
Z ZpF(f,)ﬁ(z) (7’/ o S)J(T/ o S)
T'eF(t) s€S
= Y pEI()I(r).
TeF(t+1)

By induction, the statement holds at ¢+ = H by induction, ie., V7 = > o BgH)J(T) =
H

S reron B 0(r).

Computational complexity: Solving V7 (s, h) for all s € S, h € [H] takes time O(kH |S|*). In

each round, we need to call C4 for < (k + 1) |S| vectors, which takes O(k* |S|) time. Thus, we need

O(K*H |S| + kH |S|?) time in total. n

M Example of maximizing individual objective

Observation 3. Assume there exist k > 2 policies that together assemble k linear independent value

vectors. Consider the k different policies 7y, ..., 7} that each ©} mazimizes the objective i € [k].
Then, their respective value vectors V¥, ..., V,* are not necessarily linearly independent. Moreover,
if Vit, ..., Vi are linearly depended it does not mean that k linearly independent value vectors do not
exists.

Proof. For simplicity, we show an example with a horizon of H = 1 but the results could be extended
to any H > 1. We will show an example where there are 4 different value vectors, where 3 of them
are obtained by the & = 3 policies that maximize the 3 objectives and have linear dependence.
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Consider an MDP with a single state (also known as Multi-arm Bandit) with 4 actions with
deterministic reward vectors (which are also the expected values of the 4 possible policies in this
case):

8 1 85/12 7.083 1
r)= 4], r@=[2], r@) =256 |~/[4167]|, r@a)=13
2 3 35/12 2.9167 2

Denote 7@ as the fixed policy that always selects action a. Clearly, policy 7! maximizes the first
objective, policy 72 the third, and policy 73 the second (7* do not maximize any objective). However,

e 7(3) linearly depends on 7(1) and r(2) as

o In addition, r(4) is linearly independent in r(1),7(2): Assume not. Then, there exists 3, f2 € R

861 + B2 1
Bror(1)+Ba-r(2) = (4814262 | = (3| =r(4).
261 + 3B; 2

Hence, the first equations imply 82 = 1 — 831, and 451 + 2 — 1651 = 3, hence £, = —% and
B2 = g Assigning in the third equation yields —% + 5 = 2 which is a contradiction.
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