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Abstract: This paper considers the problem of cooperative navigation and mapping by
a heterogeneous team of multiple autonomous underwater vehicles (AUVs). We address
a form of cooperative Simultaneous Localization and Mapping (SLAM) in which only
one vehicle is responsible for maintaining estimates of themap and poses for each robot.
By combining inter-vehicle measurements with observations of the environment made by
each vehicle, the result is a better knowledge of the poses ofeach robot in the group. We
present results of an experiment in which three land robots perform cooperative SLAM in
a large, ambiguous environment. Comparisons with ground truth are provided.
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1. INTRODUCTION

Due in large part to the spatial benefits, a great deal
of attention of late in the robotics community has
been focused on developing networks of coordinated
autonomous vehicles. There are a wealth of applica-
tions for air, surface, and sub-sea systems (Fiorelli
et al., 2003) which would benefit from such an ap-
proach. Among the components necessary for achiev-
ing autonomy is the ability to navigate reliably and
efficiently in environments for which there is little or
noa priori information.

Motivated by this requirement, much effort has been
spent on addressing the problem of single vehicle
localization by posing it in a probabilistic state es-
timation framework. A number of techniques have
been presented for both local navigation as well as the
so-called global “kidnapped robot” problem of local-
ization in a completely unknown environment, notably
the work detailed in (Borensteinet al., 1996; Kon-
lige, 1999). Localization for the case of a team of
robots, though, is a relatively new field. For vehicles
operating in ana priori known environment, in (Foxet
al., 2000) the authors use Monte Carlo particle filters
to represent the probability distributions for each of

the vehicles in a group. Inter-vehicle observations are
incorporated to improve state estimation, though the
corresponding vehicle correlation is ignored, result-
ing in beliefs which may suffer from overconfidence.
Alternatively, in (Roumeliotis and Bekey, 2002) the
authors present a method which relies upon a single
Kalman Filter distributed among the vehicles in the
group. Upon the observation of one robot by another, it
is shown that by exchanging only individual estimates
of pose and covariance, inter-vehicle correlation can
still be maintained.

1.1 AUV Navigation

Due to the unique characteristics of the ocean envi-
ronment, many of the technologies used for land and
air-based vehicles (e.g.GPS and laser range finders)
are not available options underwater. Traditionally,
position is estimated from acoustic time-of-flight mea-
surements, requiring the deployment and calibration
of a network of transponders. Long baseline (LBL)
(Milne, 1983) functions at distances of up to10 km
from the beacon array though the period between mea-
surements can be large (10 seconds) and the accuracy



is generally limited to the order of1 meter. It is pos-
sible to achieve millimeter accuracy using higher fre-
quency variations on LBL but for distances no greater
than100 meters (Whitcombet al., 1998).

The pose estimate can be improved through the incor-
poration of dead reckoning sensors including gyros,
Inertial Navigation Systems (INS), and Doppler Ve-
locity Logs (DVL) (Larsen, 2000). The correspond-
ing measurements of heading, angular rates, and ve-
hicle velocity provide a dead reckoned pose esti-
mate (Whitcombet al., 1998) which is prone to error
drift. Research has recently been presented to reduce
the localization error using vision-based mosaicing
(Fleischer, 2000; Eusticeet al., 2004). While such
implementations offer a promising alternative to the
need to deploy beacon arrays, they do not address the
case of cooperative localization.

Our approach to moving baseline navigation utilizes a
heterogeneous team of vehicles to achieve improved
localization accuracy without requiring an LBL net
or that each vehicle be equipped with a plethora of
sensors. Through the use of a logical extension to a
delayed state Kalman Filter (Leonardet al., 2002),
we consider a state estimation scheme based upon
inter-vehicle measurements and communication. With
one or more vehicles capable of performing Simulta-
neous Localization and Mapping (SLAM), the corre-
sponding navigation precision can then be exploited
to obtain more accurate estimates of pose for each
vehicle in the group.

By formulating moving baseline navigation in a
Kalman Filter framework, our work is closely aligned
with that of (Roumeliotis and Bekey, 2002). The ap-
proaches differ in that we directly incorporate SLAM
capabilities which utilize inter-vehicle measurements
as well as observations of the environment made by
each robot in the group. Notably, our work is unique
in a number of areas including the use of

• multiple vehicle delayed state kalman filter for
cooperative SLAM

• perceptual grouping and feature tracking based
upon measurements made concurrently by mul-
tiple robots

• joint compatibility branch and bound for multi-
ple robot data association

In the remainder of the paper, we present the general
structure of the filter as well as the methods we have
chosen for data association and the incorporation of
measurement data for state estimation. Results are
then presented for a land-based experimental valida-
tion of our algorithm for a team of three vehicles
operating in an indoor environment.

2. PROBLEM FORMULATION

Consider a heterogeneous group comprised of M ve-
hicles, categorized as eitherslavesor masters. The
so-calledslave robots are those which are equipped

with a limited set of sensors both for dead reckoning
as well as observing the environment. Additionally,
their dynamics may be poorly understood resulting
in models which are relatively inaccurate. As a result
of these deficiencies,slavevehicles are thus prone to
error when navigating individually in large environ-
ments.

The master vehicles, on the other hand, are better
suited for navigation, having acceptable dead reckon-
ing capabilities as well as an accurate sensor pack-
age for environmental observations. Additionally, they
may be able to perform SLAM or implement one
of the aforementioned vision-based navigation algo-
rithms. Critical to our moving baseline algorithm, we
also require thatmastervehicles have a means of mak-
ing inter-vehicle measurements which, in the case of
AUV’s, may be provided by the ability to acoustically
interrogate the other members of the group. It is also
assumed that there exists a communications channel
over which sensor data is shared.

2.1 Simultaneous Localization and Mapping

We specifically address the case in which one of the
mastervehicles benefits from improved navigational
accuracy as a result of the ability to perform SLAM.
There are several approaches for implementing SLAM
(Montemerloet al., 2002; Thrun, 1998) and in this pa-
per we consider the feature-based formulation which
has previously been implemented for underwater ve-
hicles (Williamset al., 2000; Newmanet al., 2003).
The addition of inter-vehicle measurements together
with shared observations of the environment made by
the other robots in the group provides a context for
performing cooperative SLAM. Figure 1 provides a
simple sketch of a team of three robots in which one
of themastervehicles is able to initialize a point fea-
ture using observations made by the other vehicles in
conjunction with inter-vehicle measurements.

3. MOVING BASELINE NAVIGATION

Consider a group ofM = 3 vehicles, oneslaveand
two masters. Let the state,x, include a pose (posi-
tion and orientation) history for each of the vehicles
together with the mapped features. Represented by a
Gaussian distribution, the joint pose and map posterior
is then described by the mean,x̂, and covariance,P
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Fig. 1. Moving baseline representation of a group of
two mastervehicles and oneslave. The master
vehicle at the right is able to map the point feature
using the individual observations made by the
other members of the group together with the
inter-vehicle measurements.
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The sub-blocks of the covariance matrix correspond
to the smoothed vehicle and feature uncertainty and
cross-correlation. More specifically, as shown in Equa-
tion 3, P

〈n〉
vf [k|k] includes the correlation between

features and the pose history for each vehicle in
the group. Similarly,P〈n〉

vv [k|k] incorporates the co-
variance estimate for each vehicle as well as the
cross-correlation for each state in the trajectory his-
tory.
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3.1 Kalman Filter

The standard extended Kalman filter (Gelb, 1982)
time prediction and measurement update steps are
used to manage the joint prior over pose history and
features. Themastervehicle performing SLAM prop-
agates the state estimate for each robot in time via

a nonlinear discrete time model withµvi
[k + 1] the

communicated inputs. Errors in the dynamics are rep-
resented by white Gaussian noise,wvi

∼ N(0,Qvi
).

x
v

k+1
i

[k+1] = f(xvk
i
[k], k)+g(µvi

[k+1],wvi
) (4)

The mean and covariance are then propagated with
the standard extended Kalman filter time propagation
step. The appropriate Jacobians are used as presented
in (Smith et al., 1990) to manage the correlation
between both pose history and features.
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Both inter-vehicle and feature observations made ei-
ther by the SLAM robot or another member of the
group are used to update the state estimate. Vehicle
and feature measurements, represented aszv andzf ,
respectively, are assumed to be nonlinear in the state
and corrupted by zero mean white Gaussian noise,
vf,v

vi
∼ N(0,Rf,v

vi
), with the uncertainty varying with

the vehicle.
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The mean and covariance are then updated in the
standard manner
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3.2 Feature Initialization

With an estimate of recent pose history for each mem-
ber of the group, the SLAM robot builds the map
of the environment using observations made by each
vehicle. Measurements from multiple vantage points
are particularly useful in the case where the sen-
sors provide limited observability as is the case with
range-only sonar used commonly for underwater ve-
hicles.

Consider that a new feature is to be added to the map
using measurements made by two vehicles at differ-
ent points in time. Using the corresponding vehicle
pose estimates, the SLAM robot initializes the feature
based upon a nonlinear spatial relationship such as
those presented in (Leonardet al., 2002) for the case
of range-only measurements.

x̂fl+1
[k] = g(x̂vi

[ki], x̂vj
[kj ], zi, zj)

The mean state vector and covariance matrix are
amended, maintaining the cross-correlation between
feature state and vehicle poses.
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whereRi,j is a block-diagonal matrix representing the
measurement noise strength.

3.3 Data Association

In order to perform the filter update step with ei-
ther inter-vehicle or feature measurements, a means
of performing data association is necessary. Posing
the problem as a search in correspondence space, the
SLAM robot must match a set ofm measurements,
Zm = {zf

1 (vi), z
v
2(vj), . . . , z

f
m(vk)}, possibly made

by different vehicles, with the vehicles and known
features while identifying spurious measurements for
perceptual grouping. The search is then for the hy-
pothesis

H = {α1, α2, . . . , αm}

which correctly defines the correspondence

{(zf
1 (vi), fα1

), (zv
2(vj), vα2

), . . . , (zf
m(vk), fαm

)}

While there are a number of algorithms for esti-
mating this correspondence, we use the joint com-
patibility branch and bound (JCBB) test (Niera and
Tard́os, 2001). In considering the correlation between
each of the measurement pairings, JCBB is well suited
for moving baseline navigation, as the compatibility
of observations made by more than one robot must be
taken into account. At the cost of added computational
complexity, JCBB is more robust to spurious pairings,
particularly in the presences of increased pose uncer-
tainty.

Joint compatibility generates a hypothesis incremen-
tally, measuring the feasibility of each candidate pair-
ing with animplicit measurement function

ξiαi
(x,h

f,v
i )) = 0

relating the state and measurement. The correspond-
ing innovation is then given byνiαi

= ξiαi
(x̂, z

f,v
i ).

The compatibility of the candidate pairing,αi, with
the current hypothesis,H = {α1, α2, . . . , αi−1}, is
ensured using a vector-valued representation of the
implicit function and innovation
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The Mahalanobis metric provides a measure of the
accuracy of the current hypothesis and is required to
fall below a Chi-squared threshold.
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The innovation covariance for the joint hypothesis,
CHi

, serves as a weighting factor and can be generated
incrementally with the hypothesis.
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In this manner, JCBB performs a depth-first search for
the correct hypothesis, only incorporating candidate
pairings which satisfy (10) and are thus compatible
with the current hypothesis.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of moving base-
line navigation, experiments were performed using a
team of three land-based vehicles. Two B21 mobile
robots served as themasterswhile a single ATRV-
Jr functioned as theslave, both of which are manu-
factured by iRobot. Each vehicle was equipped with
wheel encoders for measuring odometry and a SICK
laser scanner for observing the environment. The
slave’s scanner had a maximum range of 8 meters
while the range for the twomasterswas 25 meters.
An additional laser scanner with a maximum range of
8 meters was mounted on each B21 for the purpose
of making inter-vehicle measurements, as shown in
Figure 2. Pole markers placed on each vehicle served
both as an identification aid as well as a means of
inferring the relative pose between robots. The envi-
ronment consisted of 64 hurdles laid out systemati-
cally on four adjacent indoor tennis courts, providing
a convenient method for measuring the feature ground
truth. The vehicles were driven manually and the data
was post-processed.

Fig. 2. Photograph of the experimental setup.

In line with the discussion, onemasterwas designated
as the SLAM robot, maintaining estimates of the pose
history for each robot over a window ofn = 30
time steps. The vehicle dynamics (4) were represented
using simple kinematic models driven by the measure-
ments from the wheel encoders. The secondmaster
was prone to a significant degree of heading drift
which was not included in the model. Inter-vehicle



measurements were manually limited to a frequency
of roughly 1Hz. Additionally, while observations of
theslaveprovided a measure of relative vehicle pose,
most observations of onemasterby the other yielded
relative position but not orientation.

The map generated by the moving baseline naviga-
tion algorithm is shown in Figure 3 together with
the ground truth hurdle locations. The estimated tra-
jectories for each vehicle are superimposed. The ap-
parent discontinuity in the trajectory of the second
mastercorresponds to a period during which the ve-
hicle was out of observation range. Tracking was then
performed solely using dead reckoning which, as a
result of the error in the heading dynamics, caused the
state to diverge. The SLAM robot was able to relocate
the vehicle by means of hypothesis tracking using a
combination of inter-vehicle observations.
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Fig. 3. Overlay of map and ground truth with dia-
monds designating hand-measured feature loca-
tion and dots the estimated pose. The estimated
trajectories for the three vehicles are included.

To better understand the benefits of moving baseline
navigation, the data for the secondmaster as well
as theslavewere each processed separately using a
single-vehicle SLAM algorithm. Due in part to the
aforementioned heading model error, the filter for the
secondmasterfailed shortly into the run. Theslave
vehicle, on the other hand, was able to perform SLAM
for roughly two-thirds of the experiment before di-
verging. As indicated in Figure 4, moving baseline
navigation provides a pose estimate for theslaveve-
hicle which is significantly more accurate than that
which would be attained had the vehicle operated on
its own.

Animations of the results of the experiment are avail-
able atwww.mit.edu/˜mwalter/Research/

5. CONCLUSION

We have presented a framework for performing nav-
igation and mapping with a heterogeneous team of

vehicles using a logical extension to the delayed state
Kalman filter. By requiring that only a few vehicles in
the group be well suited for navigation, it is shown that
a combination of inter-vehicle measurements together
with data sharing allow each vehicle in the group to
navigate with improved accuracy. We have specifically
considered the case in which one of the vehicles is able
to perform SLAM and have discussed the incorpora-
tion of multiple vantage point observability offered
by the team of robots in both building a map of the
environment as well as tracking each of the vehicles.
Results of a land-based experiment involving three
vehicles operating in a large, ambiguous environment
were presented. A comparison with the results from
one of the robots performing SLAM independently
reveals the improvement in localization accuracy of-
fered by moving baseline navigation.

Future work will address the further limitations im-
posed by the underwater environment, particularly
with regard to communications bandwidth and the
limited observability offered by range-only measure-
ments. We are currently in the process of testing mov-
ing baseline navigation using an AUV in conjunction
with two surface craft.
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