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Abstract— This paper addresses the problem of autonomous
manipulation of a priori unknown palletized cargo with a
robotic lift truck (forklift). Specifically, we describe coupled
perception and control algorithms that enable the vehicle to
engage and place loaded pallets relative to locations on the
ground or truck beds. Having little prior knowledge of the
objects with which the vehicle is to interact, we present an
estimation framework that utilizes a series of classifiers to infer
the objects’ structure and pose from individual LIDAR scans.
The classifiers share a low-level shape estimation algorithm
that uses linear programming to robustly segment input data
into sets of weak candidate features. We present and analyze
the performance of the segmentation method, and subsequently
describe its role in our estimation algorithm. We then evaluate
the performance of a motion controller that, given an estimate
of a pallet’s pose, is employed to safely engage each pallet.
We conclude with a validation of our algorithms for a set of
real-world pallet and truck interactions.

I. INTRODUCTION

We have developed a robotic forklift for autonomous ma-

terials handling in the outdoor, semi-structured environments

typical of disaster relief and military storage warehouses [1].

The system performs typical warehouse tasks under the high-

level direction of a human supervisor, notably picking up,

transporting, and placing palletized cargo between truck beds

and ground locations in the environment. Integral to the

system is the robot’s ability to accurately localize and safely

manipulate unknown pallets despite their variable geometry,

the uneven terrain, and the unknown truck geometry.

Successfully picking up a pallet from a truck with a

2700 kg forklift, given perfect information regarding the

poses of the robot, pallet, and truck, is relatively easy. In

real settings, the challenges lie in accurately controlling

the nonholonomic lift truck so as to safely insert the tines

within the pallet’s slots. With little a priori information,

however, the system must also detect the pallet and the

truck bed, and subsequently maintain an accurate estimate

for their structure and pose while approaching and engaging

the pallet. These tasks are made difficult by variability in

pallet and truck geometry together with limited available

sensing. For example, while certain features of cargo pallets

are present across most pallets (i.e., roughly rectilinear,

generally flat, usually two insertion points designed for

forklift tines), the geometry of pallets is highly variable.

The forklift must use onboard sensing to recover the pallet

geometry in order to correctly insert the lifting tines; unlike

Fig. 1. The prototype forklift that is the host platform for the mobile
manipulation algorithm presented in the paper. The vehicle autonomously
detects and engages unknown pallets, picking them up from, and placing
them onto the ground or the bed of a truck. The rendering on the right depicts
the corresponding output of the pallet and truck estimation algorithms.

many small-object manipulation strategies, it is not possible

to use manipulator compliance or feedback control strategies

to ease insertion. Even small forklifts designed for indoor

warehouses can exert tons of force; the tines are extremely

rigid and cannot be instrumented with the tactile sensing

necessary for feedback control strategies for manipulation.

As a result, attempting to insert tines incorrectly can damage

or destroy the pallet (or its load) before the failure can be

detected and corrected.

In addition, a pallet’s appearance poses challenges for per-

ception. The physical pallet structure is quite sparse, roughly

1 m square with a height of 15 cm and inserts that are each

30 cm wide. This sparsity affords limited observation of the

manipuland with views dominated largely by LIDAR returns

from the pallet’s load as well as the surface on which the

pallet lies. Similarly, a truck’s undercarriage comprises most

of the view of a vertically-scanning LIDAR, with limited

returns arising from the vertical and horizontal faces of the

truck bed. Further complicating the problem of accurately

detecting and estimating the pallet and truck poses is the

fact that, while they are themselves rigid, the forklift’s tines

and carriage, to which the LIDARs are mounted, are not

rigidly attached to the vehicle, which limits the accuracy of

extrinsic calibration.

This paper presents a coupled perception and control

strategy that addresses these challenges, enabling the fork-

lift to manipulate unknown pallets within semi-structured,

outdoor environments. We first introduce the overall robotic

platform, briefly describing the aspects that are pertinent to

our mobile manipulation work. We then describe a general

strategy for pattern detection that identifies candidate linear



structure within noisy 2D LIDAR scans. We then describe

pallet and truck estimation algorithms that utilize this pattern

recognition tool in a series of classifiers to detect returns

from the pallet structure and truck bed. The algorithms

utilize positive detections as inputs to a set of filters that

maintain estimates for the pallet and truck poses throughout

engagement. We describe the control strategy that we use to

servo the pose of the vehicle and tines. Finally, we present

the results of a series of validation tests that demonstrate the

accuracy and limitations of our mobile manipulation strategy.

II. RELATED WORK

There has been considerable work in developing mobile

manipulators to accomplish useful tasks in populated envi-

ronments. This work has largely focused on the problems of

planning and control [2], [3], which are not inconsiderable

for a robot with many degrees of freedom and many actuators

capable of exerting considerable force and torque. These

efforts generally take one of two approaches: either assume

a high-fidelity kinodynamic model and apply sophisticated

search to solve for a feasible control plan [4]–[6], or use re-

active policies with substantial sensing and feedback control

(either visual [7] or tactile [8], [9]) to avoid the requirements

of a model.

In regards to perception challenges, there has been ex-

tensive work addressing the problems of object segmenta-

tion, classification, and estimation based upon range data.

In particular, early work by Hebert et al. [10] describes

algorithms for object detection and recognition with an

outdoor robot using laser scan data. Hoffman and Jain [11]

present a method to detect and classify the faces comprising

3D objects based on range data. Similarly, Newman et

al. [12] propose a model-driven technique that leverages prior

knowledge of object surface geometry to jointly classify and

estimate surface structure. Researchers have also extended

the robustness of image segmentation [13] and object model

parameter estimation [14], [15] using randomized sampling

to accommodate range images with many outliers. In general,

these techniques require range images of the scene, which, in

the case of our platform, are subject to systematic error due

to the pliancy of the forklift structure to which the LIDARs

are mounted.

The specific problem of developing an autonomous lift

truck that is able to pick up and transport loaded pallets

is not new [16]. The same is true of pallet detection and

localization, which pose interesting perception challenges

due to their sparse structure. Most of this work, however,

differs significantly from our own, in that it assumes a clean,

highly-structured environment, does not generalize across

varying pallet geometry [17]–[19], and does not consider the

problem of placing pallets onto and picking pallets off of

unknown truck beds.

III. SYSTEM OVERVIEW

Our platform is a 2700 kg Toyota forklift with drive-by-

wire modifications enabling computer-based control of the

vehicle and mast (i.e., tine height and forward/backward tilt)

Fig. 2. The forklift detects pallets with a single horizontally-scanning
LIDAR, and truck beds with a pair of vertically-scanning LIDARs.

Fig. 3. Forklift being commanded, via the tablet interface, to pick up a
pallet from a truck bed.

actuation. The platform is equipped with laser range finders

for object detection as well as a forward-facing camera that

provides images to a remote user’s command interface. We

estimate the vehicle’s pose via dead-reckoning based upon

wheel encoder velocity measurements together with heading

measurements from an integrated GPS/IMU.

Pallet detection relies upon a single Hokuyo UTM laser

range finder with a 30 m range and a 140 degree field-of-

view (limited by mounting enclosure). The unit is mounted

at the elbow of one of the forklift’s tines and scans in a

horizontal plane situated slightly above the tine’s top surface

(Figure 2). Meanwhile, the truck bed estimation algorithms

that follow utilize a pair of UTM laser range finders (30 m

range, 270 degree FOV) mounted to the left and right sides

of the carriage assembly with a vertical scan plane. All three

LIDARs move in tilt with the mast and height with the

carriage.

The forklift operates autonomously based upon high-level

directives from a user who commands the system via a

hand-held tablet computer [1], [20]. In the case of pallet

engagement tasks, the user directs the platform to pick up a

pallet from the ground or a truck bed, or to place a pallet

at a specified, unoccupied location on the ground or truck.

The user indicates the desired pallet to engage by circling it

within the image from the vehicle’s forward-facing camera,

which is displayed on the tablet (Figure 3). Similarly, the

user identifies a desired pallet placement location by circling

the region in the camera image. We project these image-



based gestures into the world frame, yielding a corresponding

volume of interest.

In the subsequent sections, we explain how the robot

autonomously manipulate pallets given directives of this

form.

IV. FAST CLOSEST EDGE DETECTION

FROM LASER RANGE FINDER DATA

In this section, a novel efficient algorithm that identifies

the closest edge in LIDAR data is proposed. Two closest

edge detection problems are studied. The first assumes that

the orientation of the edge is known and estimates the

distance of the edge from the sensor. The second relaxes this

assumption and estimates both the distance and orientation

of the edge. Inspired by similar problems in learning with

kernel methods [21], we formulate the first variant of the

problem as a linear program, the dual of which is shown

to be solvable in O(nmin{ν, log n}) time, where n is the

number of points and ν is a problem-specific parameter. Note

that solving the original linear program with, for instance, the

interior point algorithm requires O(n3.5) time in the worst

case [22]; hence, exploiting the structure of the dual program

results in significant computational savings, facilitating real-

time implementation. In the second variant of the problem,

we propose a heuristic algorithm that employs the algorithm

for the first variant a constant number of times. Sections V

and VI describe the use of both algorithms as a basis to

detect pallets and trucks, respectively.

A. Closest Edge Detection with Known Orientation

Consider the first variant of the closest edge detec-

tion problem. To define the problem more formally, let

X = {xi}i∈I , where I = {1, 2, . . . , n}, be the set of points

in the two dimensional Euclidean space R
2, representing

the data sampled from a planar laser range finder. Fig-

ure 4 presents a simple example with laser returns that are

representative of those from a pallet face. Without loss of

generality, let the sensor lie in the origin of this Euclidean

space and be oriented such that its normal vector is [1, 0]⊤.

Let a ∈ R
2 denote a normalized vector, i.e., ‖ a ‖ = 1.

Informally, the problem is to find the distance ρ from the

origin to the line that separates all data points in X , except

a few outliers, from the origin. More precisely, for all points

xi ∈ X , except a few outliers, 〈a, xi〉 ≥ ρ holds, where

〈·, ·〉 denotes the dot product, i.e., the distance of xi to the

origin when projected along the vector a. Let ξi represent

the distance of point xi to the separating line if the distance

from the origin to xi (projected along a) is less than ρ;

otherwise, let ξi be zero. That is ξi = max (ρ− 〈a, xi〉, 0)
(see Figure 4).

Given a line described by a normal a and distance ρ, a

point xi with ξi > 0 is called an outlier with respect to the

line (a, ρ). We formulate the closest edge detection problem

as maximization of the following function: ρ − C
∑

i∈I ξi,
where C is a constant problem-dependent parameter. The

maximization represents the trade-off between two objec-

tives: maximizing the distance ρ of the separating line to

ρ
xi

a

ξi

X

Y

Fig. 4. A graphical representation of the closest edge detection problem
for 2D laser returns from a pallet face. The three grey points are outliers
with respect to the line (a, ρ).

the origin and minimizing the total distance
∑

i∈I ξi of the

outliers to line (a, ρ). Notice that C = 0 renders ρ = ∞, in

which case all data points will be outliers. C → ∞, on the

other hand, allows no outliers in a feasible solution.

We first consider the case in which no outliers are per-

mitted (C → ∞) and the relatively easy problem of finding

the distance ρ of the line with normal a to the origin such

that ρ is maximum and the line separates all points in X
from the origin. Notice that a naı̈ve algorithm that computes

the distance of xi from the origin for all i ∈ I and returns

the minimum distance solves this problem. Notice also that

this algorithm runs in time O(n). Indeed, it can be shown

that any deterministic algorithm that solves this problem has

to run in time Ω(n). However, due to the noise embedded

in the laser range finder data, especially for LIDAR returns

arising from the corners of the scanned object, this solution

may provide noisy information. Precisely for this reason,

the aforementioned formulation of the closest edge detection

problem includes an extra term in the objective function so

as to filter out such noise. The rest of this section details

an algorithm that solves the closest edge detection problem

while incurring small extra computational cost.

The closest edge detection problem can be formulated as

a linear program as follows:

maximize ρ−
1

ν

∑

i∈I

ξi, (1a)

subject to di ≥ ρ− ξi, ∀i ∈ I, (1b)

ξi ≥ 0, ∀i ∈ I, (1c)

where ρ ∈ R and ξi ∈ R are the decision variables, and

ν ∈ R is a parameter such that ν = 1/C. The term di =
〈a, xi〉 is the distance of point xi to the origin when projected

along a.

For computational purposes, it is useful to consider the

dual of the linear program (1):

minimize
∑

i∈I

diλi, (2a)

subject to
∑

i∈I

λi = 1, ∀i ∈ I, (2b)

0 ≤ λi ≤
1

ν
, ∀i ∈ I, (2c)



where λi are called the dual variables. Let (ρ∗, ξ∗1 , . . . , ξ
∗
n)

be the optimal solution to the linear program (1) and

(λ∗
1, . . . , λ

∗
n) be the optimal solution of the dual linear

program (2). The optimal primal solution is recovered from

the dual solution as ρ∗ =
∑

i∈I λ∗
i di.

The dual linear program is particularly interesting for

computational purposes. Strictly speaking,

Proposition IV.1 Algorithm 1 runs in O(nmin{log n, ν})
time and solves the dual linear program (2).

Algorithm 1, DUALSOLVE, takes the parameter ν, the

normal vector a, and the set X as an input and returns an

indexed set {λi}i∈I of values for the dual variables. The

DUALSOLVE algorithm employs two primitive functions.

SORT takes an indexed set {yi}i∈I as an input, where

yi ∈ R, and returns a sorted sequence of indices J such that

yJ (j) ≤ yJ (j+1) for all j ∈ {1, 2 . . . , |I|}. MIN, meanwhile,

returns the index j of the minimum element in a given index

set, i.e., yj ≤ yj′ for all j′ ∈ J .

Firstly, notice that the elementary operations in

DUALSOLVE require only additions, multiplications,

and the evaluation of cross products, all of which can

be computed without computation of any trigonometric

function. Apart from its theoretical computational guarantees

ensured by Proposition IV.1, this particular property of

Algorithm 1 makes it fast in practice as well. Secondly,

notice also that with Algorithm 1, one can solve the

mathematical program (1). Let us denote this procedure

with DISTFIND(ν, a,X ) (see Algorithm 2). Clearly,

DISTFIND also runs in time O(nmin{log n, ν}).

Algorithm 1: DUALSOLVE (ν, a,X )

for all i ∈ I do
λi := 0;

for all i ∈ I do
di :=< a, xi >;

D := {di}i∈I ;

if log |D| < ν then
J := SORT(D);
for j := 1 to ⌊ν⌋ do

λJ (j) := 1/ν;

λJ (⌊ν⌋+1) := 1− ⌊ν⌋/ν;

else

for i := 1 to ⌊ν⌋ do
j := MIN(D);
λj := 1/ν;

D := D \ {dj};

j := MIN(D);
λj := 1− ⌊ν⌋/ν;

return {λi}i∈I

The next sections present pallet and truck detection al-

gorithms, which employ the DISTFIND algorithm heavily.

The value ν influences the effectiveness of the detection

Algorithm 2: DISTFIND(ν, a,X )

for all i ∈ I do
di :=< a, xi >;

{λi}i∈I := DUALSOLVE(ν, a,X );
ρ :=

∑
i∈I λidi

algorithms. Although the choice of ν is generally problem-

dependent, we present a couple of its interesting properties

before moving on with the detection algorithms.

Proposition IV.2 mini∈I di ≤ ρ∗.

This proposition merely states that the distance returned by

DISTFIND is never less than the distance of any of the

points in X to the origin. That is, the line that separates the

origin from the data points either passes through at least one

of the data points, or there exists at least one data point that

is an outlier with respect to the line. The following proposi-

tion indicates an important relation between the number of

outliers and the parameter ν.

Proposition IV.3 The parameter ν is an upper bound on the

number of outliers with respect to the the line (a, ρ∗).

The proofs of these propositions are omitted for lack of

space.

B. Closest Edge Detection with Unknown Orientation

If the orientation is not known, we invoke DUALSOLVE

a constant number of times for a set {ai}i∈{1,2,...,N} of

normal vectors, each oriented with angle θi relative to the X-

axis, where θi are uniformly placed on the interval between

θ1 = θmin and θN = θmax (see Algorithm 3). After each

invocation of DUALSOLVE, a weighted average zi of the data

points is computed using the dual variables returned from

DUALSOLVE as weights. Using a least squares method, a line

segment is fitted to the resulting points {zi}i∈{1,2,...,N} and

returned as the closest edge as the tuple (z′, a′, w′), where

z′ is the position of the mid-point, a′ is the orientation, and

w′ is the width of the line segment.

Algorithm 3: EDGEFIND(ν,X , θmin, θmax, N)

for j := 1 to N do
θ := θmin + (θmax − θmin)j/N ;

a := (cos(θ), sin(θ));
{λi}i∈I := DUALSOLVE(ν, a,X );
zj :=

∑
i∈I λixi;

(z′, a′, w′) := LINEFIT({zj}j∈{1,2,...,N});
return (z′, a′, w′)

C. The Hierarchical Classification Framework

Pallet and truck perception algorithms that we introduce

in the next two sections run DISTFIND or EDGEFIND

over sets {Xk}k∈K of data points to extract a set {fk}k∈K



of features from the data. In most cases, these features

correspond to real-world structure, such as the existence of

slots in an edge returned by EDGEFIND, or the height of the

truck bed detected using DISTFIND.

The data sets Xk can be LIDAR returns from different

sensors, or returns from the same sensor but acquired at

different time intervals. In some other cases, Xk are ac-

quired from a single scan of the same sensor, but Xk+1 is

determined from the features f1, f2, . . . , fk of the data sets

X1,X2, . . . ,Xk. Yet, no matter how the data sets {Xk}k∈K

are selected, the set {fk}k∈K of features are generated

using intuitive algorithms that employ either DISTFIND

or EDGEFIND. These features are then compared with a

nominal set {f̄k}k∈K of features, for instance by computing

the distance ‖{fk}k∈K−{f̄k}k∈K‖ according to some norm;

if the distance is within acceptable limits, the set {Xk}k∈K

of data sets is marked as including the object that is to be

perceived from the LIDAR data.

V. PALLET ESTIMATION

The algorithms described in Section IV are next used to

design effective heuristic methods to detect pallets from a

single LIDAR scan. We utilize this detection method as the

basis for batch detection and subsequent filtering.

The algorithms described in this section can be used to

estimate both the pose and geometry of pallets of various

types and sizes. Most pallets used in industrial applications

have distinctive features, namely two tine slots and an overall

width that varies between 0.9 m to 1.5 m. Moreover, the

two slots generally have the same width and are offset

symmetrically with respect to the mid-point of the pallet face.

Our pallet estimation algorithms first identify the closest edge

in a single laser scan and then look for these distinct features

in the edge. The features are identified by invoking calls to

DISTFIND and EDGEFIND.

As a step prior to online filtering, we would like to extract

the aforementioned features and detect pallets that lie within

the user-provided volume of interest (Section III). Since our

main interest is online filtering, the detection is carried out

using only a single scan (Figure 5) instead of accumulated

laser scans. However, assuming that the pallet roll angle is

close to the that of the lift truck during active scanning,

several detections obtained at different heights can be used

for batch detection purposes as well, with essentially no

modifications to the detection algorithm. Indeed, this strategy

is employed in this work.

Given a single LIDAR scan, the pallet detection algorithm

works as follows. Let X be the set of LIDAR points obtained

from the laser range finder mounted on the tine. First,

the algorithm culls the points from X that lie within the

region of interest, forming a subset X1 (Figure 5). Subse-

quently, we call EDGEFIND on X1 to detect the closes edge

(zpallet, apallet, wpallet), which constitutes a candidate pallet

face. The algorithm utilizes the output to compute the width

of the pallet face, which constitutes the first classification

feature, f1 = (wpallet). Second, we form a subset X ′
1 that

contains all those points in X1 that lie within a box of depth

ǫ, width wpallet, and orientation apallet, centered at zpallet (see

the blue box in Figure 5).1 Third, the algorithm proceeds to

estimate the slot geometry, partitioning X ′
1 into four sets of

points X2, X3, X4, and X5. Intuitively, the set X2 includes

those points in X ′
1 left (per apallet) of the center by at least

25 cm. Similarly, X4 is the set of all those points in X ′
1 that

(a)

(b) (c)

Fig. 5. (a) A single pallet scan and the user gesture projected on the
world indicating boundaries of the region of interest (pink). (b) Points in
the region of interest as well as the line detection and the associated box.
(c) The data sets Xi with i = 2, 3, 4, 5 and their origins shown as red dots.

are at least 25 cm right of center. The sets X3 and X5 are

the complements of X2 and X4, respectively (Figure 5). The

points in X2 and X3 are translated such that the origin is the

point that is to the left of the box and is 25 cm away from

the center. Similarly, the points in X4 and X5 are translated

such that their origins are to the right of the box and 25 cm

away from the center. Subsequently, the algorithm runs the

DISTFIND function on Xi for all i = 2, 3, 4, 5 and notes the

distance returned by the DISTFIND algorithm as the feature

fi associated with data set Xi. These features are denoted as

f2 = (δfar
left), f3 = (δnear

left ), f4 = (δfar
right), and f5 = (δnear

right).

Note that, intuitively, δfar
left is the distance from the far side

of the left slot to the center of the pallet face and similar

intuition applies to other features. Finally, the algorithm

computes the width wleft and wright of the left and right slots.

These features are compared with nominal values within

the framework of Section IV-C. If the features are within

acceptable bounds, the algorithm yields a positive pallet

detection (zpallet, apallet, wpallet, wleft, wright, xleft, xright), where

xleft and xright are the distance of the center of left and right

slot locations computed directly from the features f2, . . . , f5;

otherwise it reports no pallet detection. For this work, we

hand-tuned the nominal values of the features as well as

their acceptable bounds; however, they can, in principle, be

learned from training data. We leave this for future work.

1We use ǫ = 20cm and have found empirically that values between 10 cm
and 40 cm yield acceptable results.



For batch detection, we actively scan the volume of

interest by actuating the lift truck’s mast and collecting pallet

detections at various heights. A classification algorithm then

first checks whether there is a set of detections that span

a height consistent with that of typical pallets and that are

mutually consistent in terms of Mahalanobis distance. If so,

the batch detection algorithm outputs the pallet detection

averaged over this set of detections as well as the detection

heights. Subsequently, we initialize a Kalman filter over

the pallet detection states with the average detections and

update the filter with any new detections. An active scanning

operation is shown in Figure 6.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Output of the pallet detection algorithm as a pallet on a truck bed
is being actively scanned, sorted by increasing height. (a-b) LIDAR returns
from the undercarriage and the truck bed are rejected as pallet candidates.
(c-e) LIDAR returns from the pallet face are identified as the pallet. (f) The
load on the pallet is correctly ruled out as a candidate pallet face.

VI. TRUCK BED ESTIMATION

This section describes our truck detection algorithms,

which enable the forklift to manipulate pallets with respect to

unknown truck beds. Our approach to truck estimation em-

ploys a Kalman filter to track the truck’s pose online, namely

the bed’s height off the ground, it’s 2D position, and it’s

relative heading. We initialize the filter with a conservative

prior inferred from the user’s image-relative pen gesture. We

then update the filter online based upon detections extracted

from the two vertically-scanning LIDARs mounted on both

sides of the carriage.

The truck detection algorithm operates within the classi-

fication framework described in Section IV-C. We process

individual scans from the left and right laser range finders

to extract two feature pairs that correspond to the truck bed

height and its distance from the forklift. We then check these

features for mutual consistency and against a coarse prior

before yielding an observation of the truck’s height, position,

and orientation.

Strictly speaking, let Xleft and Xright be the point sets

acquired via the two vertically-scanning laser range finders.

Let X1 be the set of all those points in Xleft that are above the

current ground estimate. The truck bed detection algorithm

uses DISTFIND to detect the distance dleft of these points

to the sensor, which is the element of the first feature

f1 = (dleft) extracted for classification. Let X2 be the set

dright

hright

Fig. 7. Truck bed detection algorithm depicted on the raw data acquired
from sensor mounted to the right of the mast.

of all those points in set X1 that are at least dleft and at

most dleft + ǫ away from the sensor. Moreover, let the points

in X2 be translated such that their center is dleft away from

sensor and 5 m above the ground (see Figure 7). Next, the

algorithm employs DISTFIND to determine the distance

hleft of these points from the ground, which is noted as

the second feature f2 = (hleft). Similarly, we employ the

same procedure with Xright to obtain the sets X3 and X4

and two additional features, f3 = (dright) and f4 = (hright).
Comparing the left and right features for mutual consistency

and against a coarse prior over truck pose, valid estimates

yield a truck bed detection (ztruck, atruck, htruck). We compute

the height of the truck bed htruck as the average of hleft and

hright. We determine the 2D location ztruck by first projecting

the ray induced by the center of the user’s pen gesture onto

a plane that is parallel with the ground and of height htruck.

We then intersect this projection with the line that passes

through the 2D points from the left and right scans, zleft and

zright.

With each truck-based manipulation, we initialize a

Kalman filter with a conservative prior (zprior
truck, a

prior
truck, h

prior
truck)

inferred from the user’s gesture and a nominal height of

hprior
truck = 1m. First, we project a ray into the world through

the center of a circle fit to the image gesture. Intersecting

this ray with a plane parallel to the ground and at a height

of hprior
truck yields zprior

truck. We then estimate the orientation aprior
truck

as the unit vector oriented from the forklift to zprior
truck. Upon

initialization, the filter then updates the estimates based upon

observations provided by the aforementioned truck detection

algorithm. Figure 8 shows a sequence of estimates for a pallet

drop-off operation.

VII. CONTROL ALGORITHMS

This section presents the feedback control algorithm that

steers the robot from an initial position and heading to a final

position and heading. The algorithm is tailored and tuned for

precise pallet engagement operations.

Let zinitial and ainitial be the robot’s initial position and

orientation, where zinitial is a coordinate Euclidean plane and

ainitial is a normalized two-dimensional vector. Similarly, let

zfinal and afinal be the desired final position and orientation

of the robot. (In our application, zfinal and afinal represent the

pallet position and orientation.) Without loss of generality,

let zfinal = (0, 0) and afinal = (1, 0) be oriented toward the X-

axis (see Figure 9). Similarly, let ey be the distance between

zinitial and zfinal along the direction orthogonal to afinal, and



(a) (b)

(c) (d)

Fig. 8. Truck bed estimation. The initial estimate of the truck bed is
determined from the user pen gesture. (b-d) As the robot drives toward the
truck, detections are used to update the Kalman filter estimate for the truck’s
pose. (d) The bot drops off the pallet at the location on the truck indicated
by the user’s pen gesture.

ey

eθ

ainitial

afinal

X

Y

Fig. 9. Illustration of the controller algorithm.

let eθ be the angle between the vectors ainitial and afinal,

eθ = cos-1(ainitial · afinal). Finally, let δ be the steering control

input to the robot. In this work, we use the following steering

control strategy for pallet engagement operations:

δ = Ky tan
-1(ey) +Kθeθ, (3)

where Ky and Kθ are controller parameters. Assuming a

Dubins vehicle model [23] of the robot as in

ż = (cos θ, sin θ) (4a)

θ̇ = tan-1(δ), (4b)

the nonlinear control law (3) can be shown to converge such

that ey → 0 and eθ → 0 holds, if −π/2 ≤ eθ ≤ π/2 is

initially satisfied [24].

VIII. EXPERIMENTAL RESULTS

This section analyzes the pallet engagement system de-

scribed above. The closed-loop pallet engagement algorithms

were tested extensively on the hardware described in Sec-

tion III, at two outdoor warehouses. Both testing sites have

packed gravel terrain with small rocks and mud. In these

experiments, we commanded the bot to pick up pallets from

different locations on the ground as well as from truck beds,

and recorded the lateral position and orientation of the robot

with respect to the pallet in each test as reported by the

robot’s dead reckoning module. Note that the experiments

were conducted with different types of pallets that, within

each type, exhibited varying geometry (i.e., width, slot

location, and slot width). The pose of the pallet relative to

the truck and the truck’s pose relative to the forklift also

varied.
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Fig. 10. Results of the validation tests for pallet engagements from (a-b) a
truck bed and (c-d) the ground. Each path represents the robot’s trajectory
during a successful pickup. A red ‘x’ denotes the initial position of the robot
for a failed engagement. Arrows indicate the robot’s forward direction. All
poses are shown relative to that of the pallet, centered at the origin with the
front face along the x-axis. The trajectories are colored according to (a),
(c) the relative angle between the pallet and the robot (in degrees) and (b),
(d) the cross track error (in cm) immediately prior to insertion.
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Fig. 11. Histograms that depict the resulting error immediately prior to
the forklift inserting the tines in the pallet slots for a series of tests. Figures
(a) and (c) correspond to the relative angle between the vehicle’s forward
direction and the pallet normal for engagements from a truck and from the
ground, respectively. Histograms (b) and (d) present the final lateral cross
track error for the successful engagements.

Figure 10 shows a plot of the successful and failed pallet

pickup tests, together with final relative angle and cross track



error in each experiment (see Figure 11 for histograms). Note

that most of the failures are due to pallet detection, and they

occur when the bot starts longitudinally 7.5 m and/or laterally

3 m or more away from the pallet. In the majority of these

cases, the robot’s vantage point together with the sparseness

of the pallet structure were such that the laser range finder

yielded few returns from the pallet face. In the cases in

which the pallet was visible during the initial scanning of

the volume of interest, 35 of the 38 ground engagements

were successful, where we define a successful engagement

as one in which the forklift inserted the tines without moving

the pallet. In one of the three failures, the vehicle inserted the

tines but moved the pallet slightly in the process. In tests of

truck-based engagements, the manipulation was successful in

all 30 tests in which the pallet was visible during the initial

scanning process.

IX. CONCLUSIONS

We presented a novel coupled perception and control

algorithm for an outdoor robotic forklift that is able to safely

engage unknown pallets with respect to the ground and

unknown truck beds. We have also shown an experimental

demonstration of the algorithms on a full-sized forklift.

Our current research include extending our perception al-

gorithms to detect multiple pallets and detect pallets without

the help of a user gesture. We also plan to extend our

control algorithms to more complex path planning. Such

path planning includes the ability to automatically identify

vehicle trajectories that minimize the resulting uncertainty

in the pallet pose, increasing the likelihood of successful

engagement.
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